中考数学试题分类大全专题 整式
- 格式:doc
- 大小:1.39 MB
- 文档页数:20
中考数学试题分类汇编:整式与分式一、选择题1、实数a 、b 在数轴上的位置如图所示,则化简代数式||a +b –a 的结果是( ) A .2a +b B .2a C .a D .b2、计算)3(623m m -÷的结果是( )(A )m 3- (B )m 2- (C )m 2m 3 3、下列计算中,正确的是( )A .33x x x =∙B .3x x x -=C .32x x x ÷=D .336x x x += 4、下列运算正确的是( ) A.321x x -= B.22122xx--=-C.236()a a a -=· D.236()a a -=-4、化简:(a +1)2-(a -1)2=( )(A )2 (B )4 (C )4a (D )2a 2+25、下列计算中,正确的是( )A .325a b ab +=B .44a a a =∙ C .623a a a ÷= D .3262()a b a b = 6.对于非零实数m ,下列式子运算正确的是( )A .923)(m m =;B .623m m m =⋅;C .532m m m =+;D .426m m m =÷。
7.下列因式分解正确的是( )A .x x x x x 3)2)(2(342++-=+-;B .)1)(4(432-+-=++-x x x x ;C .22)21(41x x x -=+-;D .)(232y x y xy x y x xy y x +-=+-。
8、下列计算正确的是( )A 、623a a a =∙B 、4442b b b =∙C 、1055x x x =+ D 、87y y y =∙ 9、代数式2346x x -+的值为9,则2463x x -+的值为( )A .7 B .18 C .12D .9 10、下列各式中,与2(1)a -相等的是( )A .21a -B .221a a -+ C .221a a -- D .21a + 二、填空题1、当x=2,代数式21x -的值为_______.2、因式分解:xy 2–2xy +x = .3、分解因式:2218x -= .4、分解因式:2x -9= 。
整式一、选择题1. (2012上海市4分)在下列代数式中,次数为3的单项式是【 】A . xy 2B . x 3+y 3C . .x 3yD . .3xy【答案】A 。
【考点】单项式的次数。
【分析】根据单项式的次数定义可知:A 、xy 2的次数为3,符合题意;B 、x 3+y 3不是单项式,不符合题意;C 、x 3y 的次数为4,不符合题意;D 、3xy 的次数为2,不符合题意。
故选A 。
2. (2012重庆市4分)计算()2ab 的结果是【 】 A .2ab B .2a b C .22a b D .2ab【答案】C 。
【考点】幂的乘方与积的乘方。
【分析】根据幂的乘方与积的乘方运算法则直接得出结果:原式=22a b 。
故选C 。
3. (2012安徽省4分)计算32)2(x -的结果是【 】A.52x -B. 68x -C.62x -D.58x -【答案】B 。
【考点】积的乘方和幂的运算【分析】根据积的乘方和幂的运算法则可得: 233236(2)(2)()8x x x -=-=-。
故选B 。
4. (2012安徽省4分)某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是【 】A.(a -10%)(a +15%)万元B. a (1-10%)(1+15%)万元C.(a -10%+15%)万元D. a (1-10%+15%)万元【答案】B 。
【考点】列代数式。
【分析】根据3月份的产值是a 万元,用a 把4月份的产值表示出来a (1-10%),从而得出5月份产值列出式子a 1-10%)(1+15%)。
故选B 。
5. (2012山西省2分)下列运算正确的是【 】A .B .C . a 2a 4=a 8D . (﹣a 3)2=a 6 【答案】D 。
【考点】算术平方根,实数的运算,同底数幂的乘法,幂的乘方与积的乘方。
【分析】根据算术平方根,实数的运算,同底数幂的乘法,幂的乘方与积的乘方的概念分别作出判断:A ,故本选项错误;B .C .a 2a 4=a 6,故本选项错误;D .(﹣a 3)2=a 6,故本选项正确。
中考数学专题复习题:整式及其加减一、单项选择题(共10小题)1.单项式32xy -的系数是()A .3B .4C .2-D .22.下列代数式的书写符合规范的是()A .112a B .a 2÷5C .ab 6D .3b 3.多项式222a b ab a --的项数及次数分别是()A .3,3B .3,2C .2,3D .2,24.关于字母x y ,的多项式22338x kxy y xy --+-化简后不含xy 项,则k 为()A .0B .13-C .13D .35.若25a 4b n 与-27a m b 3是同类项,则m 、n 的取值为()A .m =2,n =3B .m =4,n =2C .m =3,n =3D .m =4,n =36.下面的说法中,正确的是()A .x +3是多项式B .(-2)3中底数是2C .335ab 的系数是3D .单项式-ab 2的次数是2次7.下列代数式中,符合书写规则的是()A .112xB .x ÷yC .m ×2D .3mn 8.小明在计算一个二项式的平方时,得到的正确结果是4x 2+12xy +■,但最后一项不慎被污染了,这一项应是()A .3y 2B .6y 2C .9y 2D .±9y 29.已知一个多项式与322853x x x -+-的和等于3221452x x x -+-,则这个多项式一定是()A .32461x x ++B .261x +C .261x -+D .265x --10.在多项式()a b c d --+-(其中a b c d >>>)中,对每个字母及其左边的符号(不包括括号外的符号)称为一个数,即:a -为“数1”,b 为“数2”,c +为“数3”,d-为“数4”,若将任意两个数交换位置,后得到一个新多项式,再写出新多项式的绝对值,这样的操作称为对多项式()a b c d --+-的“绝对换位变换”,例如:对上述多项式的“数3”和“数4”进行“绝对换位变换”,得到−−−+,将其化简后结果为a b c d +--,…下列说法:①对多项式的“数1”和“数2”进行“绝对换位变换”后的运算结果一定等于对“数3”和“数4”进行“绝对换位变换”后的运算结果;②不存在“绝对换位变换”,使其运算结果与原多项式相等;③所有的“绝对换位变换”共有5种不同运算结果.其中正确的个数是()A .0B .1C .2D .3二、填空题(共5小题)11.多项式322283a ab ac -+-是________次________项式,它的常数项是________.12.23m x y -与35n x y 是同类项,则m n +=________。
2022年全国中考数学真题分类汇编专题3:整式一.选择题(共15小题)1.计算(2x2)3的结果,正确的是()A.8x5B.6x5C.6x6D.8x6【解答】解:(2x2)3=8x6.故选:D.2.下列运算正确的是()A.a2•a3=a5B.(a2)3=a8C.(a2b)3=a2b3D.a6÷a3=a2【解答】解:a2•a3=a5,故A正确,符合题意;(a2)3=a6,故B错误,不符合题意;(a2b)3=a6b3,故C错误,不符合题意;a6÷a3=a3,故D错误,不符合题意;故选:A.3.计算a2•a()A.a B.3a C.2a2D.a3【解答】解:原式=a1+2=a3.故选:D.4.下列运算正确的是()A.a2•a3=a5B.(a3)2=a5 C.(ab)2=ab2D. a3(a≠0)【解答】解:A.因为a2•a3=a2+3=a5,所以A选项运算正确,故A选项符合题意;B.因为(a3)2=a2×3=a6,所以B选项运算不正确,故B选项不符合题意;C.因为(ab)2=a2b2,所以C选项运算不正确,故C选项不符合题意;D.因为 a6﹣2=a4,所以D选项运算不正确,故D选项不符合题意.故选:A.5.计算a3•a2的结果是()A.a B.a6C.6a D.a5【解答】解:a3•a2=a5.故选:D.6.若24×22=2m,则m的值为()A.8B.6C.5D.2【解答】解:∵24×22=24+2=26=2m,∴m=6,故选:B.7.化简(3a2)2的结果是()A.9a2B.6a2C.9a4D.3a4【解答】解:(3a2)2=9a4.故选:C.8.计算a3÷a得a,则“?”是()A.0B.1C.2D.3【解答】解:根据同底数幂的除法可得:a3÷a=a2,∴?=2,故选:C.9.计算﹣a2•a的正确结果是()A.﹣a2B.a C.﹣a3D.a3【解答】解:﹣a2•a=﹣a3,故选:C.10.下列运算正确的是()A.3a﹣2a=1B.a3•a5=a8C.a8÷2a2=2a4D.(3ab)2=6a2b2【解答】解:3a﹣2a=a,故选项A错误,不符合题意;a3•a5=a8,故选项B正确,符合题意;a8÷2a2 a6,故选项C错误,不符合题意;(3ab)2=9a2b2,故选项D错误,不符合题意;故选:B.11.下列计算正确的是()A.m2•m3=m6B.﹣(m﹣n)=﹣m+nC.m(m+n)=m2+n D.(m+n)2=m2+n2【解答】解:A选项,原式=m5,故该选项不符合题意;B选项,原式=﹣m+n,故该选项符合题意;C选项,原式=m2+mn,故该选项不符合题意;D选项,原式=m2+2mn+n2,故该选项不符合题意;故选:B.12.下列计算结果正确的是()A.5a﹣3a=2B.6a÷2a=3aC.a6÷a3=a2D.(2a2b3)3=8a6b9【解答】解:A选项,原式=2a,故该选项不符合题意;B选项,原式=3,故该选项不符合题意;C选项,原式=a3,故该选项不符合题意;D选项,原式=8a6b9,故该选项符合题意;故选:D.13.计算(2a4)3的结果是()A.2a12B.8a12C.6a7D.8a7【解答】解:(2a4)3=8a12,故选:B.14.计算a(a+1)﹣a的结果是()A.1B.a2C.a2+2a D.a2﹣a+1【解答】解:a(a+1)﹣a=a2+a﹣a=a2,故选:B.15.对多项式x﹣y﹣z﹣m﹣n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m ﹣n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3【解答】解:①如(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,(x﹣y﹣z)﹣m﹣n=x﹣y﹣z ﹣m﹣n,故①符合题意;②x﹣y﹣z﹣m﹣n的相反数为﹣x+y+z+m+n,不论怎么加括号都得不到这个代数式,故②符合题意;③第1种:结果与原多项式相等;第2种:x﹣(y﹣z)﹣m﹣n=x﹣y+z﹣m﹣n;第3种:x﹣(y﹣z)﹣(m﹣n)=x﹣y+z﹣m+n;第4种:x﹣(y﹣z﹣m)﹣n=x﹣y+z+m﹣n;第5种:x﹣(y﹣z﹣m﹣n)=x﹣y+z+m+n;第6种:x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n;第7种:x﹣y﹣(z﹣m﹣n)=x﹣y﹣z+m+n;第8种:x﹣y﹣z﹣(m﹣n)=x﹣y﹣z﹣m+n;故③符合题意;正确的个数为3,故选:D.二.填空题(共10小题)16.计算:a•a3=a4.【解答】解:a3•a,=a3+1,=a4.故答案为:a4.17.单项式3xy的系数为3.【解答】解:单项式3xy的系数为3.故答案为:3.18.若一个多项式加上3xy+2y2﹣8,结果得2xy+3y2﹣5,则这个多项式为y2﹣xy+3.【解答】解:由题意得,这个多项式为:(2xy+3y2﹣5)﹣(3xy+2y2﹣8)=2xy+3y2﹣5﹣3xy﹣2y2+8=y2﹣xy+3.故答案为:y2﹣xy+3.19.已知代数式a2+(2t﹣1)ab+4b2是一个完全平方式,则实数t的值为 或 ..【解答】解:根据题意可得,(2t﹣1)ab=±(2×2)ab,即2t﹣1=±4,解得:t 或t .故答案为: 或 .20.已知x+y=4,x﹣y=6,则x2﹣y2=24.【解答】解:∵x+y=4,x﹣y=6,∴x2﹣y2=(x+y)(x﹣y)=4×6=24.故答案为:24.21.计算m•m7的结果等于m8.【解答】解:m•m7=m8.故答案为:m8.22.计算:m4÷m2=m2.【解答】解:m4÷m2=m4﹣2=m2.故答案为:m2.23.计算:3a3•a2=3a5.【解答】解:原式=3a3+2=3a5.故答案为:3a5.24.计算:(﹣a3)2=a6.【解答】解:(﹣a3)2=a6.25.已知a+b=4,a﹣b=2,则a2﹣b2的值为8.【解答】解:∵a+b=4,a﹣b=2,∴a2﹣b2=(a+b)(a﹣b)=4×2=8,故答案为:8.三.解答题(共8小题)26.下面是一道例题及其解答过程的一部分,其中A是关于m的多项式.请写出多项式A,并将该例题的解答过程补充完整.例:先去括号,再合并同类项:m(A)﹣6(m+1).解:m(A)﹣6(m+1)=m2+6m﹣6m﹣6=m2﹣6.【解答】解:由题知,m(A)﹣6(m+1)=m2+6m﹣6m﹣6=m2﹣6,∵m2+6m=m(m+6),∴A为:m+6,故答案为:m2﹣6.27.已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x2+2x﹣2=0,∴x2+2x=2,∴当x2+2x=2时,原式=2(x2+2x)+1=2×2+1=4+1=5.28.先化简,再求值.(a+b)(a﹣b)+b(2a+b),其中a=1,b=﹣2.【解答】解:(a+b)(a﹣b)+b(2a+b)=a2﹣b2+2ab+b2=a2+2ab,将a=1,b=﹣2代入上式得:原式=12+2×1×(﹣2)=1﹣4=﹣3.29.先化简,再求值:(1+x)(1﹣x)+x(x+2),其中x .【解答】解:(1+x)(1﹣x)+x(x+2)=1﹣x2+x2+2x=1+2x,当x 时,原式=1 1+1=2.30.先化简,再求值:(2+a)(2﹣a)+a(a+1),其中a 4.【解答】解:(2+a)(2﹣a)+a(a+1)=4﹣a2+a2+a=4+a,当a 4时,原式=4 4.31.先化简,再求值:4xy﹣2xy﹣(﹣3xy),其中x=2,y=﹣1.【解答】解:4xy﹣2xy﹣(﹣3xy)=4xy﹣2xy+3xy=5xy,当x=2,y=﹣1时,原式=5×2×(﹣1)=﹣10.32.先化简,再求值:(x+y)(x﹣y)+(xy2﹣2xy)÷x,其中x=1,y .【解答】解:(x+y)(x﹣y)+(xy2﹣2xy)÷x=x2﹣y2+y2﹣2y=x2﹣2y,当x=1,y 时,原式=12﹣2 0.33.先化简,再求值:(x+2)(3x﹣2)﹣2x(x+2),其中x 1.【解答】解:原式=(x+2)(3x﹣2﹣2x)=(x+2)(x﹣2)=x2﹣4,当x 1时,原式=( 1)2﹣4=﹣2 .。
中考数学试题分类训练——代数式、整式【答案】一.选择题(共28小题)1.(2020•玉林)观察下列按一定规律排列的n 个数:2,4,6,8,10,12,…,若最后三个数之和是3000,则n 等于( )A .499B .500C .501D .10022.(2019•贺州)计算11×3+13×5+15×7+17×9+⋯+137×39的结果是( ) A .1937 B .1939 C .3739 D .3839 3.(2018•河池)下列单项式中,与3a 2b 为同类项的是( )A .﹣a 2bB .ab 2C .3abD .34.(2018•梧州)按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100个数是( )A .9999B .10000C .10001D .100025.(2018•贺州)如图,正方形ABCD 的边长为1,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,依此下去,第n 个正方形的面积为( )A .(√2)n ﹣1B .2n ﹣1C .(√2)nD .2n6.(2018•柳州)苹果原价是每斤a 元,现在按8折出售,假如现在要买一斤,那么需要付费( )A .0.8a 元B .0.2a 元C .1.8a 元D .(a +0.8)元7.(2018•桂林)用代数式表示:a 的2倍与3的和.下列表示正确的是( )A .2a ﹣3B .2a +3C .2(a ﹣3)D .2(a +3)8.(2020•桂林)下列计算正确的是( )A .x •x =2xB .x +x =2xC .(x 3)3=x 6D .(2x )2=2x 29.(2020•河池)下列运算,正确的是( )A .a (﹣a )=﹣a 2B .(a 2)3=a 5C .2a ﹣a =1D .a 2+a =3a10.(2020•广西)下列运算正确的是( )A .2x 2+x 2=2x 4B .x 3•x 3=2x 3C .(x 5)2=x 7D .2x 7÷x 5=2x 211.(2020•玉林)下列计算正确的是( )A .8a ﹣a =7B .a 2+a 2=2a 4C .2a •3a =6a 2D .a 6÷a 2=a 312.(2019•梧州)下列计算正确的是( )A .3x ﹣x =3B .2x +3x =5x 2C .(2x )2=4x 2D .(x +y )2=x 2+y 213.(2019•桂林)下列计算正确的是( )A .a 2•a 3=a 6B .a 8÷a 2=a 4C .a 2+a 2=2a 2D .(a +3)2=a 2+914.(2019•玉林)下列运算正确的是( )A .3a +2a =5a 2B .3a 2﹣2a =aC .(﹣a )3•(﹣a 2)=﹣a 5D .(2a 3b 2﹣4ab 4)÷(﹣2ab 2)=2b 2﹣a 215.(2019•柳州)计算:x (x 2﹣1)=( )A.x3﹣1B.x3﹣x C.x3+x D.x2﹣x16.(2019•广西)下列运算正确的是()A.(ab3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+117.(2019•贵港)下列运算正确的是()A.a3+(﹣a)3=﹣a6B.(a+b)2=a2+b2C.2a2•a=2a3D.(ab2)3=a3b518.(2018•河池)下列运算正确的是()A.2a+3b=5ab B.a6÷a2=a3C.a3•a2=a5D.(a﹣b)2=a2﹣b219.(2018•贺州)下列运算正确的是()A.a2•a2=2a2B.a2+a2=a4C.(a3)2=a6D.a8÷a2=a420.(2018•贵港)下列运算正确的是()A.2a﹣a=1B.2a+b=2abC.(a4)3=a7D.(﹣a)2•(﹣a)3=﹣a521.(2018•柳州)计算:(2a)•(ab)=()A.2ab B.2a2b C.3ab D.3a2b22.(2018•桂林)下列计算正确的是()A.2x﹣x=1B.x(﹣x)=﹣2x C.(x2)3=x6D.x2+x=223.(2018•南宁)下列运算正确的是()A.a(a+1)=a2+1B.(a2)3=a5C.3a2+a=4a3D.a5÷a2=a324.(2018•玉林)下列计算结果为a6的是()A.a7﹣a B.a2•a3C.a8÷a2D.(a4)225.(2020•桂林)因式分解a2﹣4的结果是()A.(a+2)(a﹣2)B.(a﹣2)2C.(a+2)2D.a(a﹣2)26.(2019•贺州)把多项式4a2﹣1分解因式,结果正确的是()A.(4a+1)(4a﹣1)B.(2a+1)(2a﹣1)C.(2a﹣1)2D.(2a+1)227.(2018•百色)因式分解x﹣4x3的最后结果是()A.x(1﹣2x)2B.x(2x﹣1)(2x+1)C.x(1﹣2x)(2x+1)D.x(1﹣4x2)28.(2018•贺州)下列各式分解因式正确的是()A.x2+6xy+9y2=(x+3y)2B.2x2﹣4xy+9y2=(2x﹣3y)2C.2x2﹣8y2=2(x+4y)(x﹣4y)D.x(x﹣y)+y(y﹣x)=(x﹣y)(x+y)二.填空题(共10小题)29.(2020•广西)如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是.30.(2019•百色)观察一列数:﹣3,0,3,6,9,12,…,按此规律,这一列数的第21个数是.31.(2019•柳州)计算:7x﹣4x=.32.(2019•河池)a 1,a 2,a 3,a 4,a 5,a 6,…,是一列数,已知第1个数a 1=4,第5个数a 5=5,且任意三个相邻的数之和为15,则第2019个数a 2019的值是 .33.(2018•百色)观察以下一列数:3,54,79,916,1125,…则第20个数是 .34.(2020•桂林)计算:ab •(a +1)= .35.(2019•贺州)计算a 3•a 的结果是 .36.(2019•桂林)若x 2+ax +4=(x ﹣2)2,则a = .37.(2018•贵港)因式分解:ax 2﹣a = .38.(2018•南宁)因式分解:2a 2﹣2= .三.解答题(共1小题)39.(2019•河池)分解因式:(x ﹣1)2+2(x ﹣5).答案一.选择题(共28小题)1.(2020•玉林)观察下列按一定规律排列的n 个数:2,4,6,8,10,12,…,若最后三个数之和是3000,则n 等于( )A .499B .500C .501D .1002【答案】C【解答】解:由题意,得第n 个数为2n ,那么2n +2(n ﹣1)+2(n ﹣2)=3000,解得:n =501,故选:C .2.(2019•贺州)计算11×3+13×5+15×7+17×9+⋯+137×39的结果是( ) A .1937B .1939C .3739D .3839 【答案】B【解答】解:原式=12(1−13+13−15+15−17+17−19+⋯+137−139) =12×(1−139) =1939. 故选:B .3.(2018•河池)下列单项式中,与3a 2b 为同类项的是( )A .﹣a 2bB .ab 2C .3abD .3【答案】A【解答】解:∵3a 2b 含有字母a 、b ,且次数分别为2、1,∴与3a 2b 是同类项的是﹣a 2b .故选:A .4.(2018•梧州)按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100个数是( )A .9999B .10000C .10001D .10002【答案】A【解答】解:∵第奇数个数2=12+1,10=32+1,26=52+1,…,第偶数个数3=22﹣1,15=42﹣1,35=62﹣1,…,∴第100个数是1002﹣1=9999,故选:A .5.(2018•贺州)如图,正方形ABCD 的边长为1,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,依此下去,第n 个正方形的面积为( )A.(√2)n﹣1B.2n﹣1C.(√2)n D.2n【答案】B【解答】解:第一个正方形的面积为1=20,第二个正方形的面积为(√2)2=2=21,第三个正方形的面积为22,…第n个正方形的面积为2n﹣1.故选:B.6.(2018•柳州)苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元【答案】A【解答】解:根据题意知,买一斤需要付费0.8a元,故选:A.7.(2018•桂林)用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3B.2a+3C.2(a﹣3)D.2(a+3)【答案】B【解答】解:a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.8.(2020•桂林)下列计算正确的是()A.x•x=2x B.x+x=2x C.(x3)3=x6D.(2x)2=2x2【答案】B【解答】解:A.x•x=x2,故本选项不合题意;B.x+x=2x,故本选项符合题意;C.(x3)3=x9,故本选项不合题意;D.(2x)2=4x2,故本选项不合题意.故选:B.9.(2020•河池)下列运算,正确的是()A.a(﹣a)=﹣a2B.(a2)3=a5C.2a﹣a=1D.a2+a=3a【答案】A【解答】解:A、a(﹣a)=﹣a2,原计算正确,故此选项符合题意;B、(a2)3=a6,原计算错误,故此选项不符合题意;C、2a﹣a=a,原计算错误,故此选项不符合题意;D、a2与a不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:A.10.(2020•广西)下列运算正确的是()A.2x2+x2=2x4B.x3•x3=2x3C.(x5)2=x7D.2x7÷x5=2x2【答案】D【解答】解:A、2x2+x2=3x2,故此选项错误;B、x3•x3=x6,故此选项错误;C、(x5)2=x10,故此选项错误;。
