风电叶片的发展历程
- 格式:doc
- 大小:22.50 KB
- 文档页数:2
24玻璃钢2010年第4期风电及风力机叶片的市场进展王强华(上海玻璃钢研究院有限公司,上海201404)1全球风电市场现状及前景目前,在世界能源市场上,风能已成为一个重要组成部分。
据全球风能协会(GWEC)2010年03月10日发布2009年世界风能报告概要,2009年全球新增风电装机容量达38.312GW ,比上年增长42%;累计装机容量已达159.213GW ,比上年增长了31.7%。
据欧洲风能协会(EWEA )统计,2009年欧洲风电场投资额为130亿欧元,新增风电装机容量比上年增长23%,达10.16GW ,累计装机容量已达到74.77GW 。
美国风能协会(A WEA )报道,2009年美国新增装机容量9922MW ,累计装机容量35.16GW ,年增长39%。
而中国在2009年成为全球最大的风电市场,新增装机容量达13.8GW ,使其总装机容量几乎增加一倍,从2008年的12GW 上升至2009年末的25.8GW ,总装机容量全球排名升至第二位。
以上各项数据说明全球对风能有巨大需求,尽管处于金融危机和经济低迷之中,全球风电发展仍然保持持续而强劲的增长。
对于未来,GWEC 预测风电市场将保持良好的发展前景和市场竞争力。
GWEC 在2008年度报告中预计2013年,全球风电产能将达到332GW ,全球新增装机总量还将增加56.3GW ,比2008年增加了两倍。
期间总装机容量年增长率平均为22.4%,市场年增长率为15.8%。
2010年9月,GWEC 预测全球风电装机容量在2010年有望增长约40GW ,使总装机容量达到200GW ;到2014年再翻一倍达到400GW 。
到2014年,风电的增长将主要来自于中国、美国和欧洲市场,同时会有更多的国家进入风电领域,特别是位于拉丁美洲、北非和撒哈拉以南非洲的国家。
2我国风电产业发展情况亚洲、欧洲和北美三个地区推动着全球风力发电量的持续增长,亚洲在2009年是全球图12010至2013年全球风电市场预测2505001000150020002500300020052006200720082009新增装机容量,万千瓦累计装机容量,万千瓦发展最快的地区,主要由我国推动。
风力发电叶片制作的流程步骤风力发电叶片制作的流程步骤摘要:风力发电作为一种可再生能源,受到越来越多的关注。
在风力发电系统中,叶片作为风能转换的关键部件,其制作过程需要经历一系列的步骤。
本文将深入探讨风力发电叶片制作的流程步骤,并分享对这一过程的观点和理解。
引言:随着全球环境问题的日益严重,人们对可再生能源的需求不断增加。
风力发电作为一种清洁、可持续的能源选择,在全球范围内迅速发展。
而风力发电叶片作为风能转换的关键组成部分,其制作的质量和效能对风力发电系统的性能至关重要。
本文将介绍风力发电叶片制作的流程步骤,并探讨其中的关键细节。
一、设计阶段:风力发电叶片的制作首先需要进行设计阶段。
在这个阶段,设计师会考虑到风力发电叶片的外形、尺寸、材料选择以及叶片的气动特性等因素。
设计师通常会借助CAD软件进行叶片的绘制和模拟,以确保叶片在不同风速下能够达到最佳性能。
此外,还需要考虑到叶片的结构强度和重量分布等因素,以确保叶片能够在恶劣天气条件下保持稳定运行。
二、模具制作:在设计阶段确定好叶片的外形和尺寸后,接下来需要制作叶片的模具。
模具通常使用玻璃纤维和环氧树脂制作,可以根据设计要求制作出精确的叶片形状。
模具的质量和准确度对最终叶片的质量和性能有着重要影响。
三、叶片制作:叶片制作是风力发电叶片制作过程中的核心步骤。
制作叶片的主要材料是玻璃纤维和环氧树脂。
首先,需要将玻璃纤维布铺设在模具上,并使用环氧树脂进行浸润和固化。
