分数小数混合运算练习进步题
- 格式:doc
- 大小:480.76 KB
- 文档页数:28
精品文档小学小数分数加减乘除混合运算练习题及答案1、解方程。
5x,450 12,421.2×6+4x,1.5x,x,22.52、用简便方法计算。
0.2×3.2×12.50.25×443、用递等式计算。
2.6+1.4×1.5,1.52.6+2.4×30.8?[14-] [60-2.881?0.43-0.24×3.528-777×9+1111×336×10.12.2×4+17.8×?12.15.6?16× ]?0.120×[?0 .4+0.15]2.55×7.1+2.45×7.1 0.8×[15.5-]?31.5×4?0.64×25×7.8+2.?2.5+2.5?236.25?4.25×9.9180,705×624?2.4,2.5×0.8671×15-9741 / 8精品文档5.67×0.2-0.620.78+5.436+110.?4x8?9-1?320.x2?9+1?37.2?0.8-1.2×52.55×7.1+2.45×7.1?69×12+1419.4×6.1×2.18.1×0.92+3.930.4×0.7×0.2.×?4+1?.x5?6+5?14.1x5?6-5?16.?9x18-14x2?5.5?6. 178-145?5×6+46.5×8-77×9+1111×?531.5×4?0.64×25×7.8+2.?2.5+2.5?2194,64.8?1.8×0.6.72?4.25×9.9180,705×624?2.4,2.5×0.?7671×15-974469×12+14925.67×0.2-0.620.4×0.7×0.250.78+5.436+1240×78?2160?〔×18〕 8085×81432?[37.85-,76×642 / 8精品文档405× 19.4×6.1×2.18.1×0.92+3.0.043×24+0.87.07×0.86+9.11437×27,27×56〔75-〕?15,840?24×5325?13×8870?1437×27,27×563] ×306× [192,]×6781432? ,76×60,?0.182.881?0.43,0.24×3.50.8×〔15.5-〕 ?5194,64.8?1.8×0.936.72?4.25×9..416?0.8×[?1.2] ?8. 0.12×.8?0.12×4.8?12-700? 156×[?3]?1.685+14× 120-36×4?18+359.72×1.6-18.305?.2×?1.??8.50.12×.8?0.12×4.8?1.6120-36×4?18+315-10.75×0.4-5.47+45×2-4160?52?[×0.9-1.15] ?2.5?1.65.4?[2.6×+0.62]12×6?-.2×6+?1.?1. 120-144?18+347+45×2-4160?5 ? 5?812-700? 120-36×4?18+35?8.50.12×.8?0.12×4. 0.8×〔15.5-〕?1.5×4?0.64×25×7.8+2.?2.5+2.5?2194,64.8?1.8×0.6.72?4.25×9.180,705×63 / 8精品文档24?2.4,2.5×0. ?7671×15-974469×12+1492405×0.8×[?1.2] 19.4×6.1×2.67×0.2-0.618.1×0.92+3.924+0.875×90.4×0.7×0.20.75×10 100-56.2331.50,160?40?.120-144?18+33.347+45×2-4160?52?.95?.178-145?5×6+420+580-64×21?2837.812-700?分数乘除法混合运算练习题1、直接写结果。
分数小数四则混合运算练习题,及答案教学内容:P75练习十八第11~17题教学目标:1、使学生进一步熟练掌握分数、小数四则混合运算的运算方法。
2、能熟练地根据不同采取合理灵活的计算方法,正确地进行计算。
教学重点:分数、小数四则混合运算的方法教学难点:合理选择灵活的计算方法教学过程:一、基本训练1、口算⑴把分数化成小数,小数化成分数0.052.6250.16311─5013─2539─201.0641─8⑵P7511独立练习集体订正,指名回答,你是怎么算的?0.26+11─25化小数算0.5+1─33.5-21─3化分数算0.21×2─33─4×1.2直接约分算简便等⑶不用计算,很快地写出得数①1÷11─4-0×4─5+0.2=②37─8÷1-3.875÷37─8=③5─6×5─6÷5─6×5─6=④41─2×25─6-25─6×4.5=⑤0.6÷6─11×0.6=小结:①在分数、小数四则混合运算中,同样要注意掌握0、1及相同数等一些特殊运算。
②同时在这些特殊运算中地要注意运算的顺序。
二、指导性练习1、37─9×4─5+2─9÷11─4⑴要求学生观察,并思考:这道题可以用简便算法吗?为什么?⑵怎样简便,根据什么?⑶学生练习⑷小结提问四则运算中可以运用哪些定律或性质使计算简便⑸练习a ×15b ×①观察题目有何特点?②讨论:可以运用什么运算定律③学生练习,指名板演,讲评⑹小结在计算分数、小数四则混合运算时,要认真观察题目,能简便运算的要简便算法。