中考数学总复习《整式与因式分解》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.代数式:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子叫做代数式. (1)代数式求值:用数值代替代数式里的未知数,按照代数式的运算关系计算得出结果.(2)代数推理:通过数学证明,等式变换等方式将复杂的问题简单化,形成一般性的公式,最终达到想要的结果.【练习】1-1.用代数式表示“x 的13与y 的12的差”为 . 【练习】1-2.某种弹簧秤能称不超过10kg 的物体,不挂物体时弹簧的长为8cm ,每挂重1kg 物体,弹簧伸长2cm ,在弹性限度内,当挂重xkg 的物体时,弹簧长度是 cm .(用含x 的代数式表示)【练习】1-3.若4a ﹣3b =3,则7﹣12a +9b = .【练习】1-4.观察一列数:12,24,38,416…根据规律,请你写出第n 个数是 .2. 整式的相关概念:(1)单项式:由数或字母的积组成的式子叫做单项式.单独的一个数或一个字母也是单项式.(2)多项式:几个单项式的和叫做多项式. 多项式中,_____________的项的次数,叫做这个多项式的次数.(3)整式:单项式与多项式统称为整式.(4)同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.【练习】2-1.单项式3πx 4y 7的系数是 ,次数是 . 【练习】2-2.多项式12a 2bc −3ab +8是 次 项式.【练习】2-3.若单项式﹣2x m y 4与12x 3y m+n 的和仍是单项式,则m ﹣n = . 3. 整式的运算:知识梳理(1)整式的加减法:①合并同类项:把同类项的_____________相加,字母和字母的__________不变.②去括号法则:括号前为“+”,去括号后原括号里的每一项都不变号;括号前为“-”,去括号后原括号里的每一项都要变号.如a+(b+c)=________________,a-(b-c)=_______________.(2)幂的运算法则:①同底数幂相乘:a m·a n=_____________(m,n均为正整数).②同底数幂相除:a m÷a n=_____________(a≠0,m,n均为正整数,并且m>n).③幂的乘方:(a m)n=_____________(m,n均为正整数).④积的乘方:(a b)n=_____________(n为正整数).⑤负整数指数幂:a-n=____________(a≠0,n为正整数).⑥零指数幂:a0=_____________(a≠0).(3)整式的乘法:①单项式乘单项式:把它们的系数、同底数幂分别_____________,对于只在一个单项式里含有的字母,则连同它的_____________作为积的一个因式.②单项式乘多项式:m(a+b)=_________________.③多项式乘多项式:(a+b)(c+d)=__________________________.④乘法公式:平方差公式:(a+b)(a-b)=_____________.完全平方公式:(a±b)2=____________________.常用的公式变形:a2+b2=(a+b)2-2ab; a2+b2=(a-b)2+2ab;(a+b)2=(a-b)2+4ab; (a-b)2=(a+b)2-4ab.(4)整式的除法:①单项式除以单项式:把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.②多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.【练习】3-1.计算:(a3)2•2a=.【练习】3-2.计算:2x2•3xy的结果是.【练习】3-3.计算(2x)2(﹣3xy2)=.【练习】3-4.计算:(1)3xy•5x3=;(2)6m2÷3m=.【练习】3-5.计算:28x4y2÷7x3y2=.【练习】3-6.计算:(2x﹣1)(3x+2)=.【练习】3-7.计算:(6x3y2−2x2y3)÷13x2y2=.【练习】3-8.计算:(2x+y)(2x﹣y)=.【练习】3-9.已知(x﹣3)2=x2+2mx+9,则m的值是.4. 因式分解:把一个多项式化成几个整式的积的形式.(1)提公因式法:ma+mb+mc=m(a+b+c).(2)公式法:①平方差公式:a2-b2=___________________________.②完全平方公式:a2±2ab+b2=________________.(3)(拓展)十字相乘法:x2+(a+b)x+ab=(x+a)(x+b).【练习】4-1.因式分解:3a2b﹣9ab=.【练习】4-2.分解因式:m2﹣36=.【练习】4-3.分解因式:a2+8a+16=.【练习】4-4.因式分解:am+an﹣bm﹣bn=.【练习】4-5.分解因式:2ax2﹣4ax+2a=.【练习】4-6.因式分解:x2﹣8x+12=.【练习】4-7.分解因式:m2﹣4m﹣5=.参考答案1-1.【答案】13x−12y.1-2.【答案】(8+2x).1-3.【答案】﹣2.1-4.【答案】n2n2-1.【答案】3π75.2-2.【答案】四;三.2-3.【答案】2.3-1.【答案】2a7.3-2.【答案】6x3y.3-3.【答案】﹣12x3y2.3-4.【答案】(1)15x4y;(2)2m.3-5.【答案】18x-6y.3-6.【答案】6x2+x-23-7.【答案】18x﹣6y.3-8.【答案】4x2-y2.3-9.【答案】﹣3.4-1.【答案】3ab(a﹣3).4-2.【答案】(m﹣6)(m+6).4-3.【答案】(a+4)2.4-4.【答案】(m+n)(a﹣b).4-5.【答案】2a(x﹣1)2.4-6.【答案】(x﹣2)(x﹣6).4-7.【答案】(m﹣5)(m+1).考点一:整式的相关概念1.单项式﹣2x2y的系数是;多项式x4y2﹣x2y+23y4的次数是.2.如果单项式﹣a n﹣2b n﹣1与12ab m+3的和仍是单项式,那么m n=.考点突破考点二:整式的运算3.下列计算正确的是()A.a3•a3=2a3B.(ab2)3=ab6C.2ab2•(﹣3ab)=﹣6ab3D.10ab3÷(﹣5ab)=﹣2b24.已知x m=2,x n=3,则x m+n的值是()A.5B.6C.8D.95.观察图,用等式表示图中图形面积的运算为()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)(a﹣b)=a2﹣b2C.a(a+b)=a2+ab D.(a+b)2=a2+2ab+b26.下列计算正确的是()A.(x+2y)(x﹣2y)=x2﹣2y2B.(﹣x+y)(x﹣y)=x2﹣y2C.(2x﹣y)(x+2y)=2x2﹣2y2D.(﹣x﹣2y)(﹣x+2y)=x2﹣4y27.下列计算正确的是()A.2a2•3a2=6a2B.(3a2b)2=6a4b2C.(a﹣b)2=a2﹣b2D.﹣a2+2a2=a2考点三:代数式求值8.若x2﹣2x+1的值为10,则代数式﹣2x2+4x+3的值为.9.已知a2+3a﹣2023=0,则2a2+6a﹣1的值为.10.图是一数值转换机的示意图,若输入的x值为18,则输出的结果为.11.已知m=2,n=−12求代数式m3n−2n3m2−4(mn−12m2n3)+16(12mn−6m3n)的值.12.已知(a+b)2+(a﹣b)2=20.(1)求a2+b2的值;(2)若ab=3,求(a+1)(b+1)的值;(3)若2a﹣3b=m,3a﹣2b=n求mn的最大值.考点四:因式分解13.分解因式:(1)m2﹣1=;(2)a2+5a=;(3)x2﹣4x+4=.14.若x2﹣mx+25可以用完全平方式来分解因式,则m的值为.15.如果关于x的二次三项式x2+kx+5可以用十字相乘法进行因式分解,那么整数k等于.考点五:规律探究16.已知S1=10 S2=11−S1S3=11−S2S4=11−S3…按此规律,则S2024=.17.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察右图中的数字排列规律,求a+b﹣c的值为.18.一组按规律排列的单项式a、2a2、3a3、4a4,…,依这个规律用含字母n(n为正整数,且n≥1)的式子表示第n个单项式为.19.如图,把每个正方形等分为4格,在每格中填入数字,在各正方形中的四个数之间都有相同的规律,根据此规律,x=.(用a,b表示)20.一列数:13,26,311,418,527,638…它们按一定的规律排列,则第n个数(n为正整数)为.参考答案与试题解1.【答案】﹣2,7.【解答】解:单项式﹣2x2y的系数是﹣2,多项式x4y2﹣x2y+23y4的次数是7.故答案为:﹣2,7.2.【答案】﹣1.【解答】解:由题意,n﹣2=1,n﹣1=m+3∴m=﹣1,n=3∴m n=(﹣1)3=﹣1.故答案为:﹣1.3.【答案】D【解答】解:A、a3•a3=a6本选项错误,不符合题意;B、(ab2)3=a3b6本选项错误,不符合题意;C、2ab2•(﹣3ab)=﹣6a2b3本选项错误,不符合题意;D、10ab3÷(﹣5ab)=﹣2b2本选项正确,符合题意;故选:D.4.【答案】B【解答】解:∵x m=2,x n=3∴x m+n=x m×x n=2×3=6.故选:B.5.【答案】B【解答】解:由题意得:图1的面积=(a+b)(a﹣b)图2的面积=a2﹣b2∴(a+b)(a﹣b)=a2﹣b2故选:B.6.【答案】D【解答】解:A、(x+2y)(x﹣2y)=x2﹣4y2,本选项错误,不符合题意;B、(﹣x+y)(x﹣y)=﹣(x﹣y)2=﹣x2+2xy﹣y2,本选项错误,不符合题意;C、(2x﹣y)(x+2y)=2x2+3xy﹣2y2,本选项错误,不符合题意;D、(﹣x﹣2y)(﹣x+2y)=(﹣x)2﹣(2y)2=x2﹣4y2,必须执行正确,符合题意.故选:D.7.【答案】D【解答】解:A、2a2•3a2=6a4,故A不符合题意;B、(3a2b)2=9a4b2,故B不符合题意;C、(a﹣b)2=a2﹣2ab+b2,故C不符合题意;D、﹣a2+2a2=a2,故D符合题意;故选:D.8.【答案】﹣15.【解答】解:∵x2﹣2x+1=10∴x2﹣2x=9∴﹣2x2+4x+3=﹣2(x2﹣2x)+3=﹣2×9+3=﹣15.故答案为:﹣15.9.【答案】4045.【解答】解:∵a2+3a﹣2023=0∴a2+3a=2023∴2a2+6a﹣1=2(a2+3a)﹣1=2×2023﹣1=4045故答案为:4045.10.【答案】见试题解答内容【解答】解:若输入的数为18,代入得:3(18﹣10)=24<100;此时输入的数为24,代入得:3(24﹣10)=42<100;此时输入的数为42,代入得:3(42﹣10)=96<100此时输入的数为96,代入得:3(96﹣10)=258>100则输出的结果为258.故答案为:258.11.【答案】﹣2mn,原式=2.【解答】解:m3n−2n3m2−4(mn−12m2n3)+16(12mn−6m3n)=m3n﹣2n3m2﹣4mn+2m2n3+2mn﹣m3n =﹣2mn当m=2,n=−12时,原式=﹣2×2×(−12)=2.12.【答案】(1)10;(2)8或0;(3)125.【解答】解:(1)∵(a+b)2+(a﹣b)2=20∴a2+2ab+b2+a2﹣2ab+b2=202a2+2b2=20∴a2+b2=10;(2)∵ab=3∴2ab=6∵a2+b2=10∴a2+2ab+b2=10+6=16(a+b)2=16a+b=±4∴当a+b=4时(a+1)(b+1)=ab+a+b+1=3+4+1=8当a+b=﹣4时(a+1)(b+1)=ab+a+b+1=3+(﹣4)+1=0∴(a+1)(b+1)的值为8或0;(3)由(1)可知:a2+b2=10∵(a+b)2≥0∴a2+b2+2ab≥010+2ab≥02ab≥﹣10ab≥﹣5∵(a﹣b)2≥0∴a2+b2﹣2ab≥010﹣2ab≥0﹣2ab≥﹣10ab≤5∴﹣5≤ab≤5∴ab的最小值为﹣5∵2a﹣3b=m,3a﹣2b=n∴mn=(2a﹣3b)(3a﹣2b)=6a2﹣4ab﹣9ab+6b2=6a2+6b2﹣13ab=6(a2+b2)﹣13ab=6×10﹣13ab=60﹣13ab∴mn的最大值为:60﹣13×(﹣5)=60+65=125.13.【答案】(1)(m+1)(m﹣1);(2)a(a+5);(3)(x﹣2)2.【解答】解:(1)m2﹣1=(m+1)(m﹣1)故答案为:(m+1)(m﹣1);(2)a2+5a=a(a+5)故答案为:a(a+5);(3)x2﹣4x+4=(x﹣2)2故答案为:(x﹣2)2.14.【答案】±10.【解答】解:∵x2﹣mx+25可以用完全平方式来分解因式∴m=±10.故答案为:±10.15.【答案】±6.【解答】解:∵关于x的二次三项式x2+kx+5可以用十字相乘法进行因式分解,5=1×5或5=(﹣1)×(﹣5)∴k=1+5=6或k=(﹣1)+(﹣5)=﹣6故答案为:±6.16.【答案】−1 9.【解答】解:由题知因为S1=10所以S2=11−S1=11−10=−19;S3=11−S2=11−(−19)=910;S4=11−S3=11−910=10;…由此可见,这列数按10,−19,910循环出现又因为2024÷3=674余2所以S2024=−1 9.故答案为:−1 9.17.【答案】1.【解答】解:根据杨辉三角形的特点确定a=1+5=6b=5+10=15c=10+10=20a+b﹣c=6+15﹣20=1.故答案为:1.18.【答案】n•a n.【解答】解:第n个单项式是n•a n.故答案为:n•a n.19.【答案】a+18b(答案不唯一).【解答】解:由所给表格可知9=2×4+1;20=3×6+2;35=4×8+3;…所以表格中的左下角与右上角的数字之积加上左上角的数字等于右下角的数字; 则x =a +18b .故答案为:a +18b (答案不唯一).20.【答案】nn 2+2.【解答】解:∵一列数:13,26,311,418,527,638…其的分子与序号相同,分母为分子的平分加2∴第n 个数(n 为正整数)为:nn 2+2.故答案为:nn 2+2.。
中考数学试题分类汇总《代数式与整式》练习题及答案1.若ab≠0,且2b=3a,则的值是.【解答】解:由2b=3a,得到a=b,则原式==,2.已知a、b、c都是实数,若+|2b+|+(c+2a)2=0,则=1.【解答】解:∵+|2b+|+(c+2a)2=0,≥0,|2b+|≥0,(c+2a)2≥0,∴a﹣2=0,2b+=0,c+2a=0,∴a=2,b=﹣,c=﹣4.∴===1.3.若=,则=.4.若x2+2x的值是6,则2x2+4x﹣7的值是5.5.若x=+1,则代数式x2﹣2x+2的值为()A.7B.4C.3D.3﹣2【解答】解:∵x=+1,∴x﹣1=,∴(x﹣1)2=2,即x2﹣2x+1=2,∴x2﹣2x=1,∴x2﹣2x+2=1+2=3.幂的运算6.下列计算正确的是()A.(﹣a3)2=a6B.3a+2b=5abC.a6÷a3=a2D.(a+b)2=a2+b2【解答】解:A.(﹣a3)2=a6,故此选项符合题意;B.3a+2b无法合并,故此选项不合题意;C.a6÷a3=a3,故此选项不合题意;D.(a+b)2=a2+2ab+b2,故此选项不合题意,7.下列运算正确的是()A.x5﹣x3=x2B.(x+2)2=x2+4C.(m2n)3=m5n3D.3x2y÷3xy=x【解答】解:A、x5与x3不是同类项,故不能合并,故A不符合题意.B、原式=x2+4x+4,故B不符合题意.C、原式=m6n3,故C不符合题意.D、原式=x,故D符合题意.8.下列运算结果正确的是()A.2a+a=2a2B.a5•a2=a10C.(a2)3=a5D.a3÷a=a2【解答】解:A、2a+a=3a,故A不符合题意;B、a5•a2=a7,故B不符合题意;C、(a2)3=a6,故C不符合题意;D、a3÷a=a2,故D符合题意;9.下列运算中,正确的是()A.(﹣a)6÷(﹣a)3=﹣a3B.a3•a2=a6C.(ab2)3=ab6D.(﹣3a3)2=6a6【解答】解:∵(﹣a)6÷(﹣a)3=a6÷(﹣a3)=﹣a3,∴选项A符合题意;∵a3•a2=a5≠a6,∴选项B不符合题意;∵(ab2)3=a3b6≠ab6,∴选项C不符合题意;∵(﹣3a3)2=9a6≠6a6,∴选项D不符合题意;10.下列运算中,计算正确的是()A.a3+a3=a6B.(2a2)3=6a6C.a2•a3=a6D.(2a3)2=4a6【解答】解:A.a3+a3=2a3,故本选项不合题意;B.(2a2)3=8a6,故本选项不合题意;C.a2•a3=a5,故本选项不合题意;D.(2a3)2=4a6,故本选项符合题意.11.下列运算正确的是()A.a2•a3=a6B.6a÷3a=2aC.(a﹣b)3=a3﹣b3D.(﹣ab2)2=a2b4【分析】根据整式的除法,幂的乘方与积的乘方,同底数幂的乘法运算法则进行计算即可判断.【解答】解:A.a2•a3=a5,故A不符合题意;B.6a÷3a=2,故B不符合题意;C.(a﹣b)3=a3﹣3a2b+3ab2﹣b3,故C不符合题意;D.(﹣ab2)2=a2b4,故D符合题意;12.下列运算中,计算正确的是()A.a3+a3=a6B.(2a2)3=6a6C.a2•a3=a6D.(2a3)2=4a6【分析】分别根据合并同类项法则,幂的乘方与积的乘方运算法则,同底数幂的乘法法则逐一判断即可.【解答】解:A.a3+a3=2a3,故本选项不合题意;B.(2a2)3=8a6,故本选项不合题意;C.a2•a3=a5,故本选项不合题意;D.(2a3)2=4a6,故本选项符合题意.13.下列计算中,正确的是()A.(3a3)2=9a9B.3a+3b=6ab C.a6÷a3=a2D.﹣5a+3a =﹣2a【分析】利用同底数幂的除法的法则,合并同类项的法则,同底数幂的乘法的法则,积的乘方的法则对各项进行运算即可.【解答】解:A、(3a3)2=9a6,故A不符合题意;B、3a与3b不属于同类项,不能合并,故B不符合题意;C、a6÷a3=a3,故C不符合题意;D、﹣5a+3a=﹣2a,故D符合题意;14.已知3m=4,32m﹣4n=2.若9n=x,则x的值为()A.8B.4C.2D.【分析】根据幂的乘方以及同底数幂的除法法则计算即可求出n的值,再根据算术平方根的定义即可求出x的值.【解答】解:∵3m=4,32m﹣4n=(3m)2÷(3n)4=2.∴42÷(3n)4=2,∴(3n)4=42÷2=8,又∵9n=32n=x,∴(3n)4=(32n)2=x2,∴x2=8,∴x==.15.下列运算中,正确的是()A.a8÷a2=a4B.(a3)4=a12C.(﹣3a)2=a6D.3a2•a3=3a6【分析】根据同底数幂的除法判断A选项;根据幂的乘方判断B选项;根据积的乘方判断C选项;根据单项式乘单项式判断D选项.【解答】解:A选项,原式=a6,故该选项不符合题意;B选项,原式=a12,故该选项符合题意;C选项,原式=9a2,故该选项不符合题意;D选项,原式=3a5,故该选项不符合题意;16.下列运算中,结果正确的是()A.(a3)2=a5B.(a﹣1)(a+1)=a2+1C.2a•a=2a2D.a8÷a2=a4【解答】解:A.(α3)2=α6,此选项错误,不符合题意;B.(α﹣1)(α+1)=α2+1,此选项错误,不符合题意;C.2α⋅α=2α2,此选项正确,符合题意;D.α8÷α2=α6,此选项错误,不符合题意;17.下列运算正确的是()A.(a2)3=a8B.a2•a3=a5C.(﹣3a)2=6a2D.2ab2+3ab2=5a2b4【解答】解:选项A、(a2)3=a2×3=a6,故本选项不符合题意;选项B、a2•a3=a2+3=a5,故本选项符合题意;选项C、(﹣3a)2=9a2,故本选项不符合题意;选项D、2ab2+3ab2=5ab2,故本选项不符合题意;整式的有关概念18.若﹣a x+y b3与2a3b y是同类项,则y﹣x=3.【解答】解:由同类项的定义可知:x+y=3,y=3,∴x=0,y=3,所以y﹣x=3﹣0=3.19.单项式﹣3x2y的次数是3.整式的运算20.化简m+n﹣(m﹣n)的结果为()A.2m B.2n C.0D.﹣2n【分析】原式去括号合并即可得到结果.【解答】解:原式=m+n﹣m+n=2n,21.下列计算正确的是()A.4a2÷2a2=2a2B.3a2+2a=5a3C.﹣(a3)2=a5D.(a﹣b)(﹣a﹣b)=b2﹣a2【分析】根据单项式除以单项式可以判断A;根据合并同类项的方法可以判断B;根据积的乘方可以判断C;根据平方差公式可以判断D.【解答】解:4a2÷2a2=2,故选项A错误,不符合题意;3a2+2a不能合并,故选项B错误,不符合题意;﹣(a3)2=﹣a6,故选项C错误,不符合题意;(a﹣b)(﹣a﹣b)=b2﹣a2,故选项D正确,符合题意;22.下列算式中,正确的是()A.(a+b)2=a2+b2B.5a2﹣3a2=2a2C.D.因式分解23.因式分解:2x2﹣4x+2=2(x﹣1)2.24.因式分解:3x2﹣12=3(x+2)(x﹣2).25.已知x+y=﹣6,xy=,则x3y+2x2y2+xy3的值为9.【解答】解:原式=xy(x2+2xy+y2)=xy(x+y)2,∵x+y=﹣6,xy=,∴原式===9.26.分解因式:2a3﹣8a=2a(a+2)(a﹣2).27.分解因式:a2﹣2ab=a(a﹣2b).28.分解因式:m2﹣6m=m(m﹣6).29.分解因式:a2b﹣18ab+81b=b(a﹣9)2.30.分解因式:2m2﹣18=.31.分解因式:2x2﹣12x+18=2(x﹣3)2.32.分解因式:m2﹣6m=m(m﹣6).33.分解因式:a3﹣9a=.34.分解因式:a2﹣9=(a+3)(a﹣3).35.分解因式:x2﹣y2=(x+y)(x﹣y).36.分解因式:x3﹣4x=x(x+2)(x﹣2).37.分解因式:3a2﹣12=3(a+2)(a﹣2).38.分解因式:x2﹣1=(x+1)(x﹣1).39.因式分解:a3﹣4a=a(a+2)(a﹣2).40.分解因式:4a2﹣16=4(a+2)(a﹣2).41.因式分解:x3﹣2x2=x2(x﹣2).42.因式分解:ab2﹣2ab+a=a(b﹣1)2.43.分解因式:3﹣3x2=3(1+x)(1﹣x).44.分解因式:x2﹣9y2=(x+3y)(x﹣3y).45.分解因式:ax2﹣4a=a(x+2)(x﹣2).整式的化简求值46.已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.【解答】解:(x+1)2﹣2x+y(y﹣2x)=x2+2x+1﹣2x+y2﹣2xy=x2﹣2xy+y2+1,当x﹣y=时,原式=(x﹣y)2+1=()2+1=5+1=6.47.先化简,再求值:(2a﹣3b)2﹣(3b+a)(3b﹣a),其中a=,.【解答】解:(2a﹣3b)2﹣(3b+a)(3b﹣a)=4a2﹣12ab+9b2﹣9b2+a2=5a2﹣12ab,当a=,时,原式=5×()2﹣12××=10﹣12.平方差公式的应用48.(2022·广州黄浦区二模)若m﹣=3,则m2+=11.。