然后,根据设计要求,需要进行多层叠加以增加叶片的强度。
最后,将浸渍好的叶片放置在升温室中进行固化和后处理。
四、平衡校准与测试:完成叶片制作后,需要进行平衡校准和测试。
平衡校准主要是为了确保叶片在高速旋转时能够保持平衡,减少振动和噪音。
测试阶段包括对叶片的静态和动态性能进行评估,以确保叶片能够在不同风速下正常工作,并且满足设计要求。
五、总结和回顾:风力发电叶片制作的流程步骤包括设计阶段、模具制作、叶片制作、平衡校准和测试等。
2012-2013年中国风电叶片行业发展报告一、概述根据《2012年中国风电装机容量统计》(由中国可再生能源学会风能专业委员会2013年3月发布)的结果显示:2012 年,中国(不包括台湾地区)新增安装风电机组7872 台,装机容量12960MW,同比下降26.5%;累计安装风电机组53764 台,装机容量75324.2MW,同比增长20.8%。
2012 年,中国海上风电新增装机46 台,容量达到127MW,其中潮间带装机量为113MW,占海上风电新增装机总量的89%。
截至2012 年底,中国已建成的海上风电项目共计389.6MW,是除英国、丹麦以外海上风电装机最多的国家。
纵观历年新增装机和产品推出情况来看,中国已成为新增装机容量和累计装机容量均位居前列的世界风能大国。
二、中国风电叶片制造企业现状2.1 叶片制造企业的规模、生产能力和产品现状随着中国风电市场和技术的不断发展,各风电叶片制造企业的产品正逐渐同质化,国内主要叶片制造企业均有较齐全的型号产品,基本都可以满足国内风电市场的需求。
目前具备研发能力和规模生产能力的厂家主要如下:(1)中材科技风电叶片股份有限公司该公司总部位于北京。
目前拥有北京康庄、北京八达岭、甘肃酒泉、吉林白城、云南大理、江苏阜宁和内蒙锡林等七个风电叶片产业基地,具备年产3600套兆瓦级风电叶片的生产能力。
未来几年内,公司拟在风能资源丰富地区建设4-6个叶片生产工厂,进一步提升生产制造能力。
(2)中复连众复合材料集团有限公司该公司总部位于江苏省连云港市,目前在德国图林根州、国内连云港、辽宁、内蒙古、甘肃、新疆等地设有分、子公司,年产兆瓦级风电叶片3000副以上。
(3)中航惠腾风电设备股份有限公司该公司总部位于保定,拥有酒泉、秦皇岛、贵阳、天元四个全资子公司,年产兆瓦级风电叶片2500副以上。
(4)艾尔姆风能叶片制品公司(LM Windpower)总部设在荷兰,现在丹麦、波兰、西班牙、美国、印度、加拿大和中国建有生产工厂。
大型风电叶片设计制造技术发展趋势摘要:从总体上看,目前我国提供了全球最大的单一风电市场,国内叶片厂商在大型叶片的设计和制造技术上取得了长足进步,尤其是在低风速叶片开发和应用上走在世界前列.但在大型叶片设计与制造技术上与国外先进技术相比还有一定差距,没有先进的独特技术和产品应用.基于此,本文主要对大型风电叶片设计制造技术发展趋势进行分析探讨。
关键词:大型风电叶片;设计制造技术;发展趋势1前言能作为一种清洁的可再生能源,取之不尽,用之不竭,越来越受到世界各国的重视.随着风力发电技术的进步,为了提高风能捕获,降低度电成本,风电机组的单机容量也从最初的十几千瓦发展到现在的兆瓦级,甚至向十兆瓦级、几十兆瓦级迈进.叶片作为风电机组转换风能的关键部件,其设计与制造技术的发展对于整个机组的性能和可靠性至关重要.2大型风电叶片产业现状据全球风能协会统计(GWEC),2015年全球新增装机容量首次超过60GW,2000–2015年16年间累计装机容量达到432.9GW.亚洲装机量继续引领全球市场,欧洲和北美紧随其后,其中,中国自2009年以来,一直保持全球最大市场地位.2015年的新增装机量和至2015年底的累积装机量均居全球首位.