影像物理学
- 格式:ppt
- 大小:2.59 MB
- 文档页数:22
医学影像技术相关专业知识考点总结医学影像技术是医学领域中非常重要的一个分支,它通过各种影像设备和技术,帮助医生诊断疾病,并监测治疗效果。
在医学影像技术的学习和工作中,有许多专业知识是必须要掌握的。
本文将对医学影像技术相关的一些重要考点进行总结,希望能够对相关专业的学生和从业者有所帮助。
一、放射物理学1.放射线的物理性质:了解放射线的产生、传播和相互作用的基本原理,以及放射线的特性和规律。
2.放射线的剂量学:掌握放射线剂量的计量单位、剂量的定义和计算方法,以及放射剂量对人体的影响及防护措施。
二、医学影像设备1. X射线成像:了解X射线成像设备的工作原理、特点和应用范围,以及在临床中的具体运用。
2. CT扫描:掌握CT扫描的原理、技术特点和图像重建方法,以及在不同病症诊断中的应用。
3. MRI成像:了解MRI成像的物理原理、脉序和成像方法,以及在临床诊断和研究中的应用。
4.超声成像:掌握超声成像的原理、技术特点和图像解剖学,以及在妇产科、心脏科等领域中的应用。
三、医学影像解剖学1.常见解剖结构:掌握人体各系统的解剖结构、部位和相互关系,熟悉正常解剖学图像。
2.异常解剖学表现:了解不同病理状态下的解剖结构变化,如肿瘤、损伤、器官功能异常等的影像特征。
四、影像诊断学1.影像学表现:掌握各种疾病在影像上的特征表现,包括形态学、密度、信号强度、血管影像等方面。
2.诊断要点:了解各种疾病的特殊影像学表现和诊断要点,如肺部结节、脑卒中、骨折等的影像学诊断方法。
五、医学影像信息学1. PACS系统:了解医学影像数字化和信息化的基本原理,熟悉PACS系统的构成和功能。
2. DICOM标准:掌握DICOM标准的内容和应用,了解医学影像信息的标准化和互操作性。
六、辐射安全与保护1.辐射防护知识:了解医学影像工作者的辐射防护知识,包括剂量监测、个人防护装备等。
2.辐射安全法规:熟悉我国和国际上的相关辐射安全法规和标准,以及医学影像工作者的职业健康管理规定。
第一章普通X射线影像(一)单项选择题A 1.伦琴发现X射线是在A.1895年 B.1795年 C.1695年 D.1885年 E.1875年C 2.关于X射线的产生,下述哪项不正确A.需要有自由电子群的发生 B.电子群的高速由阴极向阳极行进 C.绝大部分(99%以上)动能转变为X线 D.高速电子流突然受到阻挡 E.同时产生了大量的热能A 3.标识X射线的波长仅取决于A.阳极靶物质 B.管电压 C.管电流 D.灯丝温度 E.阴极材料B 4.X线管是A.真空荧光管 B.真空二极管 C.真空五极管 D.真空四极管 E.真空三极管A 5.产生标识X射线的最低激发电压U必须满足的关系是A.eU≥W B.eU≤W C.eU≈W D.eU≠W E.eU∝WC 6.下列关于X射线的本质的描述,正确的是A.只有X射线管球才能产生X线 B. 凡是X射线都可用于影像诊断 C.X射线是一种波长很短的电磁波 D.比红外线波长长E.波长范围为5~10 nmA 7.对于给定的靶原子,各线系的最低激发电压大小排列顺序为A. U K> U L>U M B.U K < U L < U M C. U K > U M > U L D.U K < U M < U L E.U K = U L= U MD 8.焦片距对成像的影响A. 与半影大小成正比 B.与半影大小无关 C.与所用X线量成反比 D.与所用X 射线量成正比 E.近距离投照,焦片距为20~35cmE 9.X射线的特性,下列哪项在临床上的应用最不重要A.电离效应 B.荧光效应 C.穿透性 D.摄影效应 E.以上都不是E 10.X射线成像的基础基于A.荧光效应 B.感光效应 C.电离效应 D.生物效应 E.穿透性A 11.透视检查的基础基于A.荧光效应 B.感光效应 C.