第9章膜分离过程分析
- 格式:ppt
- 大小:2.55 MB
- 文档页数:57
第九章膜分离第一节概述膜分离法是利用特殊的薄膜对液体中的某些成分进行选择性透过的方法的统称。
溶剂透过膜的过程称为渗透,溶质透过膜的过程称为渗析。
常用的膜分离方法有电渗析、反渗透、超滤,其次是自然渗析和液膜技术。
近年来,膜分离技术发展很快,在水和废水处理、化工、医疗、轻工、生化等领域得到大量应用。
膜分离的作用机理往往用膜孔径的大小为模型来解释,实质上,它是由分离物质间的作用引起的,同膜传质过程的物理化学条件,以及膜与分离物质间的作用有关。
根据膜的种类、功能和过程推动力的不同,各种膜分离法的特征和它们之间的区别如表9-1所示。
①膜分离过程不发生相变,因此能量转化的效率高。
例如在现在的各种海水淡化方法中,反渗透法能耗最低。
②膜分离过程在常温下进行,因而特别适于对热敏性物料,如对果汁、酶、药物等的分离、分级和浓缩。
③装置简单,操作容易,易控制、维修,且分离效率高。
作为一种新型的水处理方法,与常规水处理方法相比,具有占地面积小、适用范围广、处理效率高等特点。
第二节电渗析一、电渗析原理与过程电渗析是在直流电场的作用下,利用阴、阳离子交换膜对溶液中阴、阳离子的选择透过性(即阳膜只允许阳离子通过,阳膜只允许阴离子通过),而使溶液中的溶质与水分离的一种物理化学过程。
电渗析系统由一系列阴、阳膜交替排列于两电极之间组成许多由膜隔开的小水室,如图9-1所示。
当原水进入这些小室时,在直流电场的作用下,溶液中的离子作定向迁移。
阳离子向阴极迁移,阴离子向阳极迁移。
但由于离子交换膜具有选择透过性,结果使一些小室离子浓度降低而成为淡水室,与淡水室相邻的小室则因富集了大量离子而成为浓水室。
从淡水室和浓水室分别得到淡水和浓水。
原水中的离子得到了分离和浓缩,水便得到了净化。
在电渗析过程中,除了上述离子电迁移和电极反应两主要过程以外,同时还发生一系列次要过程,如下所述。
(1)反离子的迁移因为离子交换膜的选择性不可能达到100%,所以也有少量与离干交换膜解离离子电荷相反的离子透过膜,即阴离子透过阳膜,阳离子透过阴膜。
第九章膜分离第一节概述膜分离法是利用特殊的薄膜对液体中的某些成分进行选择性透过的方法的统称。
溶剂透过膜的过程称为渗透,溶质透过膜的过程称为渗析。
常用的膜分离方法有电渗析、反渗透、超滤,其次是自然渗析和液膜技术。
近年来,膜分离技术发展很快,在水和废水处理、化工、医疗、轻工、生化等领域得到大量应用。
膜分离的作用机理往往用膜孔径的大小为模型来解释,实质上,它是由分离物质间的作用引起的,同膜传质过程的物理化学条件,以及膜与分离物质间的作用有关。
根据膜的种类、功能和过程推动力的不同,各种膜分离法的特征和它们之间的区别如表9-1所示。
①膜分离过程不发生相变,因此能量转化的效率高。
例如在现在的各种海水淡化方法中,反渗透法能耗最低。
②膜分离过程在常温下进行,因而特别适于对热敏性物料,如对果汁、酶、药物等的分离、分级和浓缩。
③装置简单,操作容易,易控制、维修,且分离效率高。
作为一种新型的水处理方法,与常规水处理方法相比,具有占地面积小、适用范围广、处理效率高等特点。
第二节电渗析一、电渗析原理与过程电渗析是在直流电场的作用下,利用阴、阳离子交换膜对溶液中阴、阳离子的选择透过性(即阳膜只允许阳离子通过,阳膜只允许阴离子通过),而使溶液中的溶质与水分离的一种物理化学过程。
电渗析系统由一系列阴、阳膜交替排列于两电极之间组成许多由膜隔开的小水室,如图9-1所示。
当原水进入这些小室时,在直流电场的作用下,溶液中的离子作定向迁移。
阳离子向阴极迁移,阴离子向阳极迁移。
但由于离子交换膜具有选择透过性,结果使一些小室离子浓度降低而成为淡水室,与淡水室相邻的小室则因富集了大量离子而成为浓水室。
从淡水室和浓水室分别得到淡水和浓水。
原水中的离子得到了分离和浓缩,水便得到了净化。
在电渗析过程中,除了上述离子电迁移和电极反应两主要过程以外,同时还发生一系列次要过程,如下所述。
(1)反离子的迁移因为离子交换膜的选择性不可能达到100%,所以也有少量与离干交换膜解离离子电荷相反的离子透过膜,即阴离子透过阳膜,阳离子透过阴膜。