基于气候变化要求,风电价格下降以及美国市场稳定的预期,GWEC预测在未来五年内,亚洲市场仍将保持在50%以上,欧洲市场稳步增加,北美市场将出现强劲增长,到2020年,全球累计装机容量将达到792.1GW.可以看出,风电叶片的市场仍然具有巨大发展潜力.随着全球风电市场转向低风速和海上风场的风能开发,叶片不断增长.目前为止,已经生产的全球最长风电叶片长88.4m,由丹麦LM公司和Adwen公司共同开发,配套8MW的海上风电机组.此外,达到80m及以上长度的风电叶片包括丹麦SSPtechnology生产的83.5m叶片、德国EUROS设计开发的81.6m叶片以及Vestas设计制造的80m叶片,它们将分别用于韩国三星的7MW海上风电机组、日本三菱的7MW海上风电机组和Vestas的8MW海上风电机组.而更长的叶片已处于设计阶段.在气动性能方面,目前公开报道的商用风机的最大功率系数超过0.5,由德国Enercon公司设计研发,通过综合优化叶尖、叶根过渡段以及机舱几何外型得到.在重量方面,英国Bladedynamics公司采用模块化的叶片设计和制造技术,生产了一支世界上最轻的49m叶片,并已通过GL认证,该技术将被用于100m长的风电叶片开发,目前该公司已被美国GE风电收购.3大型风电叶片制造技术发展趋势叶片的制造技术主要依据叶片的材料体系和三维几何结构发展.目前为止,针对复合材料叶片的成型工艺主要有手糊工艺、模压成型、预浸料铺放工艺、拉挤工艺、纤维缠绕、树脂传递模塑(RTM)、真空灌注成型工艺.这些工艺各有优缺点,可以根据叶片的材料体系、几何结构、几何尺寸以及铺层功能进行综合运用,以达到最佳效果.手糊工艺是生产复合材料风电叶片的一种传统工艺.因为它不必受加热及压力影响,成本较低.可用于低成本制造大型、形状复杂制品.其主要缺点是生产效率低、产品质量波动大、废品率较高.手糊工艺往往还会伴有大量有害物质和溶剂的释放,有一定的环境污染.目前主要用于叶片合模后的前尾缘湿法处理;模压成型工艺的优点在于纤维含量高、孔隙率低、生产周期短、精确的尺寸公差及良好的表面形状.适用于生产简单的复合材料制品.其缺点是模具投入成本高,不适合具有复杂几何形状的叶片.目前大型叶片基本不采用此工艺;预浸料铺放工艺的主要优势是在生产过程中纤维增强材料排列完好,可以制造低纤维缺陷以及性能优异的部件.它是生产复杂形状结构件的理想工艺,碳纤维预浸料广泛应用于航空业中.其主要缺陷是成本高.此外,预浸料需要手工方式铺放,生产效率低;拉挤工艺具有纤维含量高,质量稳定,易于自动化,适合大批量生产的优点.适用于生产具有相同断面形状,连续成型制品的生产中.但由于大型叶片的三维几何弯扭结构,该工艺很少使用.纤维缠绕工艺能够控制纤维张力、生产速度及缠绕角度等变量,制造不同尺寸及厚度的部件.但应用于叶片生产中的一个缺陷是在叶片纵向不能进行缠绕,长度方向纤维的缺乏使叶片在高拉伸和弯曲载荷下容易产生问题.另外,纤维缠绕产生的粗糙外表面可能会影响叶片的空气动力学性能,必须进行表面处理.最后,芯模及计算机控制成本很大;树脂传递模塑(RTM)属于半机械化的复合材料成型工艺,对工人的技术和环境的要求远远低于手糊工艺并可有效地控制产品质量.RTM缺点是模具设备非常昂贵,很难预测模具内树脂流动状况,容易产生缺陷.RTM工艺采用闭模成型工艺,特别适宜一次成型整体的风力发电机叶片(纤维、夹芯和接头等可一次模腔中共成型),而无需二次黏接.真空灌注成型工艺是目前大型风机叶片制造的理想工艺,与RTM相比,节约时间,挥发物非常少,工艺操作简单,模具成本大大降低.相对于手糊工艺,成型产品拉伸强度提高20%以上.鉴于真空灌注成型工艺在大型叶片应用上的优势,目前大型风电叶片制造主要以真空灌注工艺为主.近几年的研究也主要以此工艺为基础,针对叶片铺层厚度、新的高模材料、制造效率、叶片成型质量等方面进行的工艺尝试与改进.