电离效应 D.生物效应 E.穿透性B 12.X射线摄影的基础基于A.荧光效应 B.感光效应 C.电离效应 D.生物效应 E.穿透性C 13.X射线产生过程中,电子高速运动所需能量主要取决于A.靶物质原子序数 B.管电流 C.管电压 D.旋转阳极转速 E.灯丝焦点大小B 14.下列哪种说法是不正确的A.X射线图像由不同灰度影像构成 B.X射线影像不会发生形状失真 C.X射线束是锥形束投射的 D.X射线影像有一定放大效应 E.X射线影像可产生伴影D15.在产生通常诊断条件下的X射线时,大部分的能量都转化为热能,产生X射线的能量只占A.1% B.5% C.0.1% D.0.2% E.0.5%只有凭借毅力,坚持到底,才有可能成为最后的赢家。
物理知识对医学影像学的重要性医学影像学是现代医学中不可或缺的一部分,它通过使用各种成像技术,如X射线、CT扫描、MRI和超声波等,帮助医生诊断和治疗各种疾病。
然而,很少有人意识到,物理知识在医学影像学中的重要性。
事实上,物理知识是医学影像学的基础,它为我们理解和应用这些成像技术提供了必要的工具。
首先,物理知识帮助我们理解成像技术的原理。
例如,X射线成像是通过将X射线束通过人体,然后使用探测器测量透射的X射线的强度来生成图像的。
了解X射线的特性,如穿透能力和吸收能力,有助于我们理解为什么不同组织在X射线图像中呈现不同的亮度。
同样,MRI成像是通过利用磁场和无线电波来生成图像的,了解磁场和无线电波的原理对于理解MRI图像的形成过程至关重要。
因此,物理知识为我们提供了解释成像技术如何工作的基础。
其次,物理知识帮助我们优化成像技术。
医学影像学的目标是获得高质量的图像,以便医生能够准确地诊断和治疗疾病。
物理知识帮助我们了解如何调整成像设备的参数,以获得最佳的图像质量。
例如,了解X射线的能量和剂量之间的关系,可以帮助我们选择适当的X射线能量和剂量,以最大程度地减少辐射对患者的伤害。
同样,了解MRI扫描中的磁场强度和扫描时间之间的关系,可以帮助我们优化扫描参数,以获得更清晰的图像。
因此,物理知识在优化成像技术方面发挥了重要作用。
此外,物理知识还帮助我们解决成像技术中的技术问题。
医学影像学中常常会遇到各种技术问题,如图像模糊、噪声和伪影等。
物理知识帮助我们理解这些问题的根本原因,并提供解决方案。
例如,图像模糊可能是由于成像设备的分辨率不足或患者的运动引起的。
了解分辨率和运动对图像质量的影响,可以帮助我们采取相应的措施,如增加设备的分辨率或使用运动校正技术,以减少图像模糊。
同样,噪声和伪影可能是由于成像设备的故障或人为因素引起的。
物理知识帮助我们识别和解决这些问题,以确保获得准确和可靠的图像。
总之,物理知识在医学影像学中起着至关重要的作用。
物理学在医学影像中的应用近年来,随着医学技术的不断进步,物理学在医学影像领域的应用日益广泛。
通过探究物理学原理,医学专家们能够更准确地诊断疾病、优化治疗方案,并提高患者的整体医疗体验。
在本文中,将探讨物理学在医学影像中的应用,并探讨其对医学界的重要意义。
一、放射学放射学是医学中物理学应用最广泛的领域之一。
通过利用电磁波或粒子束的特性,医生可以观察和诊断患者内部的身体结构与功能。
X射线成像是其中最常见的技术之一。
这种技术通过将患者暴露在X射线束下,利用体内不同组织对射线的吸收能力的差异,形成影像来检测骨骼疾病、肺部感染以及其他一些疾病。
二、核医学核医学是物理学在医学影像中的另一个重要应用领域。
核医学利用放射性同位素来诊断和治疗多种疾病。
其中包括单光子发射计算机断层扫描(SPECT)和正电子发射断层扫描(PET)等技术。
这些技术通过向患者体内注射放射性同位素,并利用探测器来测量体内放射性同位素的分布与活动,从而生成影像。
这些技术常用于心血管疾病、癌症等疾病的诊断和治疗。