整式及其运算专题测试题一、单选题 1.(2023·四川乐山·统考中考真题)计算:2a a -=( )A .aB .a -C .3aD .12.(2023·四川眉山·统考中考真题)下列运算中,正确的是( )A .3232a a a -=B .()222a b a b +=+C .322a b a a ÷=D .()2242a b a b = 3.(2023·江西·统考中考真题)计算()322m 的结果为( )A .68mB .66mC .62mD .52m4.(2023·江苏苏州·统考中考真题)下列运算正确的是( )A .32a a a -=B .325a a a ⋅=C .321a a ÷=D .()23a a =5.(2023·山东滨州·统考中考真题)下列计算,结果正确的是() A .235a a a ⋅= B .()325a a = C .33()ab ab = D .23a a a ÷=6.(2023·湖南·统考中考真题)计算:()23a =( )A .5aB .23aC .26aD .29a7.(2023·湖南常德·统考中考真题)若2340a a +-=,则2263a a +-=() A .5 B .1 C .1- D .08.(2023·全国·统考中考真题)下列算式中,结果等于5a 的是()A .23a a +B .23a a ⋅C .23()aD .102a a ÷9.(2023·浙江宁波·统考中考真题)下列计算正确的是( )A .23x x x +=B .632x x x ÷=C .()437x x =D .347x x x ⋅=10.(2023·云南·统考中考真题)下列计算正确的是( )C .233a b a a ÷=D .222()()4a a a +-=-30.(2023·湖北荆州·统考中考真题)下列各式运算正确的是( ) A .23232332a b a b a b -=B .236a a a ⋅=C .623a a a ÷=D .()325a a = 31.(2023·山东·统考中考真题)下列各式运算正确的是( )A .236x x x ⋅=B .1226x x x ÷=C .222()x y x y +=+D .()3263x y x y =32.(2023·山东·统考中考真题)下列运算正确的是( )A .632a a a ÷=B .235a a a ⋅=C .()23622a a =D .()222a b a b +=+33.(2023·湖南张家界·统考中考真题)下列运算正确的是( )A .22(2)4x x +=+B .248a a a ⋅=C .()23624x x =D .224235x x x +=34.(2023·黑龙江·统考中考真题)下列运算正确的是( )A .22(2)4a a -=-B .222()a b a b -=-C .()()2224m m m -+--=-D .()257a a =35.(2023·黑龙江齐齐哈尔·统考中考真题)下列计算正确的是( ) A .22434b b b += B .()246a a = C .()224x x -= D .326a a a ⋅=36.(2023·湖南·统考中考真题)下列计算正确的是( )A .824a a a ÷=B .23a a a +=C .()325a a =D .235a a a ⋅=37.(2023·内蒙古·统考中考真题)下列各式计算结果为5a 的是( )A .()23aB .102a a ÷C .4a a ⋅D .15(1)a --38.(2023·内蒙古赤峰·统考中考真题)已知2230a a --=,则2(23)(23)(21)a a a +-+-的值是( )A .6B .5-C .3-D .439.(2023·内蒙古赤峰·统考中考真题)下列运算正确的是( )A .()22346a b a b =B .321ab ab -=C .34()a a a -⋅=D .222()a b a b +=+40.(2023·福建·统考中考真题)下列计算正确的是( )A .()326a a =B .623a a a ÷=C .3412a a a ⋅=D .2a a a -=41.(2023·广东深圳·统考中考真题)下列运算正确的是( )A .326a a a ⋅=B .44ab ab -=C .()2211a a +=+D .()236a a -=二、填空题 42.(2023·湖南永州·统考中考真题)22a 与4ab 的公因式为________.43.(2023·天津·统考中考真题)计算()22xy 的结果为________. 44.(2023·河南·统考中考真题)某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具.45.(2023·全国·统考中考真题)计算:(3)a b +=_________.46.(2022秋·上海·七年级专题练习)计算:2232a a -=________.47.(2023·湖北十堰·统考中考真题)若3x y +=,且2y =,则22x y xy +的值是___________________.48.(2023·广东深圳·统考中考真题)已知实数a ,b ,满足6a b +=,且7ab =,则22a b ab +的值为______.49.(2023春·广东梅州·八年级校考阶段练习)计算:(a 2b )3=___.三、解答题整式及其运算专题答案一、单选题 1.(2023·四川乐山·统考中考真题)计算:2a a -=( )A .aB .a -C .3aD .1 【答案】A【分析】根据合并同类项法则进行计算即可.【详解】解:2a a a -=,故A 正确.故选:A .【点睛】本题主要考查了合并同类项,解题的关键是熟练掌握合并同类项法则,准确计算.2.(2023·四川眉山·统考中考真题)下列运算中,正确的是( )A .3232a a a -=B .()222a b a b +=+C .322a b a a ÷=D .()2242a b a b = 【答案】D【分析】根据合并同类项可判断A ,根据完全平方公式可判断B ,根据单项式除以单项式可判断C ,根据积的乘方与幂的乘方运算可判断D ,从而可得答案.【详解】解:3a 3,a 2不是同类项,不能合并,故A 不符合题意.()2222a b a ab b +=++,故B 不符合题意.3222a b a ab ÷=,故C 不符合题意.()2242a b a b =,故D 符合题意.故选:D.【点睛】本题考查的是合并同类项,完全平方公式的应用,单项式除以单项式,积的乘方与幂的乘方运算的含义,熟记基础运算法则是解本题的关键. 3.(2023·江西·统考中考真题)计算()322m 的结果为( ) A .68mB .66mC .62mD .52m 【答案】A【分析】根据积的乘方计算法则求解即可.【详解】解:()32628m m =. 故选:A .【点睛】本题主要考查了积的乘方计算,熟知相关计算法则是解题的关键. 4.(2023·江苏苏州·统考中考真题)下列运算正确的是( )A .32a a a -=B .325a a a ⋅=C .321a a ÷=D .()23a a = 【答案】B【分析】根据合并同类项法则、同底数幂的乘法法则、同底数幂的除法法则、幂的乘方法则分别计算即可.【详解】解:3a 与2a 不是同类项,不能合并,故A 选项错误.33522a a a a +⋅==,故B 选项正确.32a a a ÷=,故C 选项错误.()236a a =,故D 选项错误. 故选:B .【点睛】本题考查合并同类项、同底数幂的乘法、同底数幂的除法、幂的乘方,熟练掌握各项运算法则是解题的关键.5.(2023·山东滨州·统考中考真题)下列计算,结果正确的是( ) A .235a a a ⋅= B .()325a a = C .33()ab ab = D .23a a a ÷=【详解】∵2340a a +-=,∵234+=a a ,∵()222632332435a a a a +-=+-=⨯-=.故选:A .【点睛】本题考查代数式求值,利用整体思想是解题的关键.8.(2023·全国·统考中考真题)下列算式中,结果等于5a 的是( ) A .23a a +B .23a a ⋅C .23()aD .102a a ÷ 【答案】B【分析】根据同底数幂的运算法则即可求解.【详解】解:A 选项,不是同类项,不能进行加减乘除,不符合题意. B 选项,根据同底数幂的乘法可知,底数不变,指数相加,结果是235a a +=,符合题意.C 选项,根据幂的乘方可知,底数不变,指数相乘,结果是236a a ⨯=,不符合题意.D 选项,根据同底数幂的除法可知,底数不变,指数相减,结果是1028a a -=,不符合题意.故选:B .【点睛】本题主要考查同底数幂的混合运算法则,掌握同底数幂的运算法则是解题的关键.9.(2023·浙江宁波·统考中考真题)下列计算正确的是( )A .23x x x +=B .632x x x ÷=C .()437x x =D .347x x x ⋅=【答案】D【分析】根据同底数幂的乘法、除法,幂的乘方,合并同类项进行运算,然后判断即可.【详解】解:A 、错误,因为23x x x +≠,故不符合要求.B 、错误,因为6332x x x x ÷=≠,故不符合要求.C 、错误,因为()43127x x x =≠,故不符合要求.D 、正确,因为347x x x ⋅=,故符合要求.故选:D .【点睛】本题考查了同底数幂的乘法、除法,幂的乘方,合并同类项.解题的关键在于正确的运算.10.(2023·云南·统考中考真题)下列计算正确的是( )A .236a a a ⋅=B .22(3)6a a =C .632a a a ÷=D .22232a a a -= 【答案】D【分析】利用同底数幂的乘法和除法、幂的乘方、合并同类项法则解出答案.【详解】解:52233a a a a ⨯⋅==,故A 错误.2222(3)39a a a ==,故B 错误.63633a a a a -÷==,故C 错误.()22223312a a a a -=-=,故D 正确. 故选:D .【点睛】本题考查了同底数幂的乘法和除法、幂的乘方、合并同类项法则,对运算法则的熟练掌握并运用是解题的关键.11.(2023·新疆·统考中考真题)计算2432a a b ab ⋅÷的结果是( )A .6aB .6abC .26aD .226a b 【答案】C【分析】先计算单项式乘以单项式,然后根据单项式除以单项式进行计算即可求解.【详解】解:2432a a b ab ⋅÷3122a b ab =÷26a =.故选:C .【点睛】本题考查了单项式除以单项式,熟练掌握单项式除以单项式的运算法则是解题的关键.12.(2023·湖南怀化·统考中考真题)下列计算正确的是( )A .235a a a ⋅=B .623a a a ÷=C .()2329ab a b =D .523a a -=【答案】A【分析】根据同底数幂的乘法、同底数幂的除法、积的乘方和幂的乘方、合并同类项分别计算后,即可得到答案.【详解】解:A .因为235a a a ⋅=,故选项正确,符合题意.B .因为624a a a ÷=,故选项错误,不符合题意.C .因为()2326ab a b =,故选项错误,不符合题意.D .因为523a a a -=,故选项错误,不符合题意.故选:A .【点睛】此题考查了同底数幂的乘法、同底数幂的除法、积的乘方和幂的乘方、合并同类项,熟练掌握运算法则是解题的关键.13.(2023·甘肃武威·统考中考真题)计算:()22a a a +-=( )A .2B .2aC .22a a +D .22a a -【答案】B【分析】先计算单项式乘以多项式,再合并同类项即可.【详解】解:()222222a a a aa a a +-=+-=. 故选:B.【点睛】此题考查了整式的四则混合运算,熟练掌握单项式乘以多项式的运算法则是解题的关键.14.(2023·浙江温州·统考中考真题)化简43()a a ⋅-的结果是( )A .12aB .12a -C .7aD .7a - 【答案】D【分析】根据积的乘方以及同底数幂的乘法进行计算即可求解.【详解】解:因为43()a a ⋅-()437aa a =⨯-=-. 故选:D .【点睛】本题考查了积的乘方以及同底数幂的乘法,熟练掌握积的乘方以及同底数幂的乘法的运算法则是解题的关键.15.(2023·山东烟台·统考中考真题)下列计算正确的是( )A .2242a a a +=B .()32626a a =C .235a a a ⋅=D .824a a a ÷=【答案】C【分析】根据合并同类项、幂的乘方、同底数幂的乘法、同底数幂的除法的运算法则逐项排查即可解答.【详解】解:A.因为2222a a a +=,故该选项不正确,不符合题意.B.因为()32628a a =,故该选项不正确,不符合题意.C.因为235a a a ⋅=,故该选项正确,符合题意.D.因为826a a a ÷=,故该选项不正确,不符合题意.故选:C .【点睛】本题主要考查了合并同类项、幂的乘方、同底数幂的乘法、同底数幂的除法等知识,掌握运算法则是解题的关键.16.(2023·湖南岳阳·统考中考真题)下列运算结果正确的是( )A .23a a a ⋅=B .623a a a ÷=C .33a a -=D .222()a b a b -=-【答案】A【分析】根据同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式,进行计算即可求解.【详解】解:A 、因为23a a a ⋅=,故该选项正确,符合题意.B 、因为624a a a ÷=,故该选项不正确,不符合题意.C 、因为32a a a -=,故该选项不正确,不符合题意.D 、因为222()2a b a ab b -=-+,故该选项不正确,不符合题意.故选:A .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,合并同类项,完全平方公式,熟练掌握同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式是解题的关键.17.(2023·江苏扬州·统考中考真题)若23( )22a b a b ⋅=,则括号内应填的单项式是( )A .aB .2aC .abD .2ab 【答案】A【分析】将已知条件中的乘法运算可以转化为单项式除以单项式进行计算即可解据平方差公式判断选项C ;根据完全平方公式判断选项D 即可.【详解】解:A .因为6243a a a a ÷=≠,原计算错误,不符合题意.B .因为()5210a a a -=-≠-,原计算错误,不符合题意.C .因为()()2111a a a +-=-,原计算正确,符合题意.D .因为222(1)211a a a a +=++≠+,原计算错误,不符合题意.故选:C .【点睛】本题考查了同底数幂相除法则、幂的乘方法则、平方差公式、完全平方公式等知识,熟练掌握各运算法则是解答本题的关键.20.(2023·浙江台州·统考中考真题)下列运算正确的是( ).A .()2122a a -=-B .()222a b a b +=+C .2325a a a +=D .()22ab ab = 【答案】A【分析】根据去括号法则判断A ;根据完全平方公式判断B ;根据合并同类项法则判断C ;根据积的乘方法则判断D 即可.【详解】解:A .因为()2122a a -=-,计算正确,符合题意.B .因为()222222a b a ab b a b +=++≠+,计算错误,不符合题意.C .因为23255a a a a +=≠,,计算错误,不符合题意.D .因为()2222ab a b ab =≠,计算错误,不符合题意.故选:A .【点睛】本题考查了去括号法则,合并同类项法则,积的乘方法则,完全平方公式等知识,熟练掌握各运算法则是解题的关键.A .4482x x x +=B .()32626x x -=-C .633x x x ÷=D .236x x x ⋅=【答案】C 【分析】根据积的乘方,同底数幂的乘法,除法法则,合并同类项法则,逐一进行计算即可得出结论.【详解】解:A 、因为4442x x x +=,选项计算错误,不符合题意.B 、因为()32628x x -=-,选项计算错误,不符合题意.C 、因为633x x x ÷=,选项计算正确,符合题意.D 、因为236x x x ⋅=,选项计算错误,不符合题意.故选:C .【点睛】本题考查积的乘方,同底数幂的乘法,除法,合并同类项.熟练掌握相关运算法则,是解题的关键.24.(2020春·云南玉溪·八年级统考期末)下列计算正确的是( ) A .3a +4b =7abB .x 12÷x 6=x 6C .(a +2)2=a 2+4D .(ab 3)3=ab 6【答案】B【分析】根据同类项的定义、同底数幂的除法性质、完全平方公式、积的乘方公式进行判断.【详解】解:A 、3a 和4b 不是同类项,不能合并,所以此选项不正确. B 、x 12÷x 6=x 6,所以此选项正确.C 、(a +2)2=a 2+4a +4,所以此选项不正确.D 、(ab 3)3=a 3b 9,所以此选项不正确.故选:B .【点睛】本题主要考查了合并同类项、同底数幂的除法、完全平方公式、积的乘方,熟练掌握运算法则是解题的关键.25.(2023·山西·统考中考真题)下列计算正确的是( )A .236a a a ⋅=B .()2236a b a b -=-C .632a a a ÷=D .()326a a = 【答案】D【分析】根据同底数幂乘除法法则、积的乘方及幂的乘方法则逐一计算即可得答案.【详解】A .a 2·a 3=a 5,故该选项计算错误,不符合题意.B .(-a 3b)2=a 6b 2,故该选项计算错误,不符合题意.C .a 6÷a 3=a 3,故该选项计算错误,不符合题意.D .(a 2)3=a 6,故该选项计算正确,符合题意.故选:D .【点睛】本题考查同底数幂乘除法、积的乘方及幂的乘方,熟练掌握运算法则是解题关键.26.(2023·湖北宜昌·统考中考真题)下列运算正确的是( ).A .4322x x x ÷=B .()437x x =C .437x x x +=D .3412x x x ⋅=【答案】A【分析】根据单项式除以单项式,幂的乘方、合并同类项以及同底数幂的乘法法则计算后再判断即可.【详解】解:A.因为4322x x x ÷=,计算正确,故选项A 符合题意.B.因为()4312x x =,原选项计算错误,故选项B 不符合题意. C.4x 与3x 不是同类项不能合并,原选项计算错误,故选项C 不符合题意.D.因为347x x x ⋅=,原选项计算错误,故选项D 不符合题意.故选:A .【点睛】本题主要考查单项式除以单项式,幂的乘方、合并同类项以及同底数幂的乘法,解答的关键是对相应的运算法则的掌握.27.(2023·湖南郴州·统考中考真题)下列运算正确的是( )A .437a a a ⋅=B .()325a a =C .2232a a -=D .()222a b a b -=- 【答案】A【分析】根据同底数幂的乘法,幂的乘方,合并同类项,完全平方公式进行计算,即可得出结论.【详解】解:A 、因为437a a a ⋅=,选项计算正确,符合题意.B 、因为()326a a =,选项计算错误,不符合题意.C 、因为22232a a a -=选项计算错误,不符合题意.D 、因为()2222a b a ab b -=-+,选项计算错误,不符合题意. 故选:A .【点睛】本题考查整式的运算.熟练掌握相关运算法则,是解题的关键. 28.(2023·广西·统考中考真题)下列计算正确的是( )A .347a a a +=B .347a a a ⋅=C .437a a a ÷=D .()437a a =【答案】B【分析】根据合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方进行计算即可.【详解】A.因为347a a a +≠,故该选项不符合题意.B.因为347a a a ⋅=,故该选项符合题意.C.因为437a a a a ÷=≠,故该选项不符合题意.D.因为()43127a a a =≠,故该选项不符合题意.故选:B .【点睛】本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方,熟练掌握以上运算法则是解题的关键.29.(2023·四川·统考中考真题)下列计算正确的是( )A .22ab a b -=B .236a a a ⋅=C .233a b a a ÷=D .222()()4a a a +-=- 【答案】D【分析】根据合并同类项,同底数幂的乘法,同底数幂的除法,平方差公式进行计算即可求解.【详解】A.因为22ab a b -≠,故该选项不正确,不符合题意.B.因为235a a a ⋅=,故该选项不正确,不符合题意.C.因为233a b a ab ÷=,故该选项不正确,不符合题意.D.因为222()()4a a a +-=-,故该选项正确,符合题意.故选:D .【点睛】本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,平方差公式,熟练掌握以上知识是解题的关键.30.(2023·湖北荆州·统考中考真题)下列各式运算正确的是( ) A .23232332a b a b a b -=B .236a a a ⋅=C .623a a a ÷=D .()325a a = 【答案】A【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,逐项分析判断即可求解.【详解】解:A.因为23232332a b a b a b -=,故该选项正确,符合题意.B.因为235a a a ⋅=,故该选项不正确,不符合题意.C.因为624a a a ÷=,故该选项不正确,不符合题意.D.因为()326a a =,故该选项不正确,不符合题意.故选:A .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,熟练掌握以上运算法则是解题的关键.31.(2023·山东·统考中考真题)下列各式运算正确的是( )A .236x x x ⋅=B .1226x x x ÷=C .222()x y x y +=+D .()3263x y x y = 【答案】D【分析】根据同底数幂的乘除、完全平方公式、积的乘方逐个计算即可.【详解】A.因为x 2·x 3=x 5,所以A 选项不符合题意.B .因为12210x x x ÷=,所以B 选项不符合题意.C .因为222()2x y x y xy +=++,所以C 选项不符合题意.D .因为()3263x y x y =,所以D 选项符合题意.故选:D .【点睛】此题主要考查了同底数幂的乘除、完全平方公式、积的乘方,熟记运算法则是解题关键.32.(2023·山东·统考中考真题)下列运算正确的是( )A .632a a a ÷=B .235a a a ⋅=C .()23622a a =D .()222a b a b +=+【答案】B【分析】利用同底数幂的乘除法、积的乘方与幂的乘方以及完全平方公式分别判断即可.【详解】解:A 、因为633a a a ÷=,故选项错误.B 、因为235a a a ⋅=,故选项正确.C 、因为()23624a a =,故选项错误.D 、因为()2222a b a ab b +=++,故选项错误.故选:B . 【点睛】此题主要考查了整式的混合运算,同底数幂的乘除法、积的乘方、幂的乘方以及完全平方公式,正确掌握相关乘法公式是解题关键.33.(2023·湖南张家界·统考中考真题)下列运算正确的是( )A .22(2)4x x +=+B .248a a a ⋅=C .()23624x x =D .224235x x x +=【答案】C【分析】根据完全平方公式及合并同类项、积的乘方运算依次判断即可.【详解】解:A 、因为22(2)44x x x +=++,选项计算错误,不符合题意. B 、因为246a a a ⋅=,选项计算错误,不符合题意.C 、因为()23624x x =,计算正确,符合题意.D 、因为222235x x x +=,选项计算错误,不符合题意.故选:C .【点睛】题目主要考查完全平方公式及合并同类项、积的乘方运算,熟练掌握运算法则是解题关键.34.(2023·黑龙江·统考中考真题)下列运算正确的是( )A .22(2)4a a -=-B .222()a b a b -=-C .()()2224m m m -+--=-D .()257a a = 【答案】C 【分析】分别根据积的乘方,完全平方公式,平方差公式和幂的乘方法则进行判断即可.【详解】解:A.因为()2224a a -=,原式计算错误. B.因为()2222a b a ab b -=-+,原式计算错误.C.因为()()2224m m m -+--=-,计算正确.D.因为()2510a a =,原式计算错误.故选:C .【点睛】本题考查了积的乘方,完全平方公式,平方差公式和幂的乘方,熟练掌握运算法则,牢记乘法公式是解题的关键.35.(2023·黑龙江齐齐哈尔·统考中考真题)下列计算正确的是( ) A .22434b b b +=B .()246a a =C .()224x x -=D .326a a a ⋅= 【答案】C【分析】根据单项式乘以单项式,幂的乘方,积的乘方,合并同类项,进行计算即可求解.【详解】解:A.因为22234b b b +=,故该选项不正确,不符合题意.B.因为()248a a =,故该选项不正确,不符合题意.C.因为()224x x -=,故该选项正确,符合题意.D.因为2326a a a ⋅=,故该选项不正确,不符合题意.故选:C .【点睛】本题考查了单项式乘以单项式,幂的乘方,积的乘方,合并同类项,熟练掌握以上运算法则是解题的关键.36.(2023·湖南·统考中考真题)下列计算正确的是( )A .824a a a ÷=B .23a a a +=C .()325a a =D .235a a a ⋅= 【答案】D【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,逐项分析判断即可求解.【详解】解:A.因为826a a a ÷=,故该选项不正确,不符合题意.B.因为23a a a +≠,故该选项不正确,不符合题意.C.因为()326a a =,故该选项不正确,不符合题意.D.因为235a a a ⋅=,故该选项正确,符合题意.故选:D .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,熟练掌握以上运算法则是解题的关键.37.(2023·内蒙古·统考中考真题)下列各式计算结果为5a 的是( ) A .()23a B .102a a ÷ C .4a a ⋅ D .15(1)a --【答案】C【分析】根据同底数幂的乘除法及幂的乘方运算法则即可判断.【详解】解:A 、因为()236a a =,不符合题意. B 、因为1028a a a ÷=,不符合题意.C 、因为45a a a ⋅=,符合题意.D 、因为515(1)a a --=-,不符合题意.故选:C .【点睛】题目主要考查同底数幂的乘除法及幂的乘方运算法则,熟练掌握运算法则是解题关键.38.(2023·内蒙古赤峰·统考中考真题)已知2230a a --=,则2(23)(23)(21)a a a +-+-的值是( )A .6B .5-C .3-D .4 【答案】D【分析】2230a a --=变形为223a a -=,将2(23)(23)(21)a a a +-+-变形为()2428aa --,然后整体代入求值即可.【详解】解:由2230a a --=得223a a -=,∵2(23)(23)(21)a a a +-+-2249441a a a =-+-+2848a a =-- ()2428a a =--438=⨯-4=.故选:D .【点睛】本题主要考查了代数式求值,解题的关键是熟练掌握整式混合运算法则,将2(23)(23)(21)a a a +-+-变形为()2428a a --.39.(2023·内蒙古赤峰·统考中考真题)下列运算正确的是( )A .()22346a b a b =B .321ab ab -=C .34()a a a -⋅=D .222()a b a b +=+【答案】A【分析】根据幂的运算法则,乘法公式处理.【详解】A.