目前,具有创新性同时实用性较强的代表性叶片制造工艺有:西门子风电集团提出的IntegralBlade技术.它使用两个模具型面和其中的芯模型成一个封闭的型腔,在型腔里面随形铺放纤维材料和芯材.通过型腔内建立起的真空体系将基体材料注入模具内,一次成型大型风机叶片.与传统的真空灌注成型工艺相比,它具有的优点包括:节省人力和空间、无需黏接、质量可靠性高、不会释放VOCs,对环境污染小.该工艺已广泛应用于西门子的不同型号叶片制造中;达诺巴特公司(DANOBAT)开发的叶片自动制造系统.它的主要功能包括自动喷胶衣、自动喷短切纤维、自动铺层、自动打磨、自动涂胶等.客户可以根据自身需求来选择整体自动化,也可以选择其中一个或几个功能.工作单元采用移动式悬臂梁结构,横梁上安装有十字滑轨,相应的工作功能头位于滑轨上,采用5轴控制,最终实现各工序的自动化操作.相对于真空灌注成型工艺,具有生产效率高,人工成本低,叶片质量稳定性好的优点.除了以上针对现有热固性复合材料体系的制造工艺,针对热塑性复合材料开发的生产工艺也在不断发展。
中国的风电政策发展历程可以追溯到20世纪80年代末和90年代初。
以下是风电政策的主要里程碑事件:1. 1990年代初:中国开始意识到可再生能源的重要性,风能成为其中的一项重要资源。
在此期间,中国引进了最早的风力发电技术和设备。
2. 2005年:中国政府正式发布了第一个国家性的风能法规——《可再生能源法》,目的是推动可再生能源的开发和利用,为风能产业的发展提供了强有力的政策支持。
3. 2007年:中国政府发布了《可再生能源发展中长期规划》,明确了可再生能源在能源结构中的重要地位,并提出了2020年可再生能源占一次能源消费比重达到15%的目标。
4. 2009年:中国启动了全国风电资源调查项目,以评估和确定风能资源分布情况,为风电开发提供科学依据。
5. 2011年:中国政府发布了《关于加快发展风能产业的若干意见》,提出了进一步支持风电产业发展的政策措施,包括加大对风电项目的电价补贴和金融支持,加强技术支持和示范项目建设等。
6. 2013年:中国政府发布了《关于积极推进风电健康可持续发展的指导意见》,强调风电产业应做到健康发展,加强技术创新和标准化建设,提高风电的并网运行质量。
7. 2014年:中国政府发布了《关于促进风电产业健康发展的若干意见》,提出进一步规范风电产业发展,实施分类管理,推动技术进步和装备升级,加强市场准入和运行管理等。
8. 2015年:中国启动了全国风电可再生能源试点示范项目,并提出到2020年建设200个风电示范区。
9. 2016年:中国政府发布了《可再生能源电价政策(2016年修订)》,进一步完善风电的市场准入机制和电价政策。
10. 2017年:中国政府发布了《关于推进风电健康可持续发展的若干意见》,提出进一步加快风电市场化进程,推动风电装备制造和技术创新,推动风电与其他能源形式的融合发展。
11. 2020年:中国发布了《关于新能源发展的2030年规划》,将风电作为重点发展的新能源形式之一,并提出了到2030年风电装机容量达到1,200万千瓦的目标。
退役风电叶片中热固性复合材料资源化流程研究进展目录1. 内容综述 (3)1.1 研究背景 (4)1.2 研究目的 (5)1.3 研究意义 (6)2. 退役风电叶片概述 (7)2.1 风电叶片的发展历程 (8)2.2 风电叶片的结构与类型 (9)2.3 退役风电叶片的处理现状 (10)3. 热固性复合材料简介 (11)3.1 热固性复合材料的概念与特点 (13)3.2 热固性复合材料的主要种类 (14)3.3 热固性复合材料的应用领域 (15)4. 