三、磁共振成像磁共振成像(MRI)技术利用强大的磁场和无害的无线电波来生成高清晰度的人体内部图像。
这种技术不仅可以观察人体组织的解剖结构,还可以检测和分析生物组织的功能和代谢状态。
MRI技术在神经学、脑科学和肌肉骨骼学等领域有着广泛的应用。
通过物理学原理,医生们可以获得关于患者体内组织的详细信息,为疾病的早期诊断和治疗提供重要依据。
四、超声波技术超声波技术通过发送高频声波到人体,利用回波的形式来生成人体内部的图像。
它是一项安全、无创伤且低成本的成像技术,广泛应用于妇产科、心血管病学和消化系统检查等领域。
通过物理学原理,医生可以根据超声波在组织中传播和反射的规律,可视化内部组织和器官的结构,并检测异常情况,如肿瘤和囊肿等。
综上所述,物理学在医学影像中的应用对于提高医疗诊断的准确性和治疗的有效性起着至关重要的作用。
放射学、核医学、磁共振成像和超声波技术等物理学从学科为医学专家们提供了一系列强大而多样化的工具,以更好地了解和治疗疾病。
其他系统川北医学院-医学影像技术-医学影像物理学试卷)所有答案
RI BRI BRI最常用的成像原子核是();
A.氢原子核 B钠原子核 C磷原子核 D铁原子核
答案是:A氢原子核
5以下与超声多普勒效应无直接关联的是();
A.超声的频率 B超声声速 C声阻抗 D源-接受体连线与流
速夹角
答案是:C声阻抗
4用脉冲回波测距原理设计制造的超声诊断仪是();
A.A型 B型 D型 B B型 M型 D型
C M型 B型 A型
D D型 A型 M型
答案是:C M型 B型 A型
3超声波发射和接收主要的物理原理是();
A.电离效应 B光电效应 C多普勒效应 D压电效应
答案是:D压电效应
2软X射线成像主要是指();
A.X射线能量低 B.X射线量小 C.X射线能量范围较宽 D.小灯丝照射
答案是:A.X射线能量低
1.减小实际焦点的方法不包括以下哪一点?();
A.缩短灯丝长度 B.采用特殊过滤片 C.减小靶倾角 D.采用不同大小灯丝
C产生的X射线绝大部分是特征X射线;D仅有1%的电子能量以热量的形式沉积在钨靶
答案是:A.缩短灯丝长度
1。
医学影像物理学试题及答案 第六章 放射性核素显像6-1 放射性核素显像的方法是根据A .超声传播的特性及其有效信息,B .根据人体器官的组织密度的差异成像,C .射线穿透不同人体器官组织的差异成像,D .放射性药物在不同的器官及病变组织中特异性分布而成像。
解:根据放射性核素显像的定义,答案D 是正确的。
正确答案:D6-2 放射性核素显像时射线的来源是A .体外X 射线穿透病人机体,B .引入被检者体内放射性核素发出,C .频率为2.5MHz ~7.5MHz 超声,D .置于被检者体外放射性核素发出。
解:A 是X 照相和X-CT 的射线来源,C 是超声成像所用的超声,对于B 、D 来说,显然B 正确。
正确答案:B6-3 一定量的99m Tc 经过3T 1/2后放射性活度为原来的A .1/3,B .1/4,C .1/8,D .1/16。
解根据2/1/021T t A A ⎪⎭⎫⎝⎛=,当t =3T 1/2时,80A A =。
正确答案:C6-4 在递次衰变99Mo→99m Tc 中,子核放射性活度达到峰值的时间为A .6.02h ,B .66.02h ,C .23h ,D .48h 。
解 参考例题,T 1 1/2=66.02h, T 2 1/2=6.02h, λ1=ln2/T 1 1/2, λ2= ln2/T 21/2,根据公式2121m ln 1λλλλ-=t 计算得出,t m =22.886h=22h53min正确答案:C 6-5 利用131I 的溶液作甲状腺扫描,在溶液出厂时只需注射1.0ml就够了,若出厂后存放了4天,则作同样扫描需注射溶液为(131I 半衰期为8天)A .0.7ml ,B .1.4ml ,C .1.8ml ,D .2.8ml 。