因为()22346a b a b =,正确,符合题意. B.因为32ab ab ab -=,原计算错误,本选项不合题意.C.因为34()a a a -⋅=-,原计算错误,本选项不合题意.D.因为222()2a b a b ab +=++,原计算错误,本选项不合题意.【点睛】本题考查幂的运算法则,整式的运算,完全平方公式,掌握相关法则是解题的关键.40.(2023·福建·统考中考真题)下列计算正确的是( )A .()326a a =B .623a a a ÷=C .3412a a a ⋅=D .2a a a -=【答案】A【分析】根据幂的乘方法、同底数幂的除法法则、同底数幂的乘法以及合并同类项逐项判断即可.【详解】解:A .因为()23236a a a ⨯==,故A 选项计算正确,符合题意. B .因为62624a a a a -÷==,故B 选项计算错误,不合题意.C .因为34347a a a a +==⋅,故C 选项计算错误,不合题意.D .2a 与a -不是同类项,所以不能合并,故D 选项计算错误,不合题意. 故选:A .【点睛】本题主要考查同底数幂的乘除运算、幂的乘方运算以及整式的加减运算等知识点,同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘.41.(2023·广东深圳·统考中考真题)下列运算正确的是( )A .326a a a ⋅=B .44ab ab -=C .()2211a a +=+D .()236a a -=【答案】D【分析】根据同底数幂的乘法法则、合并同类项法则、完全平方公式和幂的乘方的运算法则进行计算即可.【详解】解:因为325a a a⋅=,故A不符合题意.因为4=3-,故B不符合题意.ab ab ab因为()222+=+,故C不符合题意.a a+a11因为()236-=,故D符合题意.a a故选:D.【点睛】本题考查同底数幂的乘法法则、合并同类项法则、完全平方公式和幂的乘方的运算法则,熟练掌握相关法则是解题的关键.二、填空题42.(2023·湖南永州·统考中考真题)22a与4ab的公因式为________.【答案】2a【分析】根据确定公因式的确定方法:系数取最大公约数;字母取公共字母;字母指数取最低次的,即可解答.【详解】解:根据确定公因式的方法,可得2a2与4ab的公因式为2a.故答案为:2a.【点睛】本题考查了公因式的确定,掌握确定公因式的方法是解题的关键.43.(2023·天津·统考中考真题)计算()22xy的结果为________.【答案】24x y【分析】直接利用积的乘方运算法则计算即可求得答案.【详解】解:()2224=.xy x y故答案为:24x y.【点睛】本题考查了积的乘方运算,解题的关键是熟练掌握运算法则.44.(2023·河南·统考中考真题)某校计划给每个年级配发n套劳动工具,则3个年级共需配发______套劳动工具.【答案】3n【分析】根据总共配发的数量=年级数量⨯每个年级配发的套数,列代数式.【详解】解:由题意得:3个年级共需配发得套劳动工具总数为:3n套.故答案为:3n.【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式.45.(2023·全国·统考中考真题)计算:(3)a b+=_________.【答案】3ab a+【分析】根据单项式乘多项式的运算法则求解.【详解】解:(3)3a b ab a+=+.故答案为:3+.ab a【点睛】本题主要考查了单项式乘多项式的运算法则,掌握单项式乘多项式的运算法则是解答关键.46.(2022秋·上海·七年级专题练习)计算:22-=________.32a a【答案】2a【分析】直接根据合并同类项法则进行计算即可得到答案.【详解】解:222232(32)a a a a -=-=故答案为:2a .【点睛】本题主要考查了合并同类项,掌握合并同类项运算法则是解答本题的关键.47.(2023·湖北十堰·统考中考真题)若x+y=3,且y=2,则x 2y+xy 2的值是___________________.【答案】6【分析】先提公因式分解原式,再整体代值求解即可.【详解】解:x 2y+xy 2=xy(x+y),∵x+y=3,y=2,∵x=1,∵原式=1×2×3=6.故答案为:6.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法,利用整体思想方法是解答的关键.48.(2023·广东深圳·统考中考真题)已知实数a ,b ,满足6a b +=,且7ab =,则22a b ab +的值为______.【答案】42【分析】首先提取公因式,将已知整体代入求出即可.【详解】a 2b+ab 2=ab(a+b)=7×6=42.故答案为:42.【点睛】此题考查了求代数式的值,提公因式法因式分解,整体思想的应用,解题的关键是掌握以上知识点.49.(2023春·广东梅州·八年级校考阶段练习)计算:(a2b)3=___.【答案】a6b3【详解】试题分析:根据积的乘方运算法则可得(a2b)3=a6b3.故答案为:a6b3.三、解答题。
专题02整式(共37题)一、单选题1.(2022·云南·中考真题)下列运算正确的是()A.2+3=5B.30=0C.(―2a)3=―8a3D.a6÷a3=a2 2.(2022·浙江金华·中考真题)计算a3⋅a2的结果是()A.a B.a6C.6a D.a5 3.(2022·安徽·中考真题)下列各式中,计算结果等于a9的是()A.a3+a6B.a3⋅a6C.a10―a D.a18÷a2 4.(2022·四川成都·中考真题)下列计算正确的是()A.m+m=m2B.2(m―n)=2m―nC.(m+2n)2=m2+4n2D.(m+3)(m―3)=m2―9 5.(2022·四川德阳·中考真题)下列计算正确的是()A.(a―b)2=a2―b2B.(―1)2=1C.a÷a⋅1a =a D.―12ab23=―16a3b66.(2022·四川遂宁·中考真题)下列计算中正确的是()A.a3⋅a3=a9B.(―2a)3=―8a3C.a10÷(―a2)3=a4D.(―a+2)(―a―2)=a2+47.(2022·四川遂宁·中考真题)已知m为方程x2+3x―2022=0的根,那么m3+2m2―2025m+2022的值为()A.―2022B.0C.2022D.40448.(2022·重庆·中考真题)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.99.(2022·云南·中考真题)按一定规律排列的单项式:x,3x²,5x³,7x4,9x5,……,第n个单项式是()A.(2n-1)x n B.(2n+1)x n C.(n-1)x n D.(n+1)x n10.(2022·重庆·中考真题)对多项式x―y―z―m―n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x―y)―(z―m―n)=x―y―z+m+n,x―y―(z―m)―n=x―y―z+m ―n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.311.(2022·山东滨州·中考真题)下列计算结果,正确的是()A.(a2)3=a5B.8=32C.38=2D.cos30°=1212.(2022·四川南充·中考真题)下列计算结果正确的是()A.5a―3a=2B.6a÷2a=3a C.a6÷a3=a2D.(2a2b3)3=8a6b9 13.(2022·四川泸州·中考真题)下列运算正确的是()A.a2⋅a3=a6B.3a―2a=1C.(―2a2)3=―8a6D.a6÷a2=a314.(2022·浙江丽水·中考真题)计算―a2⋅a的正确结果是()A.―a2B.a C.―a3D.a315.(2022·四川南充·中考真题)下列计算结果为5的是()A.―(+5)B.+(―5)C.―(―5)D.―|―5|16.(2022·四川自贡·中考真题)下列运算正确的是()A.(―1)2=―2B=1C.a6÷a3=a2D.=017.(2022·重庆·中考真题)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41二、填空题18.(2022·浙江金华·中考真题)因式分解:x2―9=______.19.(2022·四川德阳·中考真题)分解因式:ax2―a=______.20.(2022·江苏连云港·中考真题)计算:2a+3a=______.21.(2022·山东滨州·中考真题)若m+n=10,mn=5,则m2+n2的值为_______.22.(2022·山东泰安·中考真题)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.23.(2022·江苏连云港·中考真题)若关于x的一元二次方程mx2+nx―1=0(m≠0)的一个解是x=1,则m +n的值是___.24.(2022·四川德阳·中考真题)古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是1+2=3,第三个三角形数是1+2+3=6,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是1+3=4,第三个正方形数是1+3+5=9,……由此类推,图④中第五个正六边形数是______.25.(2022·四川遂宁·中考真题)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.26.(2022·浙江丽水·中考真题)如图,标号为①,②,③,④的矩形不重叠地围成矩形PQMN,已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.AE=a,DE=b,且a>b.(1)若a,b是整数,则PQ的长是___________;的值是___________.(2)若代数式a2―2ab―b2的值为零,则S四边形ABCDS矩形PQMN三、解答题27.(2022·浙江丽水·中考真题)先化简,再求值:(1+x)(1―x)+x(x+2),其中x=1.228.(2022·重庆·中考真题)计算:(1)(x+2)2+x(x―4);.1÷a2―b22b29.(2022·四川南充·中考真题)先化简,再求值:(x+2)(3x―2)―2x(x+2),其中x=3―1.30.(2022·山东泰安·中考真题)(1)若单项式x m―n y14与单项式―1x3y3m―8n是一多项式中的同类项,求m、2n的值;,其中x=2―1.(2÷1x2―131.(2022·重庆·中考真题)计算:(1)(x+y)(x―y)+y(y―2);(2)1÷m2―4m+4.m2―432.(2022·浙江金华·中考真题)如图1,将长为2a+3,宽为2a的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形.(1)用关于a的代数式表示图2中小正方形的边长.(2)当a=3时,该小正方形的面积是多少?33.(2022·安徽·中考真题)某地区2020年进出口总额为520亿元.2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:年份进口额/亿元出口额/亿元进出口总额/亿元2020x y5202021 1.25x 1.3y(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额度分别是多少亿元?34.(2022·安徽·中考真题)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2―(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2―(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2―(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2―(5×8)2,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.35.(2022·四川凉山·中考真题)阅读材料:材料1:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=―ba ,x1x2=ca材料2:已知一元二次方程x2-x-1=0的两个实数根分别为m,n,求m2n+mn2的值.解:∵一元二次方程x2-x-1=0的两个实数根分别为m,n,∴m+n=1,mn=-1,则m2n+mn2=mn(m+n)=-1×1=-1根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x2-3x-1=0的两个根为x1,x2,则x1+x2=;x1x2=.(2)类比应用:已知一元二次方程2x2-3x-1=0的两根分别为m、n,求nm +mn的值.(3)思维拓展:已知实数s、t满足2s2-3s-1=0,2t2-3t-1=0,且s≠t,求1s ―1t的值.36.(2022·重庆·中考真题)若一个四位数M的个位数字与十位数字的平方和恰好是M去掉个位与十位数字后得到的两位数,则这个四位数M为“勾股和数”.例如:M=2543,∵32+42=25,∴2543是“勾股和数”;又如:M=4325,∵52+22=29,29≠43,∴4325不是“勾股和数”.(1)判断2022,5055是否是“”,并说明理由;(2)一个“勾股和数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记G(M)=c+d9,P(M)=|10(a―c)+(b―d)|3.当G(M),P(M)均是整数时,求出所有满足条件的M.37.(2022·重庆·中考真题)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30⋯⋯4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b>c.在a,b,c中任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若F(A)+G(A)16为整数,求出满足条件的所有数A.。
中考数学专题复习《整式的运算》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.计算(−x2)3的结果是()A.−x6B.x6C.−x5D.−x82.下列计算正确的是()A.x7÷x=x7B.(−3x2)2=−9x4C.x3•x3=2x6D.(x3)2=x63.下列计算正确的是()A.3x+3y=6xy B.a2•a3=a6C.b6÷b3=b2D.(m2)3=m6 4.下列计算正确的是()A.3a3⋅2a3=6a3B.(−4a3b)2=8a6b2C.(a+b)2=a2+b2D.−2a2+3a2=a25.下列运算正确的是()A.(x−1)(x+1)=x2−x−1B.x2−2x+3=(x−1)2+4C.(x−1)2=x2−2x−1D.(x−1)(−1−x)=1−x26.观察一列单项式:x−3x37x5−15x731x9⋯.则第n个单项式是()A.(−1)n+1(2n−1)x2n−1B.(−1)n(2n−1)x2n+1C.(−1)n+1(2n−1)x2n−1D.(−1)n(2n+1)x2n−17.若k为任意整数则(2k+3)2−4k2的值总能()A.被2整除B.被3整除C.被5整除D.被7整除8.已知10a=25,100b=40则a+2b的值是()A.1B.2C.3D.49.对于任意自然数n关于代数式(n+7)2﹣(n﹣5)2的值说法错误的是()A.总能被3整除B.总能被4整除C.总能被6整除D.总能被7整除10.若2a-3b=-1 则代数式4a2−12ab+9b2的值为()A.-1B.1C.2D.311.已知关于x的两个多项式A=x2−ax−2B=x2−2x−3.其中a为常数下列说法:①若A−B的值始终与x无关则a=−2②关于x的方程A+B=0始终有两个不相等的实数根③若A ⋅B 的结果不含x 2的项 则a =52④当a =1时 若A B 的值为整数 则x 的整数值只有2个.以上结论正确的个数有( ) A .4B .3C .2D .112.对于若干个单项式 我们先将任意两个单项式作差 再将这些差的绝对值进行求和并化简 这样的运算称为对这若干个单项式作“差绝对值运算”. 例如:对2,3,4作“差绝对值运算” 得到|2−3|+|2−4|+|3−4|=4 则①对1,3,4,7作“差绝对值运算”的结果是19 ②对x 2,x ,−3(x 2>x >−3)进行“差绝对值运算”的结果是38 则x =±4 ③对a ,b ,c (互不相等)进行“差绝对值运算”的结果一共有7种. 以上说法中正确的个数为( ) A .0B .1C .2D .3二 填空题13.已知3x+y=-3 xy=-6 则 xy 3+9x 3y = .14.若实数m 满足(m −2023)2+(2024−m)2=2025 则(m −2023)(2024−m)= .15. 已知 m +n +2m+n =4,则 (m +n )2+(2m+n )2的值为 . 16.小明在化简:(4x 2−6x +7)−(4x 2−□x +2)时发现系数“□”印刷不清楚 老师提示他:“此题的化简结果是常数” 则多项式中的“□”表示的数是 .17.如果一个三位自然数m =abc ̅̅̅̅̅的各数位上的数字互不相等且均不为0 满足a +c =b 那么称这个三位数为“中庸数”.将“中庸数”m =abc ̅̅̅̅̅的百位 个位数字交换位置 得到另一个“中庸数”m ′=cba ̅̅̅̅̅ 记F(m)=m−m ′99,T(m)=m+m ′121.例如:m =792,m ′=297.F(m)=792−29799=5 T(m)=792+297121=9.计算F(583)= 若“中庸数”m 满足2F(m)=s 2,2T(m)=t 2 其中s ,t 为自然数1 2 3…… 则该“中庸数”m 是 .18.一个四位自然数M 若它的千位数字与十位数字的差为3 百位数字与个位数字的差为2 则称M 为“接二连三数” 则最大的“接二连三数”为 已知“接二连三数”M 能被9整除 将其千位数字与百位数字之和记为P 十位数字与个位数字之差记为Q 当PQ 为整数时 满足条件的M 的最小值为 .三 计算题19.计算:(1)x(1−x)(2)(a−1)(2a+3)−2a(a−4)(3)x 2x−1−x−1.20.计算:(1)(−2xy2)2⋅3x2y.(2)(−2a2)(3ab2−5ab3).(3)(3m2n)2⋅(−2m2)3÷(−m2n)2.(4)(a−2b−3c)(a−2b+3c).21.(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1)其中x=−12 ..22.−12(xy−x2)+3(y2−12x2)+2(14xy−12y2)其中x=−2y=12.23.先化简再求值:[(x+2y)2−(x+2y)(x−2y)]÷4y其中x=1y=−1.四解答题24.观察下面的等式:32−12=8×1,52−32=8×2,72−52=8×3,92−72=8×4,⋯(1)写出192−172的结果.(2)按上面的规律归纳出一个一般的结论(用含n的等式表示n为正整数)(3)请运用有关知识推理说明这个结论是正确的.25.尝试:①152=225=1×2×100+25.②252=625=2×3×100+25.③352=1225=_▲_...运用:小滨给出了猜想和证明请判断是否正确若有错误请给出正确解答.猜想:(10a+5)2=100a(a+1)+25.证明:(10a+5)2=100a(a+1)+25所以10a2+100a+5=100a2+100a+25.所以10a2=100a2.因为a≠0所以10a2≠100a2.所以等式不成立结论错误.26.已知实数a b满足(2a2+b2+1)(2a2+b2-1)=80 试求2a2+b2的值.解:设2a2+b2=m则原方程可化为(m+1)(m-1)=80 即m2=81 解得:m=±9 ∵2a2+b2≥0 ∴2a2+b2=9 上面的这种方法称为“换元法” 换元法是数学学习中最常用的一种思想方法在结构较复杂的数和式的运算中若把其中某些部分看成一个整体并用新字母代替(即换元)则能使复杂问题简单化.根据以上阅读材料解决下列问题:(1)已知实数x y满足(2x2+2y2-1)(x2+y2)=3 求3x2+3y2-2的值(2)若四个连续正整数的积为120 求这四个正整数.27.阅读下列材料:我们把多项式a2+2ab+b2及a2-2ab+b2叫做完全平方公式如果一个多项式不是完全平方公式我们常做如下变形:先添加一个适当的项使式子中出现完全平方式再减去这个项使整个式子的值不变这种方法叫做配方法.配方法是一种重要的解决问题的数学方法可以求代数式的最大值或最小值.例如:求代数式x2+2x-3的最小值.解:x2+2x-3=x2+2x+12-12-3=(x2+2x+12)-4=(x+1)2-4.∵(x+1)2≥0 ∴(x+1)2-4≥-4∴当x=-1时x2+2x-3的最小值为-4.再例如:求代数式-x2+4x-1的最大值.解:-x2+4x-1=-(x2-4x+1)=-(x2-4x+22-22+1)=-[(x2-4x+22)-3]=-(x-2)2+3∵(x-2)2≥0 ∴-(x-2)2≤0 ∴-(x-2)2+3≤3.∴当x=2时-x2+4x-1的最大值为3.(1)【直接应用】代数式x2+4x+3的最小值为(2)【类比应用】若M=a2+b2-2a+4b+2023 试求M的最小值(3)【知识迁移】如图学校打算用长20m的篱笆围一个长方形菜地菜地的一面靠墙(墙足够长)求围成的菜地的最大面积.28.在学习《完全平方公式》时某数学学习小组发现:已知a+b=5 ab=3 可以在不求a b的值的情况下求出a2+b2的值.具体做法如下:a2+b2=a2+b2+2ab-2ab=(a+b)2-2ab=52-2×3=19.(1)若a+b=7 ab=6 则a2+b2=(2)若m满足(8-m)(m-3)=3 求(8-m)2+(m-3)2的值同样可以应用上述方法解决问题.具体操作如下:解:设8-m=a 8-m=a m-3=b则a+b=(8-m)+(m-3)=5 a+b=(8-m)+(m-3)=5 ab=(8-m)(m-3)=3所以(8-m)2+(m-3)2=a2+b2=(a+b)2-2ab=52-2×3=19.请参照上述方法解决下列问题:若(3x-2)(10-3x)=6 求(3x-2)2+(10-3x)2的值29.利用完全平方公式a2+2ab+b2=(a+b)2和a2−2ab+b=2(a−b)2的特点可以解决很多数学问题.下面给出两个例子:例1分解因式:x2+2x−3x2+2x−3=x2+2x+1−4=(x+1)2−4=(x+1+2)(x+1−2)=(x+3)(x−1)例2求代数式2x2−4x−6的最小值:2x2−4x−6=2(x2−2x)−6=2(x2−2x+1−1)−6=2[(x−1)2−1]−6=2(x−1)2−8又∵2(x−1)2≥0∴当x=1时代数式2x2−4x−6有最小值最小值是−8.仔细阅读上面例题模仿解决下列问题:(1)分解因式:m2−8m+12(2)代数式−x2+4x−2有最(大小)值当x=时最值是(3)当x y为何值时多项式2x2+y2−8x+6y+25有最小值?并求出这个最小值.30.发现:一个两位数的平方与其个位数字的平方的差一定是20的倍数.如:132−32=160160是20的8倍262−62=640640是20的32倍.(1)请你仿照上面的例子再举出一个例子:(⋅⋅⋅⋅)2−(⋅⋅⋅⋅⋅)2=(⋅⋅⋅⋅⋅)(2)十位数字为1 个位数字为a的两位数可表示为若该两位数的平方与a的平方的差是20的5倍则a=(3)设一个两位数的十位数字为m个位数字为n(0<m<100≤n<10且m n为正整数)请用含m n的式子论证“发现”的结论是否符合题意.31.灵活运用完全平方公式(a±b)2=a2±2ab+b2可以解决许多数学问题.例如:已知a−b=3,ab=1求a2+b2的值.解:∵a−b=3,ab=1∴(a−b)2=9,2ab=2,∴a2−2ab+b2=9∴a2−2+b2=9,∴a2+b2=9+2=11.请根据以上材料解答下列问题.(1)若a2+b2与2ab−4互为相反数求a+b的值.(2)如图矩形的长为a 宽为b 周长为14 面积为8 求a2+b2的值.32.定义:对于一个三位正整数如果十位数字恰好等于百位数字与个位数字之和的一半我们称这个三位正整数为“半和数”.例如三位正整数234 因为3=12×(2+4)所以234是“半和数”.(1)判断147是否为“半和数” 并说明理由(2)小林列举了几个“半和数”:111 123 234 840… 并且她发现:111÷3=37123÷3=41 234÷3=78840÷3=280… 所以她猜测任意一个“半和数”都能被3整除.小林的猜想正确吗?若正确请你帮小林说明该猜想的正确性若错误说明理由.答案解析部分1.【答案】A2.【答案】D3.【答案】D4.【答案】D5.【答案】D6.【答案】C7.【答案】B8.【答案】C9.【答案】D10.【答案】B11.【答案】B12.【答案】B13.【答案】-27014.【答案】−101215.【答案】1216.【答案】617.【答案】2 121或484或58318.【答案】9967 885619.【答案】(1)解:x(1−x)=x−x2(2)解:(a−1)(2a+3)−2a(a−4)=2a2+3a−2a−3−2a2+8a=9a−3(3)解:x 2x−1−x−1=x2x−1−(x+1)=x2−(x+1)(x−1)x−1=x2−x2+1x−1=1x−1.20.【答案】(1)解:(−2xy2)2⋅3x2y=4x2y4⋅3x2y=12x4y5(2)解:(−2a2)(3ab2−5ab3)=−6a3b2+10a3b3(3)解:(3m2n)2⋅(−2m2)3÷(−m2n)2=9m4n2⋅(−8m6)÷m4n2=−72m10n2÷m4n2=−72m6(4)解:(a−2b−3c)(a−2b+3c)=[(a−2b)−3c][(a−2b)+3c]=(a−2b)2−9c2=a2−4ab+4b2−9c2.21.【答案】解:原式=x2+4x+4+4x2﹣1﹣4x2﹣4x=x2+3当x=−1 2时∴原式=(−12)2+3=31 4.22.【答案】解:−12(xy−x2)+3(y2−12x2)+2(14xy−12y2)=−12xy+12x2+3y2−32x2+12xy−y2=−x2+2y2当x=−2y=1 2时原式=−(−2)2+2×(12)2=−4+2×1 4=−4+1 2=−72.23.【答案】解:化简方法一:[(x+2y)2−(x+2y)(x−2y)]÷4y=[(x+2y)(x+2y−x+2y)]÷4y=[(x+2y)·4y]÷4y=x+2y化简方法二:[(x+2y)2−(x+2y)(x−2y)]÷4y=[(x2+4xy+4y2)−(x2−4y2)]÷4y=(x2+4xy+4y2−x2+4y2)÷4y=(4xy+8y2)÷4y=4xy÷4y+8y2÷4y=x+2y当x=1y=−1时原式=1+2×(−1)=−1.24.【答案】(1)8×9(2)(2n+1)2−(2n−1)2=8n(3)(2n+1)2−(2n−1)2=(2n+1+2n−1)(2n+1−2n+1)=4n×2=8n。