退役风电叶片中热固性复合材料的提取方法 (16)4.1 机械法提取 (17)4.1.1 研磨法 (18)4.1.2 超声波辅助提取法 (20)4.1.3 高压水射流辅助提取法 (21)4.2 化学法提取 (21)4.2.1 酸溶解法 (23)4.2.2 碱溶解法 (24)4.2.3 氧化还原法 (25)4.3 生物法提取 (27)4.3.1 微生物浸取法 (28)4.3.2 酶解法 (29)5. 退役风电叶片中热固性复合材料的表征与性能评价方法 (31)5.1 微观形态表征 (31)5.1.1 X射线衍射分析法 (33)5.1.2 扫描电子显微镜观察法 (34)5.1.3 红外光谱分析法 (35)5.2 宏观性能评价方法 (37)5.2.1 力学性能评价方法 (37)5.2.2 热性能评价方法 (40)5.2.3 阻燃性能评价方法 (41)6. 退役风电叶片中热固性复合材料的资源化利用途径 (42)6.1 原位再生利用 (44)6.1.1 再造叶片回收技术 (45)6.1.2 再制造叶片工艺流程 (46)6.2 废弃物资源化利用 (48)6.2.1 热固性复合材料改性水泥制备技术 (49)6.2.2 热固性复合材料制备高性能混凝土材料技术 (50)6.3 其他资源化利用途径探讨 (52)6.3.1 热固性复合材料在轻质隔墙板中的应用研究 (53)6.3.2 热固性复合材料在航空领域的应用研究 (54)7. 结论与展望 (55)7.1 主要研究成果总结 (56)7.2 研究的不足与改进方向 (57)7.3 对未来研究方向的展望 (58)1. 内容综述退役风电叶片中热固性复合材料资源化流程研究进展概述了风能行业成熟阶段面临的叶片废弃问题、回收方法的发展以及资源化利用的现状。
风力发电叶片制作工艺介绍风力发电机叶片是接受风能的最主要部件,其良好的设计、可靠的质量和优越的性能是保证发电机组正常稳定运行的决定因素,其成本约为整个机组成本的15%-20%。
根据“风机功价比法则”,风力发电机的功率与叶片长度的平方成正比,增加长度可以提高单机容量,但同时会造成发电机的体积和质量的增加,使其造价大幅度增加。
1碳纤维在风力发电机叶片中的应用叶片材料的发展经历了木制、铝合金的应用,进入了纤维复合材料时代。
纤维材料比重轻,疲劳强度和机械性能好,能够承载恶劣环境条件和随机负荷,目前最普遍采用的是玻璃纤维增强聚酯(环氧)树脂。
但随着大功率发电机组的发展,叶片长度不断增加,为了防止叶尖在极端风载下碰到塔架,就要求叶片具有更高的刚度。
国外专家认为,玻璃纤维复合材料的性能已经趋于极限,不能满足大型叶片的要求,因此有效的办法是采用性能更佳的碳纤维复合材料。
1)提高叶片刚度,减轻叶片质量碳纤维的密度比玻璃纤维小约30%,强度大40%,尤其是模量高3~8倍。
大型叶片采用碳纤维增强可充分发挥其高弹轻质的优点。
荷兰戴尔弗理工大学研究表明,一个旋转直径为120m的风机的叶片,由于梁的质量超过叶片总质量的一半,梁结构采用碳纤维,和采用全玻璃纤维的相比,质量可减轻40%左右;碳纤维复合材料叶片刚度是玻璃纤维复合材料叶片的2倍。
据分析,采用碳纤维/玻璃纤维混杂增强方案,叶片可减轻20%~30%。
VestaWindSystem公司的V90型发电机的叶片长44m,采用碳纤维代替玻璃纤维的构件,叶片质量与该公司V80型发电机且为39m长的叶片质量相同。
同样是34m长的叶片,采用玻璃纤维增强聚脂树脂时质量为5800kg,采用玻璃纤维增强环氧树脂时质量为5200kg,而采用碳纤维增强环氧树脂时质量只有3800kg。
其他的研究也表明,添加碳纤维所制得的风机叶片质量比采用玻璃纤维的轻约32%,而且成本下降约16%。
2)提高叶片抗疲劳性能风机总是处在条件恶劣的环境中,并且24h处于工作状态。
海上风电发展历程
海上风电是指将风能发电设备部署在海上的一种发电方式。