解:作同样扫描必须保证同样的活度,设单位体积内131I 核素数目为n ,根据放射性衰变规律,2/1/021)(T t n t n ⎪⎭⎫⎝⎛=,T 1/2=8d刚出厂时,V 0=1ml 溶液放射性活度为A 0=λN 0=λn 0V 0, 存放t =4d 后,V 1体积的溶液放射性活度为A 1=λN 1=λn 1V 1, 根据A 1=A 0,得出ml 4.1220/01012/1≈===V V n n V V T t 正确答案:B6-6 放射系母体为A ,子体为B ,其核素数目分别为 N A (t )、N B (t ),放射性活度为A A (t )、A B (t ),达到暂时平衡后A .N A (t )=NB (t ),B .A A (t )=A B (t ),C .N A (t )、N B (t )不随时间变化,D .N A (t )、N B (t )的比例不随时间变化。
【关键字】复习题第一章X射线物理第一节X射线的产生1.X射线产生条件:电子源、高速电子流、阳极靶2.靶去倾角越小,有效焦点的长度越小,即有效焦点的面积越小;实际焦点越大有效焦点的面积也增大,影像在胶片上所形成影像的清晰度;焦点上α射线增强度的差别主要是由灯丝,聚焦罩和加在聚焦罩上的电压来决定。
影像有效焦点大小的因素:灯丝大小、管电压和管电流、靶倾角3.电子与原子的外层电子作用而损失的能量统称为碰撞损失。
凡属电子与原子核或原子的内层电子作用而损失的能量统称为辐射损失。
100KV管电压下,电子撞击在钨靶上,99.1%的能量以碰撞损失,仅有0.9%的能量产生X射线。
4.连续X射线:韧致辐射是高速电子与靶原子核发生相互作用的结果,韧致辐射能谱连续。
短波极限(λmin),hνmax=eU,λmin=,λmin=(nm)。
连续X射线的短波极限只与管电压有关,而与其他因素无关。
5.特征X射线:如果高速电子没有与靶原子的外层电子作用,而是与内层电子发生作用,就会产生特征辐射,特征辐射的谱是线状的。
X射线的能量等于发生跃迁的来年各个轨道电子的结合能之差。
只有当入射电子的动能大于靶原子的某一壳层电子的结合能时,才能产生特征X射线。
而入射电子的动能完全由管电压决定。
因此,管电压U须满足eU≥Wi6.影响X射线能谱的大小和相对位置的因素①管电流:能谱的幅度②管电压:能谱的幅度和位置③附加滤过:能谱幅度,在低能时更加有效④靶材料:能谱的幅度和标识X射线谱的位置⑤管电压波形:能谱幅度,在高能时更加有效第二节X射线辐射场的空间分布1.X射线强度:X射线在空间某一点的强度是指单位时间内通过笔直于X射线传播方向上的单位面积上的光子数量与能量乘积的总和。
X射线强度是由光子数目和光子能量两个因素决定的I=N-hv2.X射线的量与质:X射线的量决定于X射线束中的光子数。
X射线的质只与光子的能量有关,而光子的能量又由管电压和滤过厚度有关。
一、单项选择题(每小题0.5分,共6分)1、关于X 线性质的叙述哪个是错误的( D )A、 X线与红外线紫外线一样,均属电磁波; B 、X线具有波动性和微粒二重性C 、X线的干射衍射现象证明它的波动性,康普顿效应证明它的微粒性 D、光电效应证明它的波动性 E、 X线不具有质量和电荷。
2、一般摄影用X 线胶片中不包括下列哪些物质( D )A、片基B、保护层C、乳剂层D、防反射层E、防静电层3、IP板描述错误的是( D )A、 IP中荧光物质对放射线、紫外线敏感,所以要做好屏蔽;B、 IP中光激励发光物质常用材料是掺杂2价铕离子的氟卤化钡的结晶C 、IP使用时要轻拿轻放D、曝光后的IP,其信息不随时间延长而消退4、非晶态氢化硅型平板探测器单个像素尺寸是( C )5、A、0.139cm B、0.143cm C、0.143mm D、0.139mm6、5/X线信息是哪一个阶段形成的( A )7、A、X线透过被照体以后 B、X线照片冲洗之后 C、X线到达被照体之前D、视觉影像就是X 线信息影像E、在大脑判断之后6、在数字图像处理技术中,为使图像的边界轮廓清晰,可采用的计算机图像处理技术为( B )A、图像平滑B、图像锐化C、图像缩小D、图像放大7、数字化X线成像技术与传统X线成像技术相比说法错误的是(B )A、量子检测效率高B、动态范围小C、空间分辨力低D、对比度分辨力高。