专题02 整式与因式分解一.选择题目1.(2021·湖北十堰市·中考真题)下列计算正确的是( )A .3332a a a ⋅=B .22(2)4a a -=C .222()a b a b +=+D .2(2)(2)2a a a +-=-【答案】B【分析】根据同底数幂相乘、积的乘方、乘法公式逐一判断即可.【详解】解:A .336a a a ⋅=,该项计算错误;B .22(2)4a a -=,该项计算正确;C .222()2a b a ab b +=++,该项计算错误;D .2(2)(2)4a a a +-=-,该项计算错误;故选:B .【点睛】本题考查整式乘法,掌握同底数幂相乘、积的乘方、乘法公式是解题的关键.2.(2021·四川成都市·中考真题)下列计算正确的是( )A .321mn mn -=B .()22346m n m n = C .()34m m m -⋅= D .()222m n m n +=+ 【答案】B【分析】利用合并同类项法则可判定A ,利用积的乘方法则与幂的乘方法则可判定B ,利用同底数幂乘法法则可判定C ,利用完全平方公式可判定D .【详解】解:A . 321mn mn mn -=≠,故选项A 计算不正确;B. ()()()222232346m n m n m n =⋅=,故选项B 计算正确; C . ()3344m m m m m m -⋅=-⋅=-≠,故选项C 计算不正确;D . ()222222m n m mn n m n +=++≠+,故选项D 计算不正确.故选择B .【点睛】本题考查同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式,掌握同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式是解题关键.3.(2021·陕西中考真题)计算:()23a b -=( )A .621a bB .62a bC .521a bD .32a b -【答案】A【分析】根据积的乘方,幂的乘方以及负整数指数幂运算法则计算即可.【详解】解:()23621a b a b -=,故选:A .【点睛】本题考查积的乘方,幂的乘方以及负整数指数幂等知识点,熟记相关定义与运算法则是解答本题的关键.4.(2021·上海中考真题)下列单项式中,23a b 的同类项是( )A .32a bB .232a bC .2a bD .3ab【答案】B【分析】比较对应字母的指数,分别相等就是同类项【详解】∵a 的指数是3,b 的指数是2,与23a b 中a 的指数是2,b 的指数是3不一致,∴32a b 不是23a b 的同类项,不符合题意;∵a 的指数是2,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3一致,∴232a b 是23a b 的同类项,符合题意;∵a 的指数是2,b 的指数是1,与23a b 中a 的指数是2,b 的指数是3不一致,∴2a b 不是23a b 的同类项,不符合题意;∵a 的指数是1,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3不一致,∴3ab 不是23a b 的同类项,不符合题意;故选B【点睛】本题考查了同类项,正确理解同类项的定义是解题的关键.5.(2021·浙江杭州市·中考真题)因式分解:214y -=( ) A .()()1212y y -+ B .()()22y y -+ C .()()122y y -+ D .()()212y y -+【答案】A【分析】利用平方差公式因式分解即可.【详解】解:214y -=()()1212y y -+,故选:A .【点睛】本题考查利用平方差公式进行因式分解,是重要考点,难度较易,掌握相关知识是解题关键. 6.(2020·柳州市柳林中学中考真题)下列多项式中,能用平方差公式进行因式分解的是( ) A .a 2﹣b 2B .﹣a 2﹣b 2C .a 2+b 2D .a 2+2ab +b 2【答案】A【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A 、a 2﹣b 2符合平方差公式的特点,能用平方差公式进行因式分解;B 、﹣a 2﹣b 2两平方项符号相同,不能用平方差公式进行因式分解;C 、a 2+b 2两平方项符号相同,不能用平方差公式进行因式分解;D 、a 2+2ab +b 2是三项,不能用平方差公式进行因式分解.故选:A .【点睛】本题考查了用平方差公式进行因式分解.熟记平方差公式的结构特点是解题的关键.平方差公式:()()22a b a b a b -=+-.7.(2021·湖北宜昌市·中考真题)从前,古希腊一位庄园主把一块边长为a 米(6a >)的正方形土地租给租户张老汉.第二年,他对张老汉说:“我把这块地的一边增加6米,相邻的另一边减少6米,变成矩形土地继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会( ) A .没有变化B .变大了C .变小了D .无法确定【答案】C【分析】分别求出2次的面积,比较大小即可.【详解】原来的土地面积为2a 平方米,第二年的面积为2(6)(6)36a a a +-=- 22(36)360a a --=-<∴ 所以面积变小了,故选C .【点睛】本题考查了列代数式,整式的运算,平方差公式,代数式大小的比较,正确理解题意列出代数式并计算是解题的关键.8.(2021·江苏苏州市·中考真题)已知两个不等于0的实数a 、b 满足0a b +=,则b a a b +等于( ) A .2-B .1-C .1D .2【答案】A【分析】先化简式子,再利用配方法变形即可得出结果. 【详解】解:∵22=b a b a a b ab ++,∴()2222==a b ab b a b a a b ab ab +-++, ∵两个不等于0的实数a 、b 满足0a b +=,∴()22-2===-2a b ab b a ab a b ab ab+-+,故选:A .【点睛】本题考查分式的化简、配完全平方、灵活应用配方法是解题的关键.9.(2021·浙江台州市·中考真题)将x 克含糖10%的糖水与y 克含糖30%的糖水混合,混合后的糖水含糖( )A .20%B .+100%2x y ⨯C .+3100%20x y ⨯D .+3 100%10+10x y x y⨯ 【答案】D 【分析】先求出两份糖水中糖的重量,再除以混合之后的糖水总重,即可求解. 【详解】解:混合之后糖的含量:10%30%3100%1010x y x y x y x y++=⨯++,故选:D . 【点睛】本题考查列代数式,理解题意是解题的关键.10.(2021·浙江台州市·中考真题)已知(a +b )2=49,a 2+b 2=25,则ab =( )A .24B .48C .12D . 【答案】C【分析】利用完全平方公式计算即可.【详解】解:∵()222249a b a b ab +=++=,2225a b +=,∴4925122ab -==,故选:C . 【点睛】本题考查整体法求代数式的值,掌握完全平方公式是解题的关键.11.(2021·山东临沂市·中考真题)实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.下图为表示镭的放射规律的函数图象,据此可计算32mg 镭缩减为1mg 所用的时间大约是( )A .4860年B .6480年C .8100年D .9720年【答案】C 【分析】根据物质所剩的质量与时间的规律,可得答案.【详解】解:由图可知:1620年时,镭质量缩减为原来的12, 再经过1620年,即当3240年时,镭质量缩减为原来的21142=,再经过1620×2=3240年,即当4860年时,镭质量缩减为原来的31182=,..., ∴再经过1620×4=6480年,即当8100年时,镭质量缩减为原来的511232=,此时132132⨯=mg ,故选C . 【点睛】本题考查了函数图象,规律型问题,利用函数图象的意义是解题关键.12.(2021·甘肃武威市·中考真题)对于任意的有理数,a b ,如果满足2323a b a b ++=+,那么我们称这一对数,a b 为“相随数对”,记为(),a b .若(),m n 是“相随数对”,则()323[]21m m n ++-=( )A .2-B .1-C .2D .3 【答案】A【分析】先根据新定义,可得9m +4n =0,将整式()21]2[33m m n ++-去括号合并同类项化简得942m n +-,然后整体代入计算即可.【详解】解:∵(),m n 是“相随数对”,∴2323m n m n ++=+,整理得9m +4n =0, ()323213642942[]2m m n m m n m n ++-=++-=+-=-.故选择A .【点睛】本题考查新定义相随数对,找出数对之间关系,整式加减计算求值,掌握新定义相随数对,找出数对之间关系,整式加减计算求值是解题关键.13.(2021·四川泸州市·中考真题)已知1020a =,10050b =,则1322a b ++的值是( ) A .2B .52C .3D .92 【答案】C【分析】根据同底数幂的乘法31010010a b ⋅=,可求23a b +=再整体代入即可.【详解】解: ∵1020a =,10050b =,∴2310100102050100010a b a b +⋅==⨯==,∴23a b +=,∴()()1311233332222a b a b ++=++=+=.故选:C . 【点睛】本题考查幂的乘方,同底数幂的乘法逆运算,代数式求值,掌握幂的乘方,同底数幂的乘法法则,与代数式值求法是解题关键.14.(2020·四川眉山市·中考真题)已知221224a b a b +=--,则132a b -的值为( ) A .4 B .2 C .2- D .4-【答案】A 【分析】根据221224a b a b +=--,变形可得:()22221121111042a a b b a b ⎛⎫-++++=-++= ⎪⎝⎭,因此可求出1a =,2b =-,把a 和b 代入132a b -即可求解. 【详解】∵221224a b a b +=--∴()22221121111042a a b b a b ⎛⎫-++++=-++= ⎪⎝⎭即2(1)0a -=,21(1)02b +=∴求得:1a =,2b =- ∴把a 和b 代入132a b -得:131(2)42⨯-⨯-=故选:A 【点睛】本题主要考查了完全平方公式因式分解,熟记完全平方公式,通过移项对已知条件进行配方是解题的关键.15.(2021·浙江温州市·中考真题)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( ) A .20a 元B .()2024a +元C .()17 3.6a +元D .()20 3.6a +元【答案】D【分析】分两部分求水费,一部分是前面17立方米的水费,另一部分是剩下的3立方米的水费,最后相加即可.【详解】解:∵20立方米中,前17立方米单价为a 元,后面3立方米单价为(a +1.2)元,∴应缴水费为17a +3(a +1.2)=20a +3.6(元),故选:D .【点睛】本题考查的是阶梯水费的问题,解决本题的关键是理解其收费方式,能求出不同段的水费,本题较基础,重点考查了学生对该种计费方式的理解与计算方法等.16.(2020·湖南娄底市·中考真题)下列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为( )A .135B .153C .170D .189【答案】C 【分析】由观察发现每个正方形内有:224,236,248,⨯=⨯=⨯=可求解b ,从而得到a ,再利用,,a b x 之间的关系求解x 即可.【详解】解:由观察分析:每个正方形内有:224,236,248,⨯=⨯=⨯=218,b ∴= 9,b ∴= 由观察发现:8,a =又每个正方形内有:2419,36220,48335,⨯+=⨯+=⨯+=18,b a x ∴+= 1898170.x ∴=⨯+= 故选C .【点睛】本题考查的是数字类的规律题,掌握由观察,发现,总结,再利用规律是解题的关键. 17.(2020·湖南郴州市·中考真题)如图1,将边长为x 的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示长方形.这两个图能解释下列哪个等式( )A .2221(1)x x x -+=-B .21(1)(1)x x x -=+-C .2221(1)x x x ++=+D .2(1)x x x x -=-【答案】B 【分析】利用大正方形的面积减去小正方形的面积得到空白部分的面积,然后根据面积相等列出等式即可.【详解】第一个图形空白部分的面积是x 2-1,第二个图形的面积是(x+1)(x -1).则x 2-1=(x+1)(x -1).故选:B .【点睛】本题考查了平方差公式的几何背景,正确用两种方法表示空白部分的面积是解决问题的关键. 18.(2020·湖北中考真题)根据图中数字的规律,若第n 个图中出现数字396,则n =( )A .17B .18C .19D .20【答案】B【分析】观察上三角形,下左三角形,下中三角形,下右三角形各自的规律,让其等于396,解得n 为正整数即成立,否则舍去.【详解】根据图形规律可得:上三角形的数据的规律为:2(1)n n +,若2(1)396n n +=,解得n 不为正整数,舍去;下左三角形的数据的规律为:21n -,若21396n -=,解得n 不为正整数,舍去; 下中三角形的数据的规律为:21n -,若21396n -=,解得n 不为正整数,舍去;下右三角形的数据的规律为:(4)n n +,若(4)396n n +=,解得18n =,或22n =-,舍去,故选:B .【点睛】本题考查了有关数字的规律,能准确观察到相关规律是解题的关键.19.(2020·山东潍坊市·中考真题)若221m m +=,则2483m m +-的值是( )A .4B .3C .2D .1 【答案】D【分析】把所求代数式2483m m +-变形为24(2)3m m +-,然后把条件整体代入求值即可.【详解】∵221m m +=,∴2483m m +-=24(2)3m m +-=4×1-3=1.故选:D .【点睛】此题主要考查了代数式求值以及“整体代入”思想,解题的关键是把代数式2483m m +-变形为24(2)3m m +-.20.(2020·河南中考真题)电子文件的大小常用, ,,B KB MB GB 等作为单位,其中10101012,12,12GB MB MB KB KB B ===,某视频文件的大小约为1,1GB GB 等于( )A .302BB .308BC .10810B ⨯D .30210B ⨯【答案】A【分析】根据题意及幂的运算法则即可求解.【详解】依题意得1010101010101222222GB MB KB B ==⨯=⨯⨯=302B 故选A .【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的运算法则.21.(2020·江苏无锡市·中考真题)若2x y +=,3z y -=-,则x z +的值等于( )A .5B .1C .-1D .-5 【答案】C【分析】将两整式相加即可得出答案.【详解】∵2x y +=,3z y -=-,∴()()1x y z y x z ++-=+=-,∴x z +的值等于1-,故选:C .【点睛】本题考查了整式的加减,熟练掌握运算法则是解本题的关键.22.(2020·湖南中考真题)如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F【答案】D【分析】设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=12k(k+1),然后根据题目中所给的第k次依次移动k个顶点的规则,可得到不等式最后求得解.【详解】设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=12k(k+1),应停在第12k(k+1)﹣7p格,这时P是整数,且使0≤12k(k+1)﹣7p≤6,分别取k=1,2,3,4,5,6,7时,12k(k+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤2020,设k=7+t(t=1,2,3)代入可得,12k(k+1)﹣7p=7m+12t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即顶点C,E和F棋子不可能停到.故选:D.【点睛】本题考查的是探索图形、数字变化规律,从图形中提取信息,转化为数字信息,探索数字变化规律是解答的关键.23.(2020·山东枣庄市·中考真题)图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2mn B.(m+n)2C.(m-n)2D.m2-n2【答案】C【详解】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2.又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)2-4mn=(m-n)2.故选C.24.(2020·山东日照市·中考真题)用大小相同的圆点摆成如图所示的图案,按照这样的规律摆放,则第10个图案中共有圆点的个数是()A.59B.65C.70D.71【答案】C【分析】由题意观察图形可知,第1个图形共有圆点5+2个;第2个图形共有圆点5+2+3个;第3个图形共有圆点5+2+3+4个;第4个图形共有圆点5+2+3+4+5个;…;则第n个图形共有圆点5+2+3+4+…+n+(n+1)个;由此代入n=10求得答案即可.【详解】解:根据图中圆点排列,当n=1时,圆点个数5+2;当n=2时,圆点个数5+2+3;当n=3时,圆点个数5+2+3+4;当n=4时,圆点个数5+2+3+4+5,…∴当n=10时,圆点个数5+2+3+4+5+6+7+8+9+10+11=4+(1+2+3+4+5+6+7+8+9+10+11)=1411(111)2+⨯⨯+70=.故选:C.【点睛】本题考查图形的变化规律,注意找出数量上的变化规律,从而推出一般性的结论,利用规律解决问题.25.(2019·湖北中考真题)一列数按某规律排列如下:1121231234 ,,,,,,,,,1213214321…,若第n个数为57,则n=()A.50B.60C.62D.71【答案】B【分析】根据题目中的数据可以发现,分子变化是1,(1,2),(1,2,3),…,分母变化是1,(2,1),(3,2,1),…,从而可以求得第n个数为57时n的值,本题得意解决.【详解】1121231234,,,,,,,,,1213214321,…,可写为: 1121231234,,,,,,,,,1213214321⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,…, ∵57的分子和分母的和为12, ∴分母为11开头到分母为1的数有11个,分别为1234567891011,,,,,,,,,,1110987654321, ∴第n 个数为57,则123410560n =++++⋯++=,故选B . 【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.26.(2019·重庆中考真题)按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,【答案】D 【分析】逐项代入,寻找正确答案即可.【详解】解:A 选项满足m≤n ,则y=2m+1=3; B 选项不满足m≤n ,则y=2n -1=-1;C 选项满足m≤n ,则y=2m -1=3;D 选项不满足m≤n ,则y=2n -1=1; 故答案为D ;【点睛】本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确的所代入代数式及代入得值. 27.(2019·四川绵阳市·中考真题)已知4m a =,8n b =,其中m ,n 为正整数,则262m n +=( ) A .2abB .2a b +C .23a bD .23a b + 【答案】A【分析】先变形262m n +成4m 与8n 的形式,再将已知等式代入可得.【详解】解:∵4m a =,8n b =,∴2626222m n m n +=⨯()()22322m n =⋅248m n =⋅()248m n =⋅2ab =,故选A . 【点睛】本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与同底数幂的乘法运算法则. 28.(2019·广西柳州市·中考真题)定义:形如a bi +的数称为复数(其中a 和b 为实数,i 为虚数单位,规定21i =-),a 称为复数的实部,b 称为复数的虚部.复数可以进行四则运算,运算的结果还是一个复数.例如2222(13)1213(3)16916986i i i i i i i +=+⨯⨯+=++=+-=-+,因此,2(13)i +的实部是﹣8,虚部是6.已知复数2(3)mi -的虚部是12,则实部是( )A .﹣6B .6C .5D .﹣5 【答案】C【分析】先利用完全平方公式得出(3-mi )2=9-6mi+m 2i 2,再根据新定义得出复数(3-mi )2的实部是9-m 2,虚部是-6m ,由(3-mi )2的虚部是12得出m=-2,代入9-m 2计算即可.【详解】解:∵222222(3)323()9696mi mi mi mi m i m mi -=-⨯⨯+=-+=--∴复数2(3)mi -的实部是29m -,虚部是6m -,∴612m -=,∴2m =-,∴2299(2)945m -=--=-=.故选C .【点睛】本题考查了新定义,完全平方公式,理解新定义是解题的关键.二.填空题目1.(2021·四川达州市·中考真题)已知a ,b 满足等式2690a a +++=,则20212020a b =___________. 【答案】-3【分析】先将原式变形,求出a 、b ,再根据同底数幂的乘法、积的乘方的逆运算即可求解.【详解】解:由2690a a +++=,变形得()230a ++=, ∴130,03a b +=-=,∴13,3a b =-=, ∴()()()()20202020202020212020202120201113=33=33=3333a b ⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:-3【点睛】本题考查了完全平方公式,平方、算术平方根的非负性,同底数幂的乘法、积的乘方的逆用等知识,根据题意求出a 、b 的值,熟知同底数幂的乘法、积的乘方是解题关键.2.(2021·湖南怀化市·中考真题)观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.【答案】100(21)m -【分析】根据规律将1002,1012,1022,……,1992用含m 的代数式表示,再计算0199222+++的和,即可计算1001011011992222++++的和.【详解】由题意规律可得:2399100222222++++=-. ∵1002=m ∴23991000222222=2m m +++++==, ∵22991001012222222+++++=-,∴10123991002222222=++++++12=2m m m m =+=.102239910010122222222+=++++++224=2m m m m m =++=.1032399100101102222222222=++++++++3248=2m m m m m m =+++=.