三、巩固性练习1、P7 14提问:这题该如何算?2、P7 15学生独立练习集体讲评四、提高练习1、P7 16先让学生列方程求出长方体大理石的宽再求出长比宽多多少分米?2、P7 17引导学生认真寻找规律,发现每相信的两个数中后面的数都是前面数的2─3答案525─2377─81五、全课小结六、布置作业1、课作P7512P76131、家作练习册P7 4选四题板书设计:课后小结:分数、小数四则混合运算60题强化训练1、0.5?132、1?0.53、3.75?1、58?0.1267、234?1.9、0.5?1310 11、7.75?51 124、2230.、5340.、1134.、2341.、0.7?150.8?14、?0.115415、1?0.16、1.5?17、421?2.51819、114?4?0.22021、223?4126?52223、11?4.5?0.6?2233、250.、1.8?56?1.8?56、2156?5.2?12、221297?3.5?34?13?910240.256、??177427、4716-78?0.125-31429、11?0.25?224501、?313?1?1112 33、3.28?21825?6.72?511242101028、?525、4? 、 ?0.625、 [5?375118?]?8321129523??56?1??296?0.8?1?5、36、4437、11?39、?24041、73?5.2?15.2?2455?734211114、 ?120、 1.25?34155?14?9.2?4、?111?12?3243、13473154、 0.2545445、425?34?1.4?647、2.4?34?9.6?243?65?1.9、12?5213?4?0.355051、21?37?0.32?92413?7?12?13?0.324412、.56?23337?1.56?27?27、 1253?[76??413] 、4111132?14?162?14?52、471274713?27?47?413?67?413小数与分数的混合运算内容精要分数、小数四则混合运算的顺序与整数四则混合运算的顺序相同。
小学小数分数加减乘除混合运算练习题及答案1. 简介小学生在学习数学的过程中,需要掌握小数和分数的加减乘除混合运算。
这些运算对于他们的数学基础和应用能力的提升都非常重要。
本文将为小学生提供一些小数分数加减乘除混合运算的练习题及其答案,以帮助他们更好地理解和掌握相关知识。
2. 加法练习题2.1 计算题1) 0.3 + 0.2 = ?2) 1/4 + 1/3 = ?3) 0.5 + 3/8 = ?4) 2 3/4 + 1 1/2 = ?5) 1.25 + 0.75 = ?2.2 答案1) 0.3 + 0.2 = 0.52) 1/4 + 1/3 = 7/123) 0.5 + 3/8 = 0.8754) 2 3/4 + 1 1/2 = 4 1/45) 1.25 + 0.75 = 23. 减法练习题3.1 计算题1) 0.6 - 0.3 = ?2) 1/2 - 1/4 = ?3) 2 3/4 - 1 2/3 = ?4) 5/8 - 1/4 = ?5) 5.6 - 2.8 = ?3.2 答案1) 0.6 - 0.3 = 0.32) 1/2 - 1/4 = 1/43) 2 3/4 - 1 2/3 = 1 1/124) 5/8 - 1/4 = 3/85) 5.6 - 2.8 = 2.84. 乘法练习题4.1 计算题1) 0.2 × 0.3 = ?2) 1/3 × 3/4 = ?3) 2 1/2 × 1 1/4 = ?5) 2.5 × 1.6 = ?4.2 答案1) 0.2 × 0.3 = 0.062) 1/3 × 3/4 = 1/43) 2 1/2 × 1 1/4 = 3 1/84) 0.5 × 2/5 = 0.25) 2.5 × 1.6 = 45. 除法练习题5.1 计算题1) 0.6 ÷ 0.2 = ?2) 2/3 ÷ 1/4 = ?3) 2 1/2 ÷ 1 1/5 = ?4) 4/5 ÷ 1/2 = ?5) 3.2 ÷ 1.6 = ?5.2 答案1) 0.6 ÷ 0.2 = 32) 2/3 ÷ 1/4 = 8/33) 2 1/2 ÷ 1 1/5 = 25) 3.2 ÷ 1.6 = 26. 混合运算练习题6.1 计算题1) 0.5 + 1/4 - 1/8 = ?2) 3 1/2 − 2 3/8 × 1/4 + 1 1/2 = ?3) 2.8 × 0.4 + 1/5 − 0.7 = ?4) 2 1/4 ÷ 1/3 + 1 1/2 × 2/5 = ?5) (2 1/2 - 1 1/4) × (1/3 + 1/5) = ?6.2 答案1) 0.5 + 1/4 - 1/8 = 0.6252) 3 1/2 − 2 3/8 × 1/4 + 1 1/2 = 43) 2.8 × 0.4 + 1/5 − 0.7 = 1.524) 2 1/4 ÷ 1/3 + 1 1/2 × 2/5 = 105) (2 1/2 - 1 1/4) × (1/3 + 1/5) = 7/207. 结论通过以上练习题,小学生能够熟练掌握小数分数加减乘除混合运算的基本方法和技巧。
六年级上册分数与小数混合运算专项练习
题
第一部分:分数的四则运算
1. 求下列分数的和:2/3 + 1/4 = ?
