2
=-3 .
-3
(3)y'=14x13.
1
(4)∵y=4 =x-4,
∴y'=-4x
4
=-5 .
-5
1
5
;(4)y= 4 ;(5)y=
1 x
3
x ;(6)y=(3) ;(7)y=log3x.
-2
0
14
(1)y=e ;(2)y=x ;(3)y=x
5
解 (5)∵y= x 3 =
3 -2
∴y'= x 5
(2)如果已知点不是切点,则应先设出切点,再借助两点连线的斜率公式进
行求解.两种情况的区别就在于切点已知和未知的问题,都需要借助导数的
几何意义求解.
变式训练3[2024广东惠州高二统考]已知函数f(x)=x3.求:
(1)曲线y=f(x)在点(1,f(1))处的切线方程;
★★(2)曲线y=f(x)过点B(0,16)的切线方程.
解 (1)因为f'(x)=3x2,所以f'(1)=3,
又f(1)=1,所以曲线y=f(x)在(1,f(1))处的切线方程为y-1=3(x-1),
即3x-y-2=0.
(2)设切点为(x0,03 ),则 f'(x0)=302 ,所以切线方程为 y-03 =302 (x-x0).
因为切线过点 B(0,16),
m
n
x ,从而 f'(x)=(x
m
n
m
)'= n
·x
m
-1
n
.
思考辨析
对于幂函数f(x)=xα,当α分别取1,2,3,-1,
1
时,f'(x)分别为多少?
2