…… ∴1999922m =.故10010110110199992222222m m m ++++=+++. 令012992222S ++++=① 12310022222S ++++=② ②-①,得10021S -=∴10010110110199992222222m m m ++++=+++=100(21)m -故答案为:100(21)m -.【点睛】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键.3.(2021·四川广安市·中考真题)若x 、y 满足2223x y x y -=-⎧⎨+=⎩,则代数式224x y -的值为______. 【答案】-6【分析】根据方程组中x +2y 和x -2y 的值,将代数式利用平方差公式分解,再代入计算即可.【详解】解:∵x -2y =-2,x +2y =3,∴x 2-4y 2=(x +2y )(x -2y )=3×(-2)=-6,故答案为:-6.【点睛】本题主要考查方程组的解及代数式的求值,观察待求代数式的特点与方程组中两方程的联系是解题关键.4.(2021·江苏苏州市·中考真题)若21m n +=,则2366m mn n ++的值为______.【答案】3【分析】根据21m n +=,将式子2366m mn n ++进行变形,然后代入求出值即可.【详解】∵ 21m n +=,∴2366m mn n ++=3m (m +2n )+6n =3m +6n =3(m +2n )=3.故答案为:3.【点睛】本题考查了代数式的求值,解题的关键是利用已知代数式求值.5.(2021·江苏扬州市·中考真题)将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.【答案】1275【分析】首先得到前n 个图形中每个图形中的黑色圆点的个数,得到第n 个图形中的黑色圆点的个数为()12n n +,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第33个能被3整除的数所在组,为原数列中第50个数,代入计算即可.【详解】解:第①个图形中的黑色圆点的个数为:1,第②个图形中的黑色圆点的个数为:()1222+⨯=3, 第③个图形中的黑色圆点的个数为:()1332+⨯=6,第④个图形中的黑色圆点的个数为:()1442+⨯=10,... 第n 个图形中的黑色圆点的个数为()12n n +, 则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,...,其中每3个数中,都有2个能被3整除,33÷2=16...1,16×3+2=50,则第33个被3整除的数为原数列中第50个数,即50512⨯=1275,故答案为:1275. 【点睛】此题考查了规律型:图形的变化类,关键是通过归纳与总结,得到其中的规律.6.(2021·重庆中考真题)某销售商五月份销售A 、B 、C 三种饮料的数量之比为3:2:4,A 、B 、C 三种饮料的单价之比为1:2:1.六月份该销售商加大了宣传力度,并根据季节对三种饮料的价格作了适当的调整,预计六月份三种饮料的销售总额将比五月份有所增加,A 饮料增加的销售占六月份销售总额的115,B 、C 饮料增加的销售额之比为2:1.六月份A 饮料单价上调20%且A 饮料的销售额与B 饮料的销售额之比为2:3,则A 饮料五月份的销售数量与六月份预计的销售数量之比为_____________. 【答案】910【分析】设销售A 饮料的数量为3x ,销售B 种饮料的数量2x, 销售C 种饮料的数量4x ,A 种饮料的单价y .B 、C 两种饮料的单价分别为2y 、y .六月份A 饮料单价上调20%,总销售额为m ,可求A 饮料销售额为3xy+115m ,B 饮料的销售额为91210xy m +,C 饮料销售额:171420xy m +,可求=15m xy ,六月份A 种预计的销售额4xy ,六月份预计的销售数量103x ,A 饮料五月份的销售数量与六月份预计的销售数量之比103:3x x 计算即可 【详解】解:某销售商五月份销售A 、B 、C 三种饮料的数量之比为3:2:4,设销售A 饮料的数量为3x ,销售B 种饮料的数量2x, 销售C 种饮料的数量4x ,A 、B 、C 三种饮料的单价之比为1:2:1.,设A 种饮料的单价y . B 、C 两种饮料的单价分别为2y 、y .六月份A 饮料单价上调20%后单价为(1+20%)y,总销售额为m ,A 饮料增加的销售占六月份销售总额的115,A 饮料销售额为3xy+115m , A 饮料的销售额与B 饮料的销售额之比为2:3,,B 饮料的销售额为31913=215210xy m xy m ⎛⎫++ ⎪⎝⎭ B 饮料的销售额增加部分为3134215xy m xy ⎛⎫+- ⎪⎝⎭∴C 饮料增加的销售额为131342215xy m xy ⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦∴C 饮料销售额:13117134+42215420xy m xy xy xy m ⎡⎤⎛⎫+-=+ ⎪⎢⎥⎝⎭⎣⎦∴191171315210420xy m xy m xy m m +++++= ∴=15m xy 六月份A 种预计的销售额1315415xy xy xy +⨯=,六月份预计的销售数量()1041+20%y 3xy x ÷= ∴A 饮料五月份的销售数量与六月份预计的销售数量之比1093:9:10=310x x =故答案为910【点睛】本题考查销售问题应用题,用字母表示数,列代数式,整式的加减法,单项式除以单项式,掌握销售额=销售单价×销售数量是解题关键7.(2021·浙江嘉兴市·中考真题)观察下列等式:22110=-,22321=-,22532=-,…按此规律,则第n 个等式为21n -=__________________.【答案】()221n n --.【分析】第一个底数是从1开始连续的自然数的平方,减去从0开始连续的自然数的平方,与从1开始连续的奇数相同,由此规律得出答案即可.【详解】解:∵22110=-,22321=-,22532=-,…∴第n 个等式为:()22211n n n -=-- 故答案是:()221n n --.【点睛】本题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题的关键.8.(2021·湖北十堰市·中考真题)已知2,33xy x y =-=,则322321218x y x y xy -+=_________. 【答案】36【分析】先把多项式因式分解,再代入求值,即可.【详解】∵2,33xy x y =-=,∴原式=()222322336xy x y -=⨯⨯=,故答案是:36.【点睛】本题主要考查代数式求值,掌握提取公因式法和公式法分解因式,是解题的关键.9.(2021·陕西中考真题)分解因式:3269x x x ++=______.【答案】()23x x +【分析】题目中每项都含有x ,提取公因式x ;先提取公因式,再用完全平方公式即可得出答案.【详解】()322269(69)3x x x x x x x x ++=+++=故答案为()23x x +.【点睛】本题考查了整式的因式分解,提公因式法和公式法,熟练掌握提公因式法分解因式、完全平方公式法分解因式是解题关键.10.(2021·江苏连云港市·中考真题)分解因式:2961x x ++=____.【答案】(3x +1)2【分析】原式利用完全平方公式分解即可.【详解】解:原式=(3x +1)2,故答案为:(3x +1)2【点睛】此题考查了因式分解−运用公式法,熟练掌握完全平方公式是解本题的关键.11.(2020·四川绵阳市·中考真题)因式分解:x 3y ﹣4xy 3=_____.【答案】xy (x+2y )(x ﹣2y )【分析】原式提取公因式xy ,再利用平方差公式分解即可;【详解】解:x 3y ﹣4xy 3,=xy (x 2﹣4y 2),=xy (x+2y )(x ﹣2y ).故答案为:xy (x+2y )(x ﹣2y ).【点睛】本题考查了提公因式法与公式法因式分解.一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.12.(2020·湖南中考真题)阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为_____.【答案】x=2或x=﹣或x=﹣1.【分析】将原方程左边变形为x3﹣4x﹣x+2=0,再进一步因式分解得(x﹣2)[x(x+2)﹣1]=0,据此得到两个关于x的方程求解可得.【详解】解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1故答案为:x=2或x=﹣或x=﹣1【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到解方程的方法.13.(2020·贵州黔南布依族苗族自治州·中考真题)若单项式a m﹣2b n+7与单项式﹣3a4b4的和仍是一个单项式,则m﹣n=_______.【答案】9【分析】直接利用合并同类项法则得出m,n的值,进而得出答案.【详解】由题意知:单项式a m﹣2b n+7与单项式﹣3a4b4是同类项,∴m−2=4,n+7=4,解得:m=6,n=−3,故m−n=6−(−3)=9.故填:9.【点睛】此题主要考查了合并同类项,正确得出m,n的值是解题关键.14.(2020·四川中考真题)将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m组第n个数字,则m+n=_____.【答案】65【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m、n的值,然后即可得到m+n的值.【详解】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,∴第m 组有m 个连续的偶数,∵2020=2×1010,∴2020是第1010个偶数,∵1+2+3+…+44=44(441)2⨯+=990,1+2+3+…+45=45(451)2⨯+=1035, ∴2020是第45组第1010-990=20个数,∴m =45,n =20,∴m +n =65.故答案为:65.【点睛】本题考查探索规律,认真观察所给数据总结出规律是解题的关键.15.(2020·四川绵阳市·中考真题)若多项式||22(2)1m n xy n x y 是关于x ,y 的三次多项式,则mn =_____.【答案】0或8【分析】直接利用多项式的次数确定方法得出答案. 【详解】解:多项式||22(2)1m n xy n x y 是关于x ,y 的三次多项式,20n ∴-=,1||3m n ,2n ∴=,||2m n ,2m n ∴-=或2n m ,4m ∴=或0m =,0mn 或8.故答案为:0或8.【点睛】本题主要考查了多项式,正确掌握多项式的次数确定方法是解题关键.16.(2020·山东威海市·中考真题)如图①,某广场地面是用A .B .C 三种类型地砖平铺而成的,三种类型地砖上表面图案如图②所示,现用有序数对表示每一块地砖的位置:第一行的第一块(A 型)地砖记作(1,1),第二块(B 型)地时记作(2,1)…若(,)m n 位置恰好为A 型地砖,则正整数m ,n 须满足的条是__________.【答案】m 、n 同为奇数或m 、n 同为偶数【分析】几何图形,观察A 型地砖的位置得到当列数为奇数时,行数也为奇数,当列数为偶数,行数也为偶数的,从而得到m 、n 满足的条件.【详解】解:观察图形,A型地砖在列数为奇数,行数也为奇数的位置上或列数为偶数,行数也为偶数的位置上,若用(m,n)位置恰好为A型地砖,正整数m,n须满足的条件为m、n同为奇数或m、n同为偶数,故答案为:m、n同为奇数或m、n同为偶数.【点睛】本题考查了坐标表示位置:通过类比点的坐标考查解决实际问题的能力和阅读理解能力.分析图形,寻找规律是关键.17.(2020·宁夏中考真题)2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1),且大正方形的面积是15,小正方形的面积是3,直角三角形的较短直角边为a,较长直角边为b.如果将四个全等的直角三角形按如图2的形式摆放,那么图2中最大的正方形的面积为____.【答案】27【分析】根据题意得出a2+b2=15,(b-a)2=3,图2中大正方形的面积为:(a+b)2,然后利用完全平方公式的变形求出(a+b)2即可.【详解】解:由题意可得在图1中:a2+b2=15,(b-a)2=3,图2中大正方形的面积为:(a+b)2,∵(b-a)2=3 a2-2ab+b2=3,∴15-2ab=3 2ab=12,∴(a+b)2=a2+2ab+b2=15+12=27,故答案为:27.【点睛】本题考查了完全平方公式在几何图形中的应用,熟知完全平方式的形式是解题关键.18.(2020·湖南长沙市·中考真题)某数学老师在课外活动中做了一个有趣的游戏:首先发给A,B,C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成下列三个步骤:第一步,A同学拿出三张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学,请你确定,最终B同学手中剩余的扑克牌的张数为___________________.【答案】9。
部分省市中考数学试题分类汇编 整式与因式分解12. (浙江省东阳县)因式分解:x 3-x=___ ____ 【关键词】因式分解 【答案】x(x+1)(x-1)12. (浙江省东阳县)因式分解:x 3-x=___ ____ 【关键词】因式分解 【答案】x(x+1)(x-1)1、(宁波市)下列运算正确的是( )A 、22x x x =⋅B 、22)(xy xy = C 、632)(x x = D 、422x x x =+【关键词】整式运算 【答案】C2(宁波市)、若3=+y x ,1=xy ,则=+22y x ___________。
【关键词】完全平方公式 【答案】71、(宁波市)下列运算正确的是( )A 、22x x x =⋅B 、22)(xy xy = C 、632)(x x = D 、422x x x =+【关键词】整式运算 【答案】C2(宁波市)、若3=+y x ,1=xy ,则=+22y x ___________。
【关键词】完全平方公式 【答案】711.(浙江省喜嘉兴市)用代数式表示“a 、b 两数的平方和”,结果为_______. 【关键词】代数式 【答案】22b a + 14.(浙江省喜嘉兴市)因式分解:2mx 2-4mx +2m = . 【关键词】提公因式、完全平方公式 【答案】2)1(2-x m17、(浙江省喜嘉兴市)计算:a (b +c )-ab 【关键词】单项式与多项式的积、整式加减 【答案】ab c b a -+)(ab ac ab -+=ac =.7(浙江省金华).如果33-=-b a ,那么代数式b a 35+-的值是( ▲ )A .0B .2C .5D .8 【关键词】整体带入、代数式 【答案】D11(浙江省金华). 分解因式=-92x . 【关键词】分解因式 【答案】(x -3)(x +3);4.(浙江台州市)下列运算正确的是(▲)A .22a a a =⋅B .33)(ab ab = C .632)(a a = D .5210a a a =÷ 【关键词】幂的有关运算 【答案】C12.(浙江台州市)因式分解:162-x = ▲ . 【关键词】因式分解、平方差公式 【答案】)4)(4(-+x x9. (益阳市)若622=-n m ,且3=-n m ,则=+n m . 【关键词】平方差 【答案】215.(益阳市)已知31=-x ,求代数式4)1(4)1(2++-+x x 的值.【关键词】完全平方公式、整式加减【答案】15.解法一:原式=2)21(-+x =2)1(-x原式= 2)3(=3 解法二:由31=-x 得13+=x化简原式=444122+--++x x x=122+-x x=1)13(2)13(2++-+=12321323+--++ =32. (江西) 计算 -(-3a)2的结果是( )A .-6a 2B . -9a 2C . 6a 2D . 9a 2【关键词】有关幂的运算【答案】B9.(江西) 因式分解:=-822a . 【关键词】因式分解、平方差公式 【答案】)2)(2(2-+a a(广东省广州市)下列运算正确的是( )A .-3(x -1)=-3x -1B .-3(x -1)=-3x +1C .-3(x -1)=-3x -3D .-3(x -1)=-3x +3【关键词】去括号 【答案】D(广东省广州市)因式分解:3ab 2+a 2b =_______.【关键词】提公因式法因式分解 【答案】ab (3b +a )(四川省眉山)下列运算中正确的是A .2325a a a +=B .22(2)(2)4a b a b a b +-=-C .23622a a a ⋅=D .222(2)4a b a b +=+ 【关键词】幂的运算 【答案】B(四川省眉山)把代数式269mx mx m -+分解因式,下列结果中正确的是A .2(3)m x +B .(3)(3)m x x +-C .2(4)m x -D .2(3)m x - 【关键词】因式分解 【答案】D第3章 整式与因式分解2.(重庆)计算232x x ⋅的结果是( )A .x 2B .52x C .62x D .5x 【答案】B2.(重庆)计算232x x ⋅的结果是( )A .x 2B .52x C .62x D .5x 【答案】B(广东省广州市)下列运算正确的是( )A .-3(x -1)=-3x -1B .-3(x -1)=-3x +1C .-3(x -1)=-3x -3D .-3(x -1)=-3x +3 【关键词】去括号 【答案】D(广东省广州市)因式分解:3ab 2+a 2b =_______.【关键词】提公因式法因式分解 【答案】ab (3b +a )(四川省眉山)下列运算中正确的是A .2325a a a +=B .22(2)(2)4a b a b a b +-=-C .23622a a a ⋅=D .222(2)4a b a b +=+ 【关键词】幂的运算 【答案】B(四川省眉山)把代数式269mx mx m -+分解因式,下列结果中正确的是A .2(3)m x +B .(3)(3)m x x +-C .2(4)m x -D .2(3)m x - 【关键词】因式分解 【答案】D12.(安徽省芜湖市)因式分解:9x 2-y 2-4y -4=__________. 【关键词】分解因式、完全平方公式、平方差公式 【答案】)23)(23(--++y x y x12. (浙江省东阳县)因式分解:x 3-x=___ ____ 【关键词】因式分解 【答案】x(x+1)(x-1)(山东省济宁市)把代数式 322363x x y xy -+分解因式,结果正确的是A .(3)(3)x x y x y +-B .223(2)x x xy y -+ C .2(3)x x y - D .23()x x y - 【关键词】先运用提公因式法再运用完全平方公式 【答案】D12.(山东省济宁市)若代数式26x x b -+可化为2()1x a --,则b a -的值是 .【关键词】配方法的应用 【答案】5(山东省济宁市)把代数式 322363x x y xy -+分解因式,结果正确的是A .(3)(3)x x y x y +-B .223(2)x x xy y -+ C .2(3)x x y - D .23()x x y -【关键词】先运用提公因式法再运用完全平方公式 【答案】D12.(山东省济宁市)若代数式26x x b -+可化为2()1x a --,则b a -的值是 . 【关键词】配方法的应用 【答案】5(山东省济宁市)把代数式 322363x x y xy -+分解因式,结果正确的是A .(3)(3)x x y x y +-B .223(2)x x xy y -+ C .2(3)x x y - D .23()x x y - 【关键词】先运用提公因式法再运用完全平方公式 【答案】D12.(山东省济宁市)若代数式26x x b -+可化为2()1x a --,则b a -的值是 . 【关键词】配方法的应用 【答案】52.(重庆市)计算2x 3·x 2的结果是()A .2xB .2x 5C .2x 6D .x 5解析:由单项式乘法法则知, 2x 3·x 2=2x 5 . 答案:B.2.(重庆市)计算2x 3·x 2的结果是()A .2xB .2x 5C .2x 6D .x 5解析:由单项式乘法法则知, 2x 3·x 2=2x 5 . 答案:B.(日照市)10.由m (a +b +c )=ma +mb +mc ,可得:(a +b )(a 2-ab +b 2)=a 3-a 2b +ab 2+a 2b -ab 2+b 3=a 3+b 3,即(a +b )(a 2-ab +b 2)=a 3+b 3. ………………………① 我们把等式①叫做多项式乘法的立方公式。
2021年中考复习试题分类汇编〔整式与分式〕单位:乙州丁厂七市润芝学校 时间:2022年4月12日 创编者:阳芡明一、选择题1、实数a 、b 在数轴上的位置如下图,那么化简代数式||a +b –a 的结果是〔 〕A .2a +bB .2aC .aD .b2、计算)3(623m m -÷的结果是〔 〕〔A 〕m 3- 〔B 〕m 2- 〔C 〕m 2 〔D 〕m 3 3、以下计算中,正确的选项是〔 〕A .33x x x =•B .3x x x -=C .32x x x ÷=D .336x x x += 4、以下运算正确的选项是〔 〕 A.321x x -= B.22122xx--=-C.236()a a a -=· D.236()a a -=- 4、化简:(a +1)2-(a -1)2=〔 〕 〔A 〕2 〔B 〕4 〔C 〕4a 〔D 〕2a 2+2 5、以下计算中,正确的选项是〔 〕A .325a b ab +=B .44a a a =•C .623a a a ÷= D .3262()a b a b =6.对于非零实数m ,以下式子运算正确的选项是〔 〕A .923)(m m =;B .623m m m =⋅;C .532m m m =+;D .426m m m =÷。
7.以下因式分解正确的选项是〔A .x x x x x 3)2)(2(342++-=+-; B .)1)(4(432-+-=++-x x x x ; C .22)21(41x x x -=+-; D .)(232y x y xy x y x xy y x +-=+-。
8、以下计算正确的选项是〔 〕第一:〔考什么〕即:拿到一个题,首先看它A 、623a a a =•B 、4442b b b =•C 、1055x x x =+ D 、87y y y =•9、代数式2346x x -+的值是9,那么2463x x -+的值是〔 〕 A .7B .18C .12D .910、以下各式中,与2(1)a -相等的是〔 〕 A .21a - B .221a a -+ C .221a a -- D .21a + 二、填空题11、当x=2,代数式21x -的值是_______. 12、因式分解:xy 2–2xy +x = . 13、分解因式:2218x -= . 14、分解因式:2x -9= 。
3:整式一、选择题1.(天津3分)若实数x 、y 、z 满足2()4()()0x z x y y z ----=.则下列式子一定成立的是(A)0x y z ++= (B) 20x y z +-= (C) 20y z x +-= (D)2=0x z y +-【答案】D 。
【考点】代数式变形,完全平方公式。
【分析】∵()()2222()4()()=24x z x y y z x xz z xy xz y yz -----+---+()()()()()222222=244=44=2x xz z xy yz y x z y x z yx z y ++-+++-+++-∴由()22=0x z y +-得2=0x z y +-。
故选D 。
2.(重庆4分)计算(a 3)2的结果是A 、aB 、a 5C 、a 6D 、a 9【答案】C 。
【考点】幂的乘方。
【分析】根据底数不变,指数相乘的幂的乘方法则计算即可:(a 3)2=a 3×2=a 6。
故选C 。
3.(重庆潼南4分)计算3 a •2 a 的结果是A .6aB .6a 2C. 5aD. 5a2【答案】B 。
【考点】单项式乘单项式。
【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可:∵3 a •2 a =6112a a +=,故选B 。
4.(浙江舟山、嘉兴3分)下列计算正确的是(A )32x x x =⋅ (B )2x x x =+(C )532)(x x =(D )236x x x =÷【答案】A 。
【考点】同底数幂的乘法,合并同类项,幂的乘方,同底数幂的除法。
【分析】根据同底数幂的乘法、合并同类项、幂的乘方、同底数幂的除法的运算法则计算即可:A 、正确;B 、x +x =2x ,选项错误;C 、(x 2)3=x 6,选项错误;D 、x 6÷x 3=x 3,选项错误。