2. 求下列分数的差:5/6 - 1/3 = ?
3. 求下列分数的积:2/3 × 3/4 = ?
4. 求下列分数的商:3/5 ÷ 2/3 = ?
第二部分:小数的四则运算
1. 求下列小数的和:0.25 + 0.1 = ?
2. 求下列小数的差:0.6 - 0.15 = ?
3. 求下列小数的积:1.2 × 0.5 = ?
4. 求下列小数的商:0.75 ÷ 0.3 = ?
第三部分:分数与小数混合运算
1. 求下列混合数的和:2 1/4 + 0.5 = ?
2. 求下列混合数的差:3 2/3 - 1.25 = ?
3. 求下列混合数的积:1 3/4 × 2.5 = ?
4. 求下列混合数的商:4 1/2 ÷ 0.75 = ?
第四部分:综合运算题
1. 小明参加长跑比赛,他以每小时10.5公里的速度跑了3小时,他总共跑了多少公里?
2. 小燕买了一批水果,其中2/5是苹果,苹果有6个一盒,小
燕一共买了18个盒子的苹果,她买了多少个苹果?
3. 小华的月工资是8000元,她每月将工资的20%存入银行,
她每月存入银行多少元?
4. 小李家有一块地,面积是500平方米,他打算种菜,每平方
米可以种4棵菜苗,他能种多少棵菜苗?
以上是六年级上册分数与小数混合运算的专项练题,请同学们
认真复相关知识,做好练,加油!。
实数实数 有理数和无理数统称为实数。
实数⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数0有理负分数正分数分数负分数正整数整数数 (还有其它的分类方法)实数与数轴上的点是一一对应的关系。
无限不循环小数叫做无理数,如π,3,2等。
有理数包括:(1)自然数:数0,1,2,3,……叫做自然数. (2)正整数:+1,+2,+3,……叫做正整数。
(3)负整数:-1,-2,-3,……叫做负整数。
(4)整数:正整数、0、负整数统称为整数。
(5)分数:正分数、负分数统称为分数。
(6)奇数:不能被2整除的整数叫做奇数。
如-3,-1,1,5等。
所有的奇数都可用2n-1或2n+1表示,n 为整数。
(7)偶数:能被2整除的整数叫做偶数。
如-2,0,4,8等。
所有的偶数都可用2n 表示,n 为整数。
(8)质数:如果一个大于1的整数,除了1和它本身外,没有其他因数,这个数就称为质数,又称素数,如2,3,11,13等。
2是最小的质数。
(9)合数:如果一个大于1的整数,除了1和它本身外,还有其他因数,这个数就称为合数,如4,6,9,15等。
4是最小的合数。
一个合数至少有3个因数。
(10)互质数:如果两个正整数,除了1以外没有其他公因数,这两个整数称为互质数,如2和5,7和13等。
有理数运算法则加法定律1.同号相加,取相同符号,并把绝对值相加.2.绝对值不相等的异号两数加减,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.3.一个数同0相加,仍得这个数.4.相反数相加结果一定得0。
交换律和结合律有理数的加法同样拥有交换律和结合律(和整数得交换律和结合律一样)用字母表示为:交换律:a+b=b+a结合律:a+b+c=(a+b)+c=a+(b+c)运算要点:同号相加不变,异号相加变减.欲问符号怎么定,绝对值大号选。
在进行有理数加法运算时,一般采取:1.是互为相反数的先加(抵消);2.同号的先加;3.同分母的先加;4.能凑整数的先加;5.异分母分数相加,先通分,再计算。
有理数减法法则:减去一个数,等于加上这个数的相反数。
其中:两变:减法运算变加法运算,减数变成它的相反数。
一不变:被减数不变。
可以表示成:a-b=a+(-b)。
乘法运算法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘。
(2)任何数字同0相乘,都得0。
(3)几个不等于0的数字相乘,积的符号由负因数的个数决定。
当负因数有奇数个数时,积为负;当负因数有偶数个数时,积为正。
(4)几个数相乘,有一个因数为0时,积为0.除法运算法则:(1)除以一个数等于乘以这个数的倒数。
(注意:0没有倒数)(2)两数相除,同号为正,异号为负,并把绝对值相除。
(3)0除以任何一个不等于0的数,都等于0。
(4)0在任何条件下都不能做除数。
实数的混合运算顺序与有理数运算顺序基本相同,先乘方、开方,在乘除,最后算加减,同级运算按从左到右的顺序进行,右括号先算括号里的。
相反数只有符号不同的两个数叫做互为相反数。
正数的相反数是负数,负数的相反数是正数。
0的相反数是0。
绝对值数轴上一个数所对应的点与原点的距离叫做该数绝对值。
绝对值只能为非负数。