下面是海上风电的发展历程:
1.1980年代:最早的海上风电设备在丹麦海域开始试验性
部署。
这些设备主要是较小的风轮,用于测试和验证海上
风能发电的可行性。
2.1990年代:在丹麦、英国、荷兰等北欧国家开始了大规
模的海上风电场建设。
这些风电场通常部署在浅水区域,
使用较大的风轮和支撑结构。
该时期的海上风电主要以固
定式结构为主。
3.2000年代:随着海上风电技术的不断进步和成本的降低,
海上风电得到了更广泛的应用。
越来越多的国家开始关注
并投资海上风电项目,建设更大规模、更高效的风电场。
浮式风电结构也开始出现,可以部署在深海区域。
4.2010年代:海上风电进一步扩大规模。
欧洲成为世界上
最主要的海上风电市场,德国、英国、丹麦等国家建设了
大型的海上风电场。
同时,中国、美国、日本等国家和地
区也开始加快海上风电的发展步伐,投资建设海上风电项
目。
5.2020年代至今:海上风电进一步优化和升级。
技术不断
突破,风电机组容量不断增加,离岸风电场规模越来越大。
新的技术和概念也涌现,如浮动式平台、深水风电技术、
多层级风力发电等。
海上风电的发展经历了不断的创新和改进,从早期的试验性阶段发展到现在的商业化阶段。
尽管仍面临着一些挑战,如成本、可靠性和环境影响等,但海上风电被广泛认为是可再生能源的重要组成部分,具有巨大的发展潜力,能够为全球的清洁能源转型做出重要贡献。
风力发电叶片回收技术及发展展望摘要:介绍了现有废弃风力发电叶片中碳纤维与玻璃纤维复合材料的各种回收方法,包括机械回收、热回收、化学回收等,分析了其优缺点,评估了其应用潜力。
关键词:风力发电;叶片回收引言“双碳”战略目标背景下,我国对于可再生清洁能源的使用愈发重视,风力发电逐渐成为主流供电方式。
与火力发电、核发电相比,风力发电更加清洁、健康,在为社会提供优质电能的同时,能够维护环境健康,促进生态的可持续发展。
1叶片组成及性质风电叶片是1个由复合材料制成的薄壳结构(图1),2个扇形半壳多用玻璃纤维增强复合材料,通常具有复杂的空气动力学造型。
主梁是叶片的主要承载结构,通常由整块较厚的单向纤维复合材料板构成。
腹板也称为内部梁,包括两端的碳纤维腹板帽,用轻质的连结板连接,可以支撑叶片结构,负担弯曲负荷。
风电叶片作为风力发电机的核心部件占总成本的15%~20%。
为使风力机达到最优性能,风电叶片材料需满足3个要求:1)增加材料刚度以确保稳定性,最大限度地提高空气动力性能;2)使用低密度材料降低整体质量;3)根据材料的疲劳寿命进行选择,从而避免材料退化。
因此,风电叶片普遍选用轻质高强、耐腐蚀好且可塑性强的复合材料,保证叶片具有足够的强度和刚度。
复合材料的单位密度仅为钢铁的25%,符合叶片轻量化的要求;而且复合材料的比强度和比模量高,更能根据叶片的特性需求进行合理灵活的设计,保证风电机组平稳运行。
在风电叶片朝着大型化发展的过程中,复合材料已成为其核心材料,占整个叶片质量的90%以上。
图1叶片结构断面2风力发电叶片回收技术2.1气动带除冰措施该除冰措施是指在叶片前端边缘部位安装相应的膨胀管或膨胀袋,并配备相关的外加装置,如输气管、充气泵等,进以通过这些外加装置来促使膨胀管或袋内充满气体,这样借助泄压阀将气体排出时所产生的振动反应来将叶片表面的覆冰击碎。
在该技术研发初始阶段,其应用范围一般被应用在飞机防覆冰工作中,在实际操作时,也是借助膨胀作用将飞机机翼部位和尾翼部位的冰层去除掉,进而更好的保障飞机的稳定运行。
风力发电叶片切割技术的研究与发展趋势随着全球对可再生能源的需求越来越大,风力发电作为一种清洁、可持续的能源形式受到了广泛关注。
而作为风力发电机的关键部件之一,叶片的切割技术对于风力发电的效率和成本具有重要影响。