8多选、产生X线的条件应是下列哪几项(ABDE )A、电子源B、高真空C、旋转阳极D、高速电子的产生E、高速运行的电子突然受阻9多选、在医学放射诊断范围内,利用了X 线与物质相互作用的哪几种形式( BCD )A、相干散射B、光电效应C、康普顿效应D、电子对效应E、光核效应10 X线照射物质时衰减程度与(D)无关AX线的能量 B原子序数 C 密度 D 每克电子数 D X线灯丝的温度11 DDR那个定义错(D)A 在计算机控制下工作 B用一维二维探测器C X线信息转化为数字图像D 使用高强度磁场成像12、CR的基本成像过程不包括(B)A影像信息的采集B远程传输C 读取D 处理二、填空题(每小题2分,共28分)1、医用X线与物质产生的效应主要有光电效应、康普顿效应、电子对效应。
医学物理学基础知识总结医学物理学是一门将物理学原理和方法应用于医学领域的交叉学科,它对于理解人体的生理和病理过程、诊断和治疗疾病都具有重要的意义。
下面我们来详细了解一下医学物理学的一些基础知识。
一、医学影像物理学医学影像在疾病的诊断和治疗中起着至关重要的作用。
1、 X 射线成像X 射线具有很强的穿透能力,不同组织对 X 射线的吸收程度不同。
当 X 射线穿过人体时,在胶片或探测器上形成明暗不同的影像,从而显示出人体内部的结构。
例如,在胸部 X 光片中,可以清晰地看到肺部、心脏和骨骼的形态。
2、磁共振成像(MRI)利用磁场和射频脉冲使人体组织中的氢原子核发生共振,然后接收共振信号并进行处理,得到组织的图像。
MRI 对软组织的分辨能力较高,能够清晰地显示大脑、脊髓、关节等部位的结构。
3、计算机断层扫描(CT)通过围绕人体旋转的 X 射线源和探测器,获取多个角度的 X 射线投影数据,然后通过计算机重建出断层图像。
CT 对于检测骨骼、肺部和腹部等部位的病变具有很高的准确性。
4、超声成像利用超声波在人体组织中的传播和反射特性来成像。
它具有无创、实时、便携等优点,常用于妇产科、心血管科等领域的检查。
二、核医学物理学核医学利用放射性核素进行诊断和治疗。
1、放射性核素显像将放射性药物引入人体,通过探测放射性核素发出的射线,获得器官或组织的功能和代谢信息。
例如,甲状腺显像可以评估甲状腺的功能和形态。
2、放射性核素治疗利用放射性核素释放的射线对病变组织进行照射,达到治疗的目的。
如碘-131 治疗甲状腺功能亢进症和甲状腺癌。
三、放疗物理学放疗是治疗肿瘤的重要手段之一。
1、放射源包括 X 射线机、钴-60 治疗机和直线加速器等。
不同的放射源具有不同的能量和剂量分布特点。
2、剂量学准确计算肿瘤和正常组织所接受的剂量,以确保治疗效果并减少副作用。
这涉及到辐射场的测量、剂量计算算法等。
3、治疗计划设计根据患者的肿瘤位置、形状和大小,以及周围正常组织的情况,制定最优的放疗方案,使肿瘤接受足够的剂量,同时保护正常组织。
医学影像物理学复习资料X射线⼀、X射线的基本特性1. X射线在均匀的、各向同性的介质中,是直线传播,具有光的⼀切特性,具有波粒⼆象性。
2. X射线不带电,不受外界磁场和电场影响;3. X射线具有贯穿本领;(不同组织穿透性不同:⾻骼--软组织--脂肪--肺、肠道)4. X射线的荧光作⽤;(X射线照射荧光物质可发出荧光)透视、增感屏5. X射线的电离作⽤;(X光⼦撞击电⼦--⼀次电离--撞击其它原⼦--⼆次电离)X射线损伤和治疗基础6.X射线的热作⽤;7. X射线的化学和⽣物效应:与物质进⾏光化学反应,⽣物体内电离和激发作⽤⼆、X射线的产⽣医学成像⽤的X射线辐射源都是利⽤⾼速运动的电⼦撞击靶物质⽽产⽣的。