正数和0的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0互为相反数的两个数的绝对值相等①加法的交换律a+b=b+a;②加法的结合律a+(b+c)=(a+b)+c;③存在数0,使0+a=a+0=a;④乘法的交换律ab=ba;⑤乘法的结合律a(bc)=(ab)c;⑥乘法的分配律a(b+c)=ab+ac。
0a=0 文字解释:一个数乘0还等于0。
乘方求n个相同因数乘积的运算叫做乘方。
分数小数混合运算练习题3. 7.3)85.18661.11(÷⨯-⨯4. 133772.3628.626.072.3÷⨯-⨯+÷5. 2713156÷ 6.1741721718424.42.21.117517317110625.53.31.1⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯8. )975753357579()531135975753357579135531()531135975753357579()975753357579135531(+⨯+++-++⨯++ 9. 213 +123 ×2710 10. 634 -127 ×2311. 1056 ÷216 -13 12. 116 +712 ÷ 7913. 16-(923 +13 ÷ 112 ) 14. (325 -223 ×34 )÷41515. (14 -110 ÷2)×1013 16. 2125 ×(10-313 )÷4517. 447 ÷16+312 ×27 18. 15-389 ÷ 38 ×21719. 229 -29 ×2+112 20. 15 ÷ 15 -15 × 1521. 1÷211 +911 ×(315 ÷ 23455 ) 22. (2-315 ×516 )÷(4815 ÷325 )23. 1718 ÷(134 ×47 +715 ÷115 ) 24. 3524 +38 ×(179 -12 )÷25925. (123 +658 +213 +338 )×914 26. [9-(112 +18 )×24]÷13527. 119 ÷29 -125 ×147 +3720 28. 212 +1÷3.8×345 -3.529. (1813 ×1342 +557 ÷821 )÷1158 30. (8.25-6415 )÷(213 +4.2)×7二次根式的运算知识点及经典试题知识点一:二次根式的乘法法则:ab b a =⋅(0≥a ,0≥b ),即两个二次根式相乘,根指数不变,只把被开方数相乘. 要点诠释:(1)在运用二次根式的乘法法则进行运算时,一定要注意:公式中a 、b 都必须是非负数;(2)该法则可以推广到多个二次根式相乘的运算:(3)若二次根式相乘的结果能化简必须化简,如416=.知识点二、积的算术平方根的性质:b a ab ⋅=(0≥a ,0≥b ),即积的算术平方根等于积中各因式的算术平方根的积.要点诠释:(1)在这个性质中,a 、b 可以是数,也可以是代数式,无论是数,还是代数式,都必须满足0≥a ,0≥b 才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了;(2) 二次根式的化简关键是将被开方数分解因数,把含有2a 形式的a 移到根号外面. (3)作用:积的算术平方根的性质对二次根式化简(4)步骤:①对被开方数分解因数或分解因式,结果写成平方因式乘以非平方因式即:()()⨯2②利用积的算术平方根的性质b a ab ⋅=(0≥a ,0≥b );③利用⎩⎨⎧<-≥==)0()0(2a a a a a a (一个数的平方的算术平方根等于这个数的绝对值)即被开方数中的一些因式移到根号外;(5)被开方数是整数或整式可用积的算术平方根的性质对二次根式化简知识点三、二次根式的除法法则:baba =(0≥a ,0>b ),即两个二次根式相除,根指数不变,把被开方数相除. 要点诠释:(1)在进行二次根式的除法运算时,对于公式中被开方数a 、b 的取值范围应特别注意,其中0≥a ,0>b ,因为b 在分母上,故b 不能为0.(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.知识点四、商的算术平方根的性质ba ba =(0≥a ,0>b ) ,即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.要点诠释:(1)利用:运用次性质也可以进行二次根式的化简,运用时仍要注意符号问题. 对于公式中被开方数a 、b 的取值范围应特别注意,其中0≥a ,0>b ,因为b 在分母上,故b 不能为0. (2)步骤:①利用商的算术平方根的性质:ba ba=(0≥a ,0>b )② 分别对a ,b 利用积的算术平方根的性质化简③分母不能有根号,如果分母有根号要分母有理化,即aa =2)((0≥a )(3) 被开方数是分数或分式可用商的算术平方根的性质对二次根式化简知识点五:最简二次根式1.