因此,研究和发展风力发电叶片的切割技术具有非常重要的意义。
一、风力发电叶片切割技术的现状1. 传统的叶片切割技术传统的风力发电叶片切割技术主要采用手工切割或机械切割的方式。
手工切割需要大量的人力和时间,效率低且成本高。
机械切割虽然可以提高效率,但需要大型设备和专业操作员,成本也相对较高。
2. 先进的叶片切割技术为了提高风力发电叶片切割的效率和质量,研究人员开发了一系列先进的切割技术。
其中最常见的是激光切割技术和水刀切割技术。
激光切割技术利用高能激光束对叶片进行切割,具有高精度、高效率和无碎屑的优点。
而水刀切割技术则是利用高压水射流对叶片进行切割,不会产生热变形和机械应力,同时可适用于不同材料的切割。
二、风力发电叶片切割技术的发展趋势1. 自动化生产随着工业技术的进步和自动化设备的普及,风力发电叶片切割技术也趋向于自动化生产。
通过引入机器人和自动化控制系统,可以实现叶片切割的全自动化和高效率生产,大大提高生产效率和质量稳定性。
2. 切割精度的提高风力发电叶片的切割精度对于叶片的结构和性能具有重要影响。
随着精密加工技术的不断发展,风力发电叶片切割技术也在不断提高切割精度。
利用高精度切割设备和先进的切割控制算法,可以实现更高精度的叶片切割,提高叶片的结构强度和风能利用效率。
3. 新材料的应用风力发电叶片的材料选择对于切割技术的研究和发展具有重要影响。
传统的叶片材料主要是玻璃纤维增强树脂复合材料,但随着材料科学的进步,新材料如碳纤维复合材料以及先进的纳米材料开始应用于叶片制造。
这些新材料具有更高的强度、刚度和抗疲劳性能,同时也对切割技术提出了更高的要求。
因此,研究和改进适用于新材料的切割技术将成为未来的发展趋势。
论述双馈式风机的发电原理与发展双馈式风机是一种目前比较成熟的风力发电技术,其发电原理是通过风机叶片受到风能驱动后,带动发电机旋转产生电能。
双馈式风机的发电原理和发展历程一直备受人们的关注和探讨。
本文将从发电原理和发展历程两个方面来论述双馈式风机的发电原理与发展。
一、双馈式风机的发电原理双馈式风机的发电原理可以简单概括为:风力驱动叶片旋转,叶片带动发电机转子旋转,产生电力。
具体而言,双馈式风机的发电原理主要包括以下几个步骤:1. 风轮转动:风轮是风机的核心部件,其上装有叶片,当风力作用于叶片时,风轮开始旋转。
2. 转动传动:风轮的旋转带动主轴转动,主轴通过传动装置将旋转动力传递给发电机。
3. 发电转子旋转:发电机内部有一个转子和一个定子,当转子旋转时,定子内的线圈会受到磁场的作用而感生电动势。
4. 产生电力:发电机通过转子旋转产生电动势,最终产生电力供应给电网或储存设备。
双馈式风机的名称中“双馈”指的是发电机转子拥有两个电路,一个是与定子电路相连的固定转速电路,这部分功率占总功率的30%,另一个是与变频器相连的可控转速电路,这部分功率占总功率的70%。
这种设计使得双馈式风机可以在一定程度上调节转速,适应不同风速下的发电需求。
二、双馈式风机的发展历程双馈式风机的发展历程可以追溯到上世纪70年代,在当时风能利用领域取得了飞速的发展,人们开始研究如何将风能转化为电能。
经过多年的研发和应用实践,双馈式风机得到了不断完善和提升。
1. 技术创新阶段:双馈式风机的早期发展主要是以提高发电机转速、降低成本和提高效率为主要目标。
1986年,中国华北电力大学成功研制出我国第一台双馈式风力发电机组,开创了我国双馈式风机的发展先河。
2. 成熟稳定阶段:随着技术的不断进步,双馈式风机的各项技术指标得到了显著提高,成为了风电行业中的主流产品之一。
发电效率、稳定性和可靠性得到了显著提升,产品性能更加稳定可靠。
3. 高效节能阶段:当前,双馈式风机的发展进入了高效节能阶段。