1.产⽣X射线的四个条件:(1)具有电⼦源(阴极)产⽣发射电⼦;(2)有加速电⼦使其增加动能的电位差(⾼管电压)(3)有⼀个⾼度真空(P<10-4Pa)的环境(玻璃外壳),使电⼦在运动过程中尽可能减少能量损耗,保护灯丝不被氧化。
(4)有⼀个受电⼦轰击⽽辐射X射线的物体(阳极靶)三、X射线管的阴极体作⽤:①使电⼦初聚焦:达到初聚焦作⽤,增加X线的产⽣率。
②防⽌⼆次电⼦危害:阴极体可收集⼆次电⼦,防⽌危害。
四、阳极的作⽤:1,、是⼀个导电体,它接收从阴极发射出的电⼦并将它们传导⾄与X射线管相连的电缆,2、使其能返回⾼压发⽣器;3、为靶提供机械⽀撑;良好的热辐射体。
五、焦点:1、实际焦点:灯丝发射的电⼦,经聚焦加速后,撞击在阳极靶上的⾯积。
2、有效焦点:X射线管的实际焦点在垂直于X射线管轴线⽅向上投影的⾯积,即X射线照射在胶⽚上的有效⾯积。
3、补充:影响焦点⼤⼩的因素有哪些?答:灯丝的形状、⼤⼩及在阴极体中的位置、管电流、管电压和阳极的靶⾓θ有关。
管电流升⾼,焦点变⼤;管电压升⾼,焦点变⼩。
4、实际焦点和有效焦点⼤⼩的影响:答:实际焦点⾯积增⼤,散热好,但有效焦点⾯积也增⼤,胶⽚影像模糊;实际焦点⾯积减⼩,阳极靶单位⾯积上的电⼦密度增⼤,实际焦点温度增⼤,阳极损坏;5、焦点对成像的影响:有效焦点越⼩,影像越清晰;有效焦点为点光源时:胶⽚图象边界清晰;有效焦点为⾯光源时:胶⽚图象边界模糊有半影;半影⼤⼩为:d(⼩焦点,短距离);管电流增⼤,焦点增⼤,影像质量下降;管电压增⼤,焦点增⼤,影像质量下降;六、能量损失形式分:1、碰撞损失(collisionloss):(占电⼦总能量的99%)⾼速电⼦与阳极靶原⼦核的外层电⼦相互作⽤⽽损失的能量;全部转化为热能。
]医学影像物理学(Z)1、X射线产生条件:①电子源②高速电子流③适当的靶物质。
2、X射线管发出的X射线是由连续X射线和标识X射线两部分组成的混合射线。
3、连续X射线(又称韧致辐射):是高速电子流撞击阳极靶面时,与靶物质的原子核相互作用而产生的、连续波长的X射线(连续X射线)的过程。
4、标识放射(又称特征辐射):标识X射线的波长同阳极靶原子的结构有着密切的联系,仅取决于阳极靶物质,与X射线产生过程中的其它因素无关。
不同靶材料的辐射光子的能量和波长也不同。
每一种元素的标识X射线的波长是固定不变的。
标识辐射的X射线波长是由跃迁的电子能量差决定的,与高速电子的能量(管电压)无直接关系,主要决定于靶物质的原子序数,原子序数越高,产生的标识辐射的波长越短。
5、X射线的基本特性:X射线的穿透作用、X射线的荧光作用、X射线的电离作用、X射线的热作用、X射线的化学和生物效应。
6、X射线的质:又称线质,表示X射线的硬度,即X射线穿透物体的能力与光子能量的大小有关,光子的能量越大穿透能力越强,越不容易被物体吸收。
7、X射线的量:垂直于X射线束的单位面积上、单位时间内通过的光子数称为X 射线的量。
(8、光电效应:入射光子与原子的内层电子作用时,将全部能量交给电子,获得能量的电子摆脱原子核的束缚而成为自由电子(光电子),而光子本身整个被原子吸收的过程称为光电效应。
9、在光电效应过程中产生:(1)负离子(光电子、俄歇电子);(2)正离子(丢失电子的原子);(3)标识X射线。
10、X射线诊断中的光电效应:(1)利在于可以产生高质量X射线照片,一是因为它不产生散射线,减少了照片灰雾,二是增加了射线对比度,光电效应发生的概率与原子序数的4次方成正比,增加了不同组织之间的吸收差异。
(2)弊在于入射光子的能量通过光电效应全部被人体吸收了,加大了辐射损伤,为了减少辐射对人体的损害,经常采用高千伏(高能量)摄影,减少光电效应发生的概率。