定义:当二次根式满足以下两条:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.把符合这两个条件的二次根式,叫做最简二次根式.在二次根式的运算中,最后的结果必须化为最简二次根式或有理式. 要点诠释:(1)最简二次根式中被开方数不含分母;(2)最简二次根式被开方数中每一个因数或因式的次数都小于根指数2,即每个因数或因式从次数只能为1次.2.把二次根式化成最简二次根式的一般步骤:(1)把根号下的带分数或绝对值大于1的数化成假分数,把绝对值小于1的小数化成分数;(2)被开方数是多项式的要进行因式分解;(3)使被开方数不含分母;(4)将被开方数中能开得尽方的因数或因式,用它们的算术平方根代替后移到根号外;(5)化去分母中的根号;(6)约分.3.把一个二次根式化简,应根据被开方数的不同形式,采取不同的变形方法.实际上只是做两件事:一是化去被开方数中的分母或小数;二是使被开方数中不含能开得尽方的因数或因式.知识点六、同类二次根式1.定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.要点诠释:(1)判断几个二次根式是否是同类二次根式,必须先将二次根式化成最简二次根式,再看被开方数是否相同;(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关.2.合并同类二次根式合并同类二次根式,只把系数相加减,根指数和被开方数不变.(合并同类二次根式的方法与整式加减运算中的合并同类项类似)要点诠释:(1)根号外面的因式就是这个根式的系数;(2)二次根式的系数是带分数的要变成假分数的形式;(3)不是同类二次根式,不能合并知识点七、二次根式的加减二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用.二次根式加减运算的步骤:(1)将每个二次根式都化简成为最简二次根式;(2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;(3)合并同类二次根式.知识点八、二次根式的混合运算二次根式的混合运算是对二次根式的乘除及加减运算法则的综合运用.要点诠释:(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;(1)(2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用;(3)二次根式混合运算的结果应写成最简形式,这个形式应是最简二次根式,或几个非同类最简二次式之和或差,或是有理式.规律方法指导二次根式的运算,主要研究二次根式的乘除和加减. (1)二次根式的乘除,只需将被开方数进行乘除,其依据是:;;(2)二次根式的加减类似于整式的加减,关键是合并同类二次根式.通常应先将二次根式化简,再把同类二次根式合并.二次根式运算的结果应尽可能化简.1. 5032283-+ (2)48512739+- (3) 101252403--(4213 (5)20)21(821)73(4--⨯++ (6)102006)21()23()1(-+--- (7)10)21()2006(312-+---+(8)02)36(2218)3(----+-- (9)326⨯(10)4327-⨯ (11)2)13(- (12)22)52()2511(-(14)75.0125.204112484--+- (15)1215.09002.0+(16)250580⨯-⨯ (17)3721⨯(18))25)(51(-+ (19)2)313(-(20)892334⨯÷ (21)20032002)23()23(+⋅-(22)75.0421*******+-+(23)3333222271912105+-⨯---(24)753131234+- (25)3122112-- (26)5145203-+ (27)48122+ (28)325092-+ (29)2)231(- 30、))((36163--⋅-; 31、63312⋅⋅32、 )1021(32531-⋅⋅ 33、z y x 10010101⋅⋅-.:34、20245-; 35、14425081010⨯⨯..;36、521312321⨯÷;373839、40、0.5414243、44、45、)2146、47一元二次方程知识点教学重点:根的判别式定理及逆定理的正确理解和运用 教学难点:根的判别式定理及逆定理的运用。