专题02整式运算及因式分解(原卷版)三年(2022-2024)中考数学真题分类汇编(全国通用)【考点归纳】一、考点01代数式及其应用--------------------------------------------------------------------------------------------------------------1二、考点02整式及其运算-----------------------------------------------------------------------------------------------------------------2三、考点03因式分解-----------------------------------------------------------------------------------------------------------------------5考点01代数式及其应用一、考点01代数式及其应用1.(2024·四川广安·中考真题)代数式3x -的意义可以是()A .3-与x 的和B .3-与x 的差C .3-与x 的积D .3-与x 的商2.(2023·湖南常德·中考真题)若2340a a +-=,则2263a a +-=()A .5B .1C .1-D .03.(2023·山东·中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--,34131111nn na a a a a a +++==-- ,,,若12a =,则2023a 的值是()A .12-B .13C .3-D .24.(2023·甘肃兰州·中考真题)关于x 的一元二次方程20x bx c ++=有两个相等的实数根,则()2212b c -+=()A .-2B .2C .-4D .45.(2023·江苏·中考真题)若圆柱的底面半径和高均为a ,则它的体积是(用含a 的代数式表示).6.(2023·江苏·中考真题)若210a b +-=,则36a b +的值是.7.(2024·山东济宁·中考真题)已知2210a b -+=,则241ba +的值是.8.(2023·江苏宿迁·中考真题)若实数m 满足()()22202320242025m m -+-=,则()()20232024m m --=.9.(2024·江苏苏州·中考真题)若2a b =+,则()2b a -=.10.(2024·四川成都·中考真题)若m,n 为实数,且()240m +=,则()2m n +的值为.11.(2024·广东广州·中考真题)若2250a a --=,则2241a a -+=.12.(2024·四川广安·中考真题)若2230x x --=,则2241x x -+=.13.(2023·西藏·中考真题)按一定规律排列的单项式:5a ,28a ,311a ,414a ,⋯.则按此规律排列的第n 个单项式为.(用含有n 的代数式表示)14.(2024·四川成都·中考真题)在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为;若24n =,则k 的值为.15.(2024·四川成都·中考真题)若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为.考点02整式及其运算二、考点02整式及其运算16.(2024·甘肃兰州·中考真题)计算:22(1)2a a a --=()A .aB .a-C .2aD .2a-17.(2024·贵州·中考真题)计算23a a +的结果正确的是()A .5aB .6aC .25a D .26a 18.(2024·四川内江·中考真题)下列单项式中,3ab 的同类项是()A .33ab B .232a b C .22a b -D .3a b19.(2024·四川广元·中考真题)如果单项式23m x y -与单项式422n x y -的和仍是一个单项式,则在平面直角坐标系中点(),m n 在()A .第一象限B .第二象限C .第三象限D .第四象限20.(2024·河北·中考真题)“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示13223⨯,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A .“20”左边的数是16B .“20”右边的“□”表示5C .运算结果小于6000D .运算结果可以表示为41001025a +21.(2024·云南·中考真题)下列计算正确的是()A .33456x x x +=B .635x x x ÷=C .()327a a =D .()333ab a b =22.(2024·河北·中考真题)下列运算正确的是()A .734a a a -=B .222326a a a ⋅=C .33(2)8a a -=-D .44a a a÷=23.(2024·广东·中考真题)下列计算正确的是()A .2510a a a ⋅=B .824a a a ÷=C .257a a a-+=D .()5210a a =24.(2024·辽宁·中考真题)下列计算正确的是()A .2352a a a +=B .236a a a ⋅=C .()325a a =D .2(1)a a a a+=+25.(2024·青海·中考真题)计算1220x x -的结果是()A .8xB .8x-C .8-D .2x 26.(2024·山东烟台·中考真题)下列运算结果为6a 的是()A .23a a ⋅B .122a a ÷C .33a a +D .()32a 27.(2022·山东德州·中考真题)已知2M a a =-,2N a =-(a 为任意实数),则M N -的值()A .小于0B .等于0C .大于0D .无法确定28.(2024·广东广州·中考真题)若0a ≠,则下列运算正确的是()A .235a a a+=B .325a a a ⋅=C .235a a a⋅=D .321a a ÷=29.(2024·河北·中考真题)若a ,b 是正整数,且满足8282222222a ba a ab b b ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯ 个相加个相乘,则a 与b 的关系正确的是()A .38a b +=B .38a b =C .83a b +=D .38a b=+30.(2024·湖南长沙·中考真题)下列计算正确的是()A .642x x x ÷=B =C .325()x x =D .222()x y x y +=+31.(2024·四川德阳·中考真题)若一个多项式加上234y xy +-,结果是2325xy y +-,则这个多项式为.32.(2024·河南·中考真题)请写出2m 的一个同类项:.33.(2024·重庆·中考真题)一个各数位均不为0的四位自然数M abcd =,若满足9a d b c +=+=,则称这个四位数为“友谊数”.例如:四位数1278,∵18279+=+=,∴1278是“友谊数”.若abcd 是一个“友谊数”,且1b a c b -=-=,则这个数为;若M abcd =是一个“友谊数”,设()9M F M =,且()13F M ab cd++是整数,则满足条件的M 的最大值是.34.(2023·江苏泰州·中考真题)若230a b -+=,则2(2)4a b b +-的值为.35.(2024·天津·中考真题)计算86x x ÷的结果为.36.(2024·上海·中考真题)计算:()324x =.37.(2024·江苏苏州·中考真题)计算:32x x ⋅=.38.(2023·江苏·中考真题)先化简,再求值:2(1)2(1)x x +-+,其中x =.39.(2023·湖南·中考真题)先化简,再求值:()()233(3)a b a b a b -++-,其中13,3a b =-=.40.(2024·北京·中考真题)已知10a b --=,求代数式()223232a b ba ab b -+-+的值.41.(2024·陕西·中考真题)先化简,再求值:()()22x y x x y ++-,其中1x =,=2y -.42.(2024·湖南长沙·中考真题)先化简,再求值:()()()2233m m m m m --++-,其中52m =.43.(2023·湖南·中考真题)先化简,再求值:()()()222233a a a a a -+-++,其中13a =-.44.(2023·吉林长春·中考真题)先化简.再求值:2(1)(1)a a a ++-,其中a =45.(2022·吉林·中考真题)下面是一道例题及其解答过程的一部分,其中A 是关于m 的多项式.请写出多项式A ,并将该例题的解答过程补充完整.例先去括号,再合并同类项:m (A )6(1)m -+.解:m (A )6(1)m -+2666m m m =+--=.46.(2024·山东济宁·中考真题)先化简,再求值:(4)(2)(2)x y x x y x y -++-,其中12x =,2y =.47.(2024·甘肃·中考真题)先化简,再求值:()()()22222a b a b a b b ⎡⎤+-+-÷⎣⎦,其中2a =,1b =-.考点03因式分解三、考点03因式分解48.(2024·云南·中考真题)分解因式:39a a -=()A .()()33a a a -+B .()29a a +C .()()33a a -+D .()29a a -49.(2024·广西·中考真题)如果3a b +=,1ab =,那么32232a b a b ab ++的值为()A .0B .1C .4D .950.(2023·山东·中考真题)下列各式从左到右的变形,因式分解正确的是()A .22(3)69+=++a a a B .()24444a a a a -+=-+C .()()22555ax ay a x y x y -=+-D .()()22824a a a a --=-+51.(2023·河北·中考真题)若k 为任意整数,则22(23)4k k +-的值总能()A .被2整除B .被3整除C .被5整除D .被7整除52.(2024·山东·中考真题)因式分解:22x y xy +=.53.(2024·四川遂宁·中考真题)分解因式:4ab a +=.54.(2024·山东威海·中考真题)因式分解:()()241x x +++=.55.(2024·浙江·中考真题)因式分解:27a a -=56.(2024·北京·中考真题)分解因式:325x x -=.57.(2024·甘肃临夏·中考真题)因式分解:214x -=.58.(2023·广东深圳·中考真题)已知实数a ,b ,满足6a b +=,7ab =,则22a b ab +的值为.59.(2024·福建·中考真题)已知实数,,,,a b c m n 满足3,b cm n mn a a+==.(1)求证:212b ac -为非负数;(2)若,,a b c 均为奇数,,m n 是否可以都为整数?说明你的理由.60.(2024·安徽·中考真题)数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N奇数4的倍数表示结果22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-LL一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=()2-()2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.。
整式与因式分解一.选择题C.(a3)4=a7D.a3+a5=a8考点:平方差公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 分析:A:根据同底数幂的乘法法则判断即可. 2 2 B:平方差公式: (a+b) (a﹣b)=a ﹣b ,据此判断即可. C:根据幂的乘方的计算方法判断即可. D:根据合并同类项的方法判断即可.2 3 5 解答:解:∵a a =a , ∴选项 A 不正确;2 2 ∵(﹣a+b) (a+b)=b ﹣a , ∴选项 B 正确;∵(a ) =a , ∴选项 C 不正确;3 4 12.∵a +a ≠a ∴选项 D 不正确. 故选:B. 点评: (1)此题主要考查了平方差公式,要熟练掌握,应用平方差公式计算时,应注意以下几个问题:①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;②右边是相同项的平方减去相反项的平方;③公式中的 a 和 b 可以是具体数,也可以是单项式或多项式;④对形如两数和与这两数差相乘的算式,都可以运用这个公式计算,且会比用多项式乘以多项式法则简便. (2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加. (3)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a ) =a (m,n 是正整数) ;②(ab) =a b (n 是正整数) . (4)此题还考查了合并同类项的方法,要熟练掌握. 4. (2022 聊城,第 5 题 3 分)下列运算正确的是( ) 3 2 6 2 3 5 A.a +a =a B. (﹣a ) =a C. ab2 3a2b=3a2b2 D.﹣2a6÷a2=﹣2a3 考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;整式的除法. 分析:根据合并同类项法则、幂的乘方、单项式乘除法的运算方法,利用排除法求解. 2 3 解答:解:A、a 与 a 不是同类项,不能合并,故本选项错误; 3 2 6 B、 (﹣a ) =a ,正确;2 23 3 C、应为 ab 3a b=3a b ,故本选项错误; 6 24 D、应为﹣2a ÷a =﹣2a ,故本选项错误. 故选:B. 点评:本题主要考查了合并同类项的法则,幂的乘方的性质,单项式的乘除法法则,熟练掌握运算法则是解题的关键..358mnmnnn n5.(2022 恩施州第5题3分)下列计算正确的是( ) 3 2 6 4 3 7 A.4x 2x =8x B.a +a =aC.(﹣x2)5=﹣x10第 2 页共 31 页D.(a﹣b)2=a2﹣b26.(2022 恩施州第11题3分)随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原8.(2022·湖北省潜江市、天门市、仙桃市、江汉油田第4 题3分)计算(﹣2ab)的结果2310.(2022 海南,第2题3分)下列运算中,正确的是()246632426246A. a+a=a B. a÷a=a C.(﹣a)=a D. a a=a考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.246解答:解:A、a a=a,故错误;633B、a÷a=a,故错误;428C、(﹣a)=a,故错误;D、正确;故选:D.点评:本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题. 11.(2022 海南,第3题3分)已知x=1,y=2,则代数式x﹣y的值为() A. 1 B.﹣1 C. 2 D.﹣3考点:代数式求值.分析:根据代数式的求值方法,把x=1,y=2代入x﹣y,求出代数式x﹣y的值为多少即可.解答:解:当x=1,y=2时, x﹣y=1﹣2=﹣1,即代数式x﹣y的值为﹣1.故选:B.点评:此题主要考查了代数式的求法,采用代入法即可,要熟练掌握,解答此题的关键是要明确:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简. 12.( 1月份产值为x万元,210%,3月份比2 ).(1﹣10%)(1+15%)x万元 B.(1﹣10%+15%)x C.)(x+15% D(1+10%﹣15%)x考点:分析:月份、1月份与2解答:解:(1﹣10%)()x 故选A点评: 132022 鄂州, )4282462232A. a a=a B.(a)=a C.(ab)=ab D. 2a÷a=2a考点:整式的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法、幂的乘方、积的乘方、整式的除法,即可解答.426解答:解:A、a a=a,故错误;248B、(a)=a,故错误;222C、(ab)=ab,故错误;D、正确;故选:D.点评:本题考查了同底数幂的乘法、幂的乘方、积的乘方、整式的除法,解决本题的关键是熟记相关法则. 14.(2022 湖北, 第5题3分)下列运算中正确的是()A. a﹣a=a B. a a=a C. a÷a=a D.(﹣a)=﹣a考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.323412623236分析:根据合并同类项,可判断A;根据同底数幂的乘法,可判断B;根据同底数幂的除法,可判断C;根据积的乘方,可判断D.解答:解:A、合并同类项系数相加字母部分不变,故A错误; B、同底数幂的乘法底数不变指数相加,故B错误; C、同底数幂的除法底数不变指数相减,故C错误; D、积的乘方等于乘方的积,故D正确;故选:D.点评:本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键. 15.(2022 衡阳, 第2题3分)下列计算正确的是()33333527A. a+a=2a B. b b=2b C. a÷a=a D.(a)=a考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解.解答:解:A、a+a=2a,故本选项正确;333+36B、b b=b=b,故本选项错误;3﹣12C、=a525×2D、(a=a=a 故选A.点评:(2题3236A. B. 5a﹣C. a aD22=a+b 考点:同分析:根解答:解:A、2a与.5a﹣2a=3a 235C.a a=a,错误;222D.(a+b)=a+2ab+b,错误;故选B.点评:此题考查同类项、同底数幂的乘法和完全平方公式,关键是根据法则进行计算.%教育出版网17. (2022 江苏宿迁,第3题3分)计算(﹣a)的结果是()5566A.﹣a B. a C.﹣a D.a 考点:幂的乘方与积的乘方.分析:根据幂的乘方计算即可.326解答:解:(﹣a)=a,故选D点评:此题考查幂的乘方问题,关键是根据法则进行计算.18. (2022 江苏盐城,第3题3分)下列运算正确的是()32A. a b=(ab) B. a a=a C. a÷a=a D.(a)=a 考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析: A、原式利用积的乘方运算法则变形得到结果,即可做出判断; B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断; C、原式利用同底数幂的除法法则计算得到结果,即可做出判断; D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.333236632235解答:解:A、原式=(ab),正确;5B、原式=a,错误;3C、原式=a,错误;6D、原式=a,错误,故选A.点评:此题考查了同底数幂的乘法,除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.319.2022 济南,第4题3 ) A. a2 a=a3 a3)2=6C.(2a2)2=4a4 D.a2÷a2a考点:根据同底数幂相乘,幂的乘方,积的乘方,解答:解:A、a2 a=a2+1=3,故本选项错误; B、(a3)2=a3×2=a6,故本选项错误;C、2)2=22 (a2)2D、应为a2÷a2=a22=a0=1,故本选项正确.﹣故选D.点评:本题考查了同底数幂的乘法,积的乘方的性质,幂的乘方的性质,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.20. (2022 烟台,第4题3分)下列式子不一定成立的是() A.1 b 0) B. a3 a 5 2(a 0) C. a2 4b2 (a 2b)(a 2b) D.a( 2a3)2 4a621.(2022 枣庄,第7题3分)如图,边长为a,b的矩形的周长为14,面积为10,则ab+ab的值为()22分析:各项利用题中的新定义计算得到结果,即可做出判断.解答:解:根据题意得:2 (﹣2)=2×(1+2)=6,选项①正确; a b=a(1﹣b)=a﹣ab,b a=b(1﹣a)=b﹣ab,不一定相等,选项②错误;(a a)+(b b)=a(1﹣a)+b(1﹣b)=a+b﹣a﹣b≠2ab,选项③错误;若a b=a(1﹣b)=0,则a=0或b=1,选项④正确,故选A 点评:此题考查了整式的混合运算,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.23.(2022 湖南湘西州,第9题,4分)下列运算正确的是()222236A.a+2a=2a B. += C.(x﹣3)=x﹣9 D.(x)=x考点:幂的乘方与积的乘方;实数的运算;合并同类项;完全平方公式.22分析:分别根据合并同类项的法则、完全平方公式及幂的乘方与积的乘方法则对各选项进行逐一计算即可.2解答:解:A、a+2a=2a≠2a,故本选项错误;B、与不是同类项,不能合并,故本选项错误;22C、(x﹣3)=x﹣6x+9,故本选项错误;236D、(x)=x,故本选项正确.故选D.点评:本题考查的是幂的乘方与积的乘方法则,熟知幂的乘方法则是底数不变,指数相乘是解答此题的关键.24.(2022 江苏镇江,第15题,3分)计算﹣3(x﹣2y)+4(x﹣2y)的结果是() A.x﹣2y B. x+2y C.﹣x﹣2y D.﹣x+2y 考点:整式的加减.专题:计算题.分析:原式去括号合并即可得到结果.解答:解:原式=﹣3x+6y+4x﹣8y=x﹣2y,点评:此题考查幂的乘方、同底数幂的乘法、同类项和同底数幂的除法,关键是根据法则进行计算. 26.(3分)(2022 毕节市)(第2题)下列计算正确的是()6236212621222A. a÷a=a B. a a=a C.(a)=a D.(a﹣3)=a﹣9考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.专题:计算题.分析: A、原式利用同底数幂的除法法则计算得到结果,即可做出判断; B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断; C、原式利用幂的乘方运算法则计算得到结果,即可做出判断; D、原式利用完全平方公式展开得到结果,即可做出判断.4解答:解:A、原式=a,错误;8B、原式=a,错误;12C、原式=a,正确;2D、原式=a﹣6a+9,错误,故选C.熟练掌握运算法则是解本题的关键. 27.(2022 怀化,第2题4分)下列计算正确的是()2353362223A. x+x=x B.(x)=x C. x x=x D. x(2x)=4x考点:单项式乘单项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:原式各项计算得到结果,即可做出判断.解答:解:A、原式不能合并,错误;9B、原式=x,错误;3C、原式=x,错误;3D、原式=4x,正确,故选D点评:此题考查了单项式乘以单项式,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键. 28.( 3 )6322339222A. a÷a=a B5a﹣3a.(a)=a D.(a﹣b)=a﹣b考点:专题:计算题.分析:解答:解:A、原式=a2B、原式=2a,错误;9C=a,正确;22D=a+b﹣2ab 故选C.全平方公式,熟练掌握运算法则是解本题的关键.329.(2022 娄底,第7题3分)已知a+2a=1,则代数式2a+4a﹣1的值为()A. 0 B. 1 C.﹣1 D.﹣2 考点:代数式求值.专题:计算题.分析:原式前两项提取变形后,将已知等式代入计算即可求出值.22解答:解:∵a+2a=1,2∴原式=2(a+2a)﹣1=2﹣1=1,故选B2点评:此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键. 30.(2022 长沙,第2题3分)下列运算中,正确的是()34236222A. x+x=x B.(x)=x C. 3x﹣2x=1 D.(a﹣b)=a﹣b 考点:幂的乘方与积的乘方;合并同类项;完全平方公式.分析:根据同类项、幂的乘方和完全平方公式计算即可.解答:解:A、x与x不能合并,错误;236B、(x)=x,正确;C、3x﹣2x=x,错误;222D、(a﹣b)=a﹣2ab+b,错误;故选B点评:此题考查同类项、幂的乘方和完全平方公式,关键是根据法则进行计算. 31.(2022 本溪,第3题3分)下列运算正确的是()2235A. 5m+2m=7m B.﹣2m m=2m236322(﹣ab=﹣ab D.)(2a﹣b)=b﹣4a考点:分析:AB、依据单项式乘单项式法则计算即可;C 解答:解:A、5m+2m=(5+2)m=7m,故A错误;35B=2m,故B2363a﹣ab,故C正确;22b+2a)﹣b)=(2a+b)(2a﹣b,故D C.点评:乘方法则以及平方差公式是解题的关键. 