叶片是风力发电机中最基础和最关键的部件,其良好的设计、可靠的质量和优越的性能是保证机组正常稳定运行的决定因素。
恶劣的环境和长期不停地运转,对叶片的要求有:比重轻且具有最佳的疲劳强度和机械性能,能经受暴风等极端恶劣条件和随机负荷的考验;叶片的弹性、旋转时的惯性及其振动频率特性曲线都正常,传递给整个发电系统的负荷稳定性好;耐腐蚀、紫外线照射和雷击的性能好;发电成本较低,维护费用最低。
为满足上述要求,提高机组的经济性,叶片的尺寸增大可以改善风力发电的经济性,降低成本。
叶片长度从1980年的4.5m发展到今天的61.5m,容量从当初的55kW发展到今天的5MW。
1970年的风力机叶片主要有钢材、铝材或木材制成,今天选择的材料以E-玻纤增强塑料(GFRP)居多,目前已开始采用碳纤维复合材料(CFRP),叶片材料的开发顺应了叶片大型化和轻量化的方向发展。
叶片发展的几个阶段:
1)、木制叶片及布蒙皮叶片
近代的微、小型风力发电机也有采用木制叶片的,但木制叶片不易做成扭曲型。
大、中型风力发电机很少用木制叶片,采用木制叶片的也是用强度很好的整体木方做叶片纵梁来承担叶片在工作时所必须承担的力和弯矩。
2)、钢梁玻璃纤维蒙皮叶片
叶片在近代采用钢管或D型型钢做纵梁,钢板做肋梁,内填泡沫塑料外覆玻璃钢蒙皮的结构形式,一般在大型风力发电机上使用。
叶片纵梁的钢管及D型型钢从叶根至叶尖的截面应逐渐变小,以满足扭曲叶片的要求并减轻叶片重量,即做成等强度梁。
3)、铝合金等弦长挤压成型叶片
用铝合金挤压成型的等弦长叶片易于制造,可连续生产,又可按设计要求的扭曲进行扭曲加工,叶根与轮毂连接的轴及法兰可通过焊接或螺栓连接来实现。
铝合金叶片重量轻、易于加工,但不能做到从叶根至叶尖渐缩的叶片,因为目前世界各国尚未解决这种挤压工艺。
4)、玻璃钢叶片
所谓玻璃钢(glass fiber reinforced plastic,简称GFRP)就是环氧树脂、不饱和树脂等塑料渗入长度不同的玻璃纤维或碳纤维而做成的增强塑料。
增强塑料强度高、重量轻、耐老化,表面可再缠玻璃纤维及涂环氧树脂,其它部分填充泡沫塑料。
玻璃纤维的质量还可以通过表面改性、上浆和涂覆加以改进。
LM玻璃纤维公司现致力于开发长达54m的全玻纤叶片,其单位kWh成本较低。
5)、玻璃钢复合叶片
上世纪末,世界工业发达国家的大、中型风力发电机产品的叶片,基本上采用型钢纵梁、夹层玻璃钢肋梁及叶根与轮毂连接用金属结构的复合材料做叶片。
风力发电转子叶片用的材料根据叶片长度不同而选用不同的复合材料,目前最普遍采用的是玻璃纤维增强聚酯树脂、玻
璃纤维增强环氧树脂和碳纤维增强环氧树脂。
美国的研究表明,采用射电频率等离子体沉积去涂覆E-玻纤,其耐拉伸疲劳就可以达到碳纤维的水平,而且经这种处理后可以降低能实际上导致损害的纤维间微振磨损。
LM玻璃纤维公司进一步开发以玻璃钢为主,在横梁和叶片端部只少量选用碳纤维的61m大型叶片,以发展5MW的风力机。
6)、碳纤维复合叶片
随着发电单机功率的增大,要求叶片长度不断增加,其在风力发电上的应用也将会不断扩大。
对叶片来讲,刚度也是一个十分重要的指标。
研究表明,碳纤维(carbon fiber,简称CF)复合材料叶片刚度是玻璃钢复合叶片的两至三倍。
虽然碳纤维复合材料的性能大大优于玻璃纤维复合材料,但价格昂贵,影响了它在风力发电上的大范围应用。
因此,全球各大复合材料公司正在从原材料、工艺技术、质量控制等各方面深入研究,以求降低成本。
对于风力发电机而言,碳纤维是发展的潮流。
一般较小型的叶片(如22m长)选用量大价廉的E-玻纤增强塑料,树脂基体以不饱和聚酯为主,也可选用乙烯酯或环氧树脂,而较大型的叶片(如42m以上)一般采用CFRP或CF与GF的混杂复合材料,树脂基体以环氧为主。
玻璃纤维和碳纤维是目前叶片制造中最为重要的两种材料。