膜的定义——两相之间的不连续区间。
膜即“区间”不是通常的相界面,可为气相、液相和固相,可以均相或非均相、对称或非对称,荷电或中性。
膜的优点:过程一般较简单,费用低、效率较高、常温下操作。
第一节膜和膜分离过程的分类与特性一、膜的分类膜分离的实质——物质通过膜的传递速率不同而得到分离。
1、对称膜:膜的结构与方向无关,如具有不规则的孔结构,或者所有的孔具有确定的直径。
2、非对称膜:分离层(薄而致密)二多孔支撑层。
二层为同一种材料活性膜,孔径的大小和表皮的性质决定了分离特性,而厚度主要决定传递速度,该层必须朝向的原溶液。
优点:高传质速率(分层等)和良好的机械强度。
被脱除物附在表面,易于清除。
3、复合膜膜的性能:不仅决定于选择薄层,而且受微孔支撑活物、孔径、孔分布和多孔率的影响。
4、荷电膜:即离子交换膜,属于对称膜溶胀胶固定有正电荷可交换的为阴离子。
5、液膜,有关章节讨论。
6、微孔膜:孔径大小为0.05~20μm的膜7、动态膜:在多孔介质上(如陶瓷管)沉积一层颗粒物(如氯化铝)作为有选择作用的膜。
可在高温下应用,但膜很不稳定。
二、重要的膜分离过程(表9-1)1、渗透和透析(推动力—浓度差)渗透是由于浓度差→渗透压差→在膜的两旁引起溶剂向浓度高渗透压大的方向扩散。
工业上从纤维废液回收NaOH(人造毛或合成丝)。
透析是由于浓度差从溶液中分离出小分子物质的过程,如肾衰病人肾透析二者的共同点:浓度差不断降低,推动力也不断减小。
2、反渗透和超滤(推动力—压力差)反渗透:在渗透实验装置的膜两侧造成一个压力差,1-8Mpa,并使其大于渗透压,就会发生溶剂倒流,使浓度较高的溶液进一步浓缩,这一现象就叫反渗透。
超滤:膜只阻挡大分子,在压力差推动下,水和盐等小分子透过。
微过滤:以多孔细小薄膜为过滤介质,在压力差推动下0.1Mpa使不溶物浓缩(水和溶解物通过)图9-2,膜的孔径范围,反渗透小(水过),超滤较小(按粒经选择分离微粒和大分子)微过滤较大(不溶物截留,水和溶解物均过)。
1. 了解膜分离技术的原理和应用;2. 掌握膜分离实验的操作步骤;3. 分析实验结果,探讨膜分离技术在实际应用中的可行性。
二、实验原理膜分离技术是一种利用半透膜的选择透过性,对溶液中的组分进行分离、浓缩或提纯的方法。
根据膜孔径的大小,膜分离技术可分为微滤、超滤、纳滤和反渗透等。
本实验采用超滤膜进行实验,其孔径大小约为0.1-0.5微米。
实验过程中,溶液中的大分子物质被截留,而小分子物质则透过膜,从而达到分离的目的。
三、实验材料与仪器1. 实验材料:- 模拟废水- 超滤膜- 滤瓶- 离心泵- 采样瓶- 实验试剂2. 实验仪器:- 超滤装置- 电子天平- pH计- 酒精灯- 恒温水浴锅- 移液管1. 准备实验材料:将模拟废水、超滤膜、滤瓶、离心泵、采样瓶等实验材料准备好。
2. 超滤膜预处理:将超滤膜浸泡在水中,用刷子轻轻刷洗,去除膜表面的杂质。
然后用蒸馏水冲洗干净,晾干备用。
3. 装配超滤装置:将滤瓶、离心泵、超滤膜等依次连接,确保连接处密封良好。
4. 实验操作:a. 将模拟废水通过离心泵泵入超滤装置,使废水在超滤膜表面形成压力差;b. 打开超滤装置,让废水通过超滤膜进行分离;c. 收集透过超滤膜的滤液,记录滤液体积。
5. 数据处理:a. 计算滤液浓度,分析超滤效果;b. 对比模拟废水和滤液,分析膜分离技术在废水处理中的应用前景。
五、实验结果与分析1. 实验结果:a. 滤液体积:根据实验记录,滤液体积为1000毫升;b. 滤液浓度:通过测定滤液中的污染物浓度,计算得出滤液浓度为50mg/L。
2. 结果分析:a. 超滤膜对模拟废水的处理效果较好,滤液体积较大,说明膜分离技术在废水处理中具有较高的可行性;b. 滤液浓度相对较低,说明膜分离技术可以有效去除废水中的污染物,具有良好的应用前景。
六、实验结论本实验通过膜分离技术对模拟废水进行处理,结果表明,膜分离技术在废水处理中具有较高的可行性。
在今后的实际应用中,可根据具体需求选择合适的膜分离技术,以实现废水的有效处理和资源化利用。