324分)(2022 (第4题)下列运算正确()55753A. a a=a B. a÷a=a3332C.(2a)=6a D. 10ab÷(﹣5ab)=﹣2b考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;整式的除法.分析: A:根据同底数幂的乘法法则判断即可. B:根据同底数幂的除法法则判断即可. C:根据积的乘方的运算方法判断即可. D:根据整式的除法的运算方法判断即可.3解答:解:∵a a=a,∴选项A不正确;∵a÷a=a,∴选项B不正确;75256∵(2a)=8a,∴选项C不正确;∵10ab÷(﹣5ab)=﹣2b,∴选项D正确.故选:D.点评:(1)此题主要考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.(2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.34.(3分)(2022 毕节市)(第10题)下列因式分解正确的是()3332A. ab﹣6ab+9ab=ab(a﹣6a+9) B. x﹣x+=(x﹣) C. x﹣2x+4=(x﹣2)D. 4x﹣y=(4x+y)(4x﹣y)考点:因式分解-运用公式法;因式分解-提公因式法.专题:计算题.分析:原式各项分解得到结果,即可做出判断.2222解答:解:A、原式=ab(a﹣6a+9)=ab(a﹣3),错误;42322222222B、原式=(x﹣),正确;C、原式不能分解,错误;D、原式=(2x+y)(2x﹣y),错误,故选B点评:此题考查了因式分解﹣运用公式法,以及提公因式法,熟练掌握因式分解的方法是解本题的关键.35.(2022 青海西宁第2题3分)下列计算正确的是()33432257222A.a a=a B. a+a=a C.(a)=a D.(﹣ab)=ab考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析: A:根据同底数幂的乘法法则判断即可. B:根据合并同类项的方法判断即可. C:根据幂的乘方的运算方法判断即可. D:根据积的乘方的运算方法判断即可.34解:∵a=a,∴选项432∵a+a≠a,B2a)=a,22abb, D D.点评:(1mnmnnnn确:①(a)=a(m,n是正整数);②()=ab(n是正整数)(2①底数必须相同;②不变,指数相加.(3)此题还考查了合并同类项的方法,要熟练掌握.中国教育出&版~%网251036.(2022 四川攀枝花第5题3分)下列计算正确的是()32236A.+= B. a÷a=a C. a a=aD.(ab)=ab2222考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;二次根式的加减法.分析:根据同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;积的乘方,先把积的每一个因式分别乘方,再把所得的幂相乘,对各选项分析判断即可得解.解答:解:A、+不能计算,故本选项错误;B、a÷a=a=a,故本选项正确;232+35C、a a=a=a,故本选项错误;2242D、(ab)=ab,故本选项错误.故选B.点评:本题考查了二次根式的计算,同底数幂的乘法,积的乘方的性质,同底数幂的除法,323﹣2熟练掌握运算性质和法则是解题的关键.37.(2022 四川遂宁第2题4分)下列运算正确的是()A.a a=a B. 2(a﹣b)=2a﹣b C.(a)=a D.a﹣2a=﹣a 考点:幂的乘方与积的乘方;合并同类项;去括号与添括号;同底数幂的乘法.分析:根据同底数幂的乘法、幂的乘方和同类项进行计算.解答:解:A、a a=a,错误; B、2(a﹣b)=2a﹣2b,错误;33325222来&源:%中国教育出版网#]C、(a)=a,错误;222D、a﹣2a=﹣a,正确;故选D点评:此题考查同底数幂的乘法、幂的乘方和同类项,关键是根据法则进行计算.38.(2022 通辽,第5题3分)下列说法中,正确的是() A.﹣x的系数是 B.πa的系数是32622C. 3ab.考点:分析:根据单项式的概念求解.解答: x的系数是﹣πa的系数是π2222C、3ab的系数是3D、xy的系数,故本选项正确.点评:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.39.(2022东营,第2题3分)下列计算正确的是()632222A.﹣= B. a÷a=a C.(a+b)=a+b D. 2a+3b=5ab2考点:二次根式的加减法;合并同类项;同底数幂的除法;完全平方公式.分析:分别利用二次根式的性质化简以及利用同底数幂的除法运算法则和完全平方公式化简求出即可.解答:解:A、﹣=,故此选项正确;633B、a÷a=a,故此选项错误;222C、(a+b)=a+b+2ab,故此选项错误;D、2a+3b无法计算,故此选项错误;故选:A.点评:此题主要考查了二次根式的性质化简以及利用同底数幂的除法运算法则和完全平方公式等知识,正确化简各式是解题关键.41. 云南下列运算正确的是()25100222A.a a=a B.(π﹣3.14)=0 C.﹣2= D.(a+b)=a+b 考点:二次根式的加减法;同底数幂的乘法;完全平方公式;零指数幂.分析:根据同底数幂的乘法、零指数幂、二次根式的加减和完全平方公式计算判断即可.257解答:解:A、a a=a,错误;B、(π﹣3.14)=1,错误;C、,正确;222D、(a+b)=a+2ab+b,错误;故选C.点评:此题考查同底数幂的乘法、零指数幂、二次根式的加减和完全平方公式,关键是根据法则进行计算.42.(2022 昆明第5题,3分)下列运算正确的是() A.=﹣3B.a a=a46C.(2a)=2a236D.(a+2)=a+422考点:幂的乘方与积的乘方;算术平方根;同底数幂的乘法;完全平方公式.分析:根据同底数幂的乘法的性质,积的乘方的性质,二次根式的性质,完全平分公式,对各选项分析判断后利用排除法求解.解答:解:A、=3,故错误:B、正确;236C、(2a)=8a,故正确;22D、(a+2)=a+4a+4,故错误;故选:B.点评:本题考查了同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.43.(2022 曲靖第3题,3分)下列运算正确的是()22734248A. 4a﹣2a=2 B. a÷a=a C. 5a a=5a D.23245 (ab)=ab考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.分析:根据同类项、同底数幂的除法、单项式的乘法和积的乘方计算即可.解答:解:A、4a﹣2a=2a,错误;734B、a÷a=a,正确;246C、5a a=5a,错误;23246D、(ab)=ab,错误;故选B.点评:此题考查同类项、同底数幂的除法、单项式的乘法和积的乘方,关键是根据法则进行计算判断.44. (2022年浙江衢州第3题3分)下列运算正确的是【】a2 325222x2 x5 C. 2a6 aa2 D.3x3 x25【答案】D.【考点】合并同类项;幂的乘方;单项式的除法;同底幂乘法.【分析】根据合并同类项,幂的乘方,单项式的除法,同底幂乘法运算法则逐一计算作出判断:A. a3与a2是不同类项,不能合并,故本选项运算错误;B.根据“幂的乘方,底数不变,指数相乘”的幂的乘方法则得:x2 x2 3 x6 x5,故本选项运算错误;3C.根据“把单项式的系数、同底数幂分别相除后,作为商的因式”的单项式除法法则得2a a 2 1 a636 22a4 2a2,故本选项运算错误;323 2D. 根据“同底数幂相乘,底数不变,指数相加”的乘法法则得:x x x故本选项运算正确. 故选D.x5,48、(2022年浙江省义乌市中考,4,4分)下面是一位同学做的四道题:①2a 3b 5ab;②(3a) 6a;③a6 a2 a3;④a2 a3 a5,其中做对的一道题的序号是A. ① B. ② C.③ D. ④考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方..分析:①根据合并同类项,可判断①,②根据积的乘方,可得答案;③根据同底数幂的除法,可得答案;④根据同底数幂的乘法,可得答案.解答:解:①不是同类项不能合并,故①错误;②积的乘方等于乘方的积,故②错误;③同底数幂的除法底数不变指数相减,故③错误;④同底数幂的乘法底数不变指数相加,故④正确;故选:D.点评:本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.)D.) D、4a32651. (2022江苏连云港第2题3分)下列运算正确的是A.2a+3b=5ab B.5a-2a=3a C.a2·a3=a6 D.(a+b)2=a2+b2 【思路分析】整式的加减必须是同类项才可以进一步运算,系数相加减,字母及其字母的指数不变。
一、选择题1.(2010安徽省中中考) 计算x x ÷)2(3的结果正确的是…………………………( ) A )28x B )26x C )38x D )36x【答案】A 2.(2010广东广州,3,3分)下列运算正确的是( )A .-3(x -1)=-3x -1B .-3(x -1)=-3x +1C .-3(x -1)=-3x -3D .-3(x -1)=-3x +3 【答案】D 3.(2010广东广州,8,3分)下列命题中,正确的是( )A .若a ·b >0,则a >0,b >0B .若a ·b <0,则a <0,b <0C .若a ·b =0,则a =0,且b =0D .若a ·b =0,则a =0,或b =0 【答案】D 4.(2010江苏南京)34a a ⋅的结果是A.4a B.7a C.6a D. 12a 【答案】B5.(2010江苏盐城)下列说法或运算正确的是 A .1.0×102有3个有效数字 B .222)(b a b a -=- C .532a a a =+D .a 10÷a 4= a 6【答案】D6.(2010辽宁丹东市) 图①是一个边长为()m n +的正方形,小颖将 图①中的阴影部分拼成图②的形状,由图①和图② 能验证的式子是( )A .22()()4m n m n mn +--= B .222()()2m n m n mn +-+= C .222()2m n mn m n -+=+D .22()()m n m n m n +-=-【答案】B 7.(2010浙江金华)如果33-=-b a ,那么代数式b a 35+-的值是( ▲ ) A .0 B .2 C .5 D .8【答案】D8.(2010山东日照)由m (a +b +c )=ma +mb +mc ,可得:(a +b )(a 2-ab +b 2)=a 3-a 2b +ab 2+a 2b图①图②第4题图-ab 2+b 3=a 3+b 3,即(a +b )(a 2-ab +b 2)=a 3+b 3.我们把等式①叫做多项式乘法的立方公式。
下列应用这个立方公式进行的变形不正确...的是 (A )(x +4y )(x 2-4xy +16y 2)=x 3+64y 3 (B )(2x+y )(4x 2-2xy+y 2)=8x 3+y 3 (C )(a +1)(a 2+a +1)=a 3+1 (D )x 3+27=(x +3)(x 2-3x +9) 【答案】D 9.(2010山东威海)下列运算正确的是A .xy y x 532=+B .a a a =-23C .b b a a -=--)(D .2)2(12-+=+-a a a a )( 【答案】D10.(2010山东威海)已知1=-b a ,则a 2-b 2-2b 的值为 A .4 B .3 C .1 D .0 【答案】C11.(2010四川凉山)下列计算正确的是A .=.1)(11=C .422()a a a --÷=D .2111()24xy xy xy -⎛⎫= ⎪⎝⎭【答案】D12.(2010四川眉山)下列运算中正确的是A .2325a a a +=B .22(2)(2)4a b a b a b +-=-C .23622a a a ⋅=D .222(2)4a b a b +=+ 【答案】B 13.(2010台湾)已知有一多项式与(2x 2+5x -2)的和为(2x 2+5x +4),求此多项式为何? (A) 2 (B) 6 (C) 10x +6 (D) 4x 2+10x +2 。
【答案】B 14.(2010浙江宁波)下列运算正确的是(A)22x x x =⋅ (B)22)(xy xy = (C)632)(x x = (D)422x x x =+【答案】C15.(2010 浙江省温州)计算a 2·a 4的结果是(▲)A .a 2B .a 6C .a 8D .a 16【答案】B16.2010 浙江台州市)下列运算正确的是(▲)A .22a a a =⋅B .33)(ab ab =C .632)(a a =D .5210a a a =÷ 【答案】C 17.(2010山东聊城)下列运算正确的是( )A .(3xy 2)2=6x 2y 4B .24122xx =- C .(-x )7÷(-x )2=-x 5 D .(6xy 2)2÷3xy =2xy 3【答案】C18.(2010重庆市潼南县)计算3x +x 的结果是( ) A . 3x 2B . 2x C . 4x D . 4x 2【答案】C 19.(2010 浙江义乌)下列运算正确..的是( ▲ ) A .321ab ab -= B .426x x x = C .235()x x = D .x x x 232=÷【答案】B20.(2010 重庆)计算232x x ⋅的结果是( ) A .2x B .52x C .62x D .5x 【答案】B 21.(2010 福建晋江)下列计算正确的是( ). A.632a a a =⋅ B.()832a a = C.326a a a =÷ D.()6223b a ab =【答案】D22. (2010湖南长沙)下列计算正确的是( ).A 、2242a a a += B 、2(2)4a a = C3= D32=【答案】C .23.(2010江苏宿迁)下列运算中,正确的是A .325=-m mB .222)(n m n m +=+C .n m nm =22 D .222)(mn n m =⋅【答案】D24.(2010 四川南充)下列等式成立的是( ).(A )26a a =3() (B )223a a a -=- (C )632a a a ÷= (D )2(4)(4)4a a a +-=-【答案】A 25.(2010 浙江衢州)如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A .2m +3B .2m +6C .m +3D .m +6 【答案】A(第8题)26.(2010江苏泰州)下列运算正确的是( )A.623·a a a = B.632)(a a -=- C.33)(ab ab = D.428a a a =÷ 【答案】B27.(2010江苏泰州)已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( )A.Q P >B.Q P =C.Q P <D.不能确定 【答案】C28.(2010江苏无锡)下列运算正确的是( )A . 325()a a = B .325a a a += C .32()a a a a -÷= D . 331a a ÷=【答案】D29.(2010湖南邵阳)(-a )2⋅a 3= ( ) A .-a 5 B .a 5 C .-a 6 D .a 6 【答案】B30.(2010重庆綦江县)计算2a 2÷a 结果是( ) A .2 B .2a C .2a 3 D .2a 2【答案】B31. (2010山东临沂)下列各式计算正确的是 (A )236x x x = (B )2235x x x += (C )236()x x = (D )623x x x ÷=.【答案】C32. (2010山东临沂)若1x y -=,xy =(1)(1)x y -+的值等于(A )2(B )2(C )D )2 【答案】B33. (2010四川宜宾)下列运算中,不正确...的是( ) A . x 3+ x 3=2 x 3 B . (–x 2)3= –x 5 C . x 2·x 4= x 6 D . 2x 3÷x 2 =2x【答案】B34. (2010 江苏连云港)下列计算正确的是( )A .a +a =x 2B .a ·a 2=a 2C .(a 2) 3=a 5D .a 2 (a +1)=a 3+1 【答案】B35. (2010 黄冈)下列运算正确的是( )A .1331-÷= B a = C .3.14 3.14ππ-=- D .326211()24a b a b =【答案】D36. (2010 山东莱芜)下列计算结果正确的是A .923)(a a =-B .632a a a =⋅C .22)21(21-=--D .1)2160(cos 0=-【答案】C37. (2010福建宁德)下列运算中,结果正确的是( ).A.2a a a =⋅B.422a a a =+C.523)(a a = D.a a a =÷33【答案】A38. (2010江西) 计算 -(-3a)2的结果是( )A .-6a 2B . -9a 2C . 6a 2D . 9a 2【答案】B39. (2010年贵州毕节)若23(2)0m n -++=,则2m n +的值为() A .4- B .1- C .0 D .4 【答案】B40. (2010浙江湖州)化简a +2b -b ,正确的结果()A .a -bB . -2bC .a +bD .a +2 【答案】C .41. (2010江苏淮安)计算32a a ⋅的结果是A .a 6B .a 5C .2a 3D .a 【答案】B42. (2010 山东滨州)下列各式运算正确的是( )A.2a 2+3a 2=5a 2B.(2ab 2)2=4a 3b 4C. 2a 6÷a 3=2a 2D. (a 2)3=a 5【答案】B43.(2010湖南郴州)下列运算,正确的是A .523a a a =⋅ B .ab b a 532=+C .326a a a =÷ D .523a a a =+【答案】 A44. (2010湖南怀化)若1=x ,21=y ,则2244y xy x ++的值是( ). A.2 B.4 C.23D.21【答案】B45. (2010江苏扬州)下列计算正确的是() A .x 4+x 2=x 6 B .x 4—x 2=x 2 C .x 4·x 2=x 8 D .(x 4)2=x 8【答案】D46. (2010湖北恩施自治州)下列计算正确的是:A.422a a a =+B.()a a a a a a +=÷++223C.1046a a a =⋅D .()633a a =【答案】C47. (2010山东泰安)计算(a 3)2·a 3的结果是() A.a 8B.a 9C.a 10D.a 11 【答案】B48. (2010云南红河哈尼族彝族自治州)如果的取值是和是同类项,则与n m y x y x m m n 31253--A.3和-2B.-3和2C.3和2D.-3和-2 【答案】C 49.(2010黑龙江哈尔滨)下列运算中,正确的是( )(A )523x x x =⋅ (B )32x x x =+ (C )x x x =+232 (D ).2)2(33x x =【答案】A50.(2010江苏徐州)下列计算正确的是A .624a a a =+B .2a ·4a =8aC .325a a a =÷D .532)(a a =【答案】C 51.(2010云南昆明)下列各式运算中,正确的是( )A .222()a b a b +=+ B 3= C .3412a a a ⋅= D .2236()(0)a aa =≠ 【答案】B52.(2010陕西西安)计算(a a 3)22⋅-的结果是A .26a - B .36a - C .312aD .36a【答案】B 53.(2010广东东莞)下列运算正确的是( )A .ab b a 532=+B .b a b a -=-4)2(2C .22))((b a b a b a -=-+ D .222)(b a b a +=+【答案】C54.(2010 福建三明)下列运算中,正确的是( )A .34=-a aB .623a a a =⋅ C .a a a =÷22D .632)(a a =【答案】D 55.(2010 山东东营)下列运算中,正确的是( ) (A)2a a a += (B)22a a a =⋅(C)22(2)4a a = (D)325()a a =【答案】C56.(2010 四川绵阳)如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2,4,6,…,2n ,…,请你探究出前n 行的点数和所满足的规律.若前n 行点数和为930,则n =( ).A .29B .30C .31D .32【答案】B 57.(2010广东汕头)下列运算正确的是( ) A .ab b a 532=+B .()b a b a -=-422C .()()22b a b a b a -=-+D .()222b a b a +=+【答案】C 58.(2010四川泸州)计算(a 4)2÷a 2的结果是( ) A .a 2 B .a 5 C .a 6 D .a 7 【答案】C59.(2010 山东淄博)计算b a ab 2253⋅的结果是(A )228b a (B )338b a (C )3315b a (D )2215b a【答案】C 60.(2010 内蒙古包头)下列运算中,正确的是( ) A .2a a a += B .22a a a =C .22(2)4a a =D .325()a a =【答案】C61.(2010 广西玉林、防城港)计算(a 2)3的结果是: ( ) A .a 5B .a 6C .a 3D .a1-【答案】B62.(2010 重庆江津)下列运算正确的是() A .246x x x += B .236x x x ⋅= C .()336xx = D .253555=【答案】D 63.(2010 福建泉州南安)下列运算正确的是().A .23a a a +=B .22(3)6a a = C .623a a a ÷= D .34aa a =·64.(2010 山东荷泽) 下列运算正确的是A .(a +b )(a -b )=a 2-b 2B .(a -2)2=a 2-4C .a 3+a 3=2a 6D .(-3a 2)2=9a 4【答案】D65.(2010宁夏回族自治区)下列运算正确的是( )A .236a a a ⋅=B .532a a a ÷=C .235a a a += D .235()a a =【答案】B66.(2010 广西钦州市)下列各式运算正确的是(A )224325a a a +=(B )22(3)9a a +=+(C )235()a a =(D )23326a a a ⋅= 【答案】D67.(2010新疆维吾尔自治区新疆建设兵团)计算(-a 2)3的结果是()A. –a 5B.a 6C.-a 6D. a 5【答案】C68.(2010新疆乌鲁木齐)已知整式x x 252-的值为6,则6522+-x x 的值为 A .9 B .12C .18D .24【答案】C69.(2010新疆乌鲁木齐)有若干张面积分虽为ab b a ,,22的正方形和长方形纸片,阳阳从中抽取了1张面积为2a 的正方形纸片,4张面积为ab 的长方形纸片,若他想拼成一个大正方形,则还需要抽取面积为2b 的正方形纸片 A .2张 B .4张 C .6张 D .8张【答案】B 70.(2010广西南宁)下列二次三项式是完全平方式的是:(A )1682--x x (B )1682++x x (C )1642--x x (D )1642++x x 【答案】B71.(2010年山西)下列运算正确的是( )A .222)(b a b a -=-B .632)(a a -=-C .422x x x =+ D .622623a a a =⋅ 【答案】B 72.(2010广东茂名)下列运算中结果正确..的是 A .ab b a 523=+ B .235=-y y C .x x x 853-=+- D .y x y x y x 22223=-【答案】D 73.(2010广东茂名)用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n 个“口”A .4n 枚B .(4n -4)枚C .(4n+4)枚D . n 2枚 【答案】A74.(2010云南昭通)下列计算正确的是( )长A .532x x x =⋅ B .(a +b )2=a 2+b 2 C .532)(a a = D .a 2+a 3=a 5【答案】A75.(2010辽宁大连)下列运算正确的是()A. 236a a a ⨯=B. 44()a a -= C. 235a a a += D. 235()a a =【答案】B 76.(2010贵州遵义)计算(α3)2的结果是 A .3α2 B .2α3 C .α5 D .α6 【答案】D 77.(2010广东深圳)下列运算正确的是( )A .222)(y x y x -=- B .422)(xy y x =⋅ C .3322y x xy y x =+ D .426x x x =÷ 【答案】D 78.(2010广东佛山)多项式1+xy-xy ²的次数及最高次项的系数分别是 A .2,1 B .2,-1 C .3,-1 D .5,-1 【答案】C 79.(2010湖北宜昌)下列运算正确的是( )。