MW火电机组给水控制系统的设计

  • 格式:docx
  • 大小:38.87 KB
  • 文档页数:11

下载文档原格式

  / 11
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录

300MW火电机组给水控制系统的设计

0 引言

随着发电机组容量的增大和参数的不断提高,机组的控制与运行管理变得越来越复杂和困难。为了减轻运行人员的劳动强度,保证机组的安全运行,要求实现更为先进,适用范围更宽,功能更为完备的自动控制系统,这就产生了全程控制系统。而给水控制系统在电厂运行中有着非常重要的作用。在全程给水控制系统中,汽包水位是汽包锅炉运行中一个重要的监控参数,它反应锅炉蒸汽负荷与给水量之间的平衡关系。维持其包水位在一定范围内是保证锅炉和汽轮机安全运行的必要条件。给谁全程控制系统是一个能在锅炉启动、停炉、低负荷以及在机组发生某些重大事故等各种不同的工况下,都能实现给水自动控制的系统而且从一种控制状态到另一种控制状态的判断、转换、故障检测也常常靠系统本身自动完成。

1.设计目的及要求

本次课程设计的要求是根据大型火电机组的生产实际设计出功能较为全面的300 MW火电机组全程给水控制系统,该控制系统的设计任务是使给水量与锅炉的蒸发量相适应,维持其包水位在规定的范围内。

设计要求:

(1)设计功能基本全面的全程给水控制系统,要求图纸采用SAMA标准图例,系统布局规范。

(2)参考输入参数:汽包水位、汽包压力、给水流量、给水温度、汽机第一级压力、主汽温度、过热减温水流量等信号。

(3)参考输出参数: A、B汽动泵转速、电动给水泵转速、给水旁路调节阀开度。

(4)信号准确性:考虑汽包水位、给水流量和蒸汽流量等信号的修正。

(5)信号监测与报警:重要信号需要监测与报警,同时注意信号的可靠性,考虑冗余。

(6)工作方式:给水旁路阀单冲量控制、电动泵单级单冲量控制、电动泵串级三冲量控制、汽动泵串级三冲量控制。

(7)切换与跟踪:电动泵运行时大小给水阀门、电动泵、汽动泵之间;单、三冲量;单、串级之间的切换。

跟踪原则:

1)电动泵单级单冲量工作时,电动泵三冲量副调跟踪单冲量调节器输出;

2)电动泵三冲量工作时,单冲量调节器跟踪阀位信号(电动泵手动);

3)电动泵手动时,单冲量调节器跟踪副调输出(电动泵自动);

4)汽动泵手动工作时,三冲量主调跟踪给水流量信号,副调跟踪阀位信号。

(8)注意泵的安全经济工作区。

(9)控制部分:控制方案考虑采用单回路、串级、前馈等控制,控制器的控制规律(PI、PID、PD、P)选择准确,调节器可共用。

(10)逻辑关系准确全面。

2.设计内容

设计方案

2.1.1 方案一

给系统设计如图一。在这个方案中,低负荷时采用但冲量系统(PI1)高负荷时采用三冲量系统(PI2),而且都是通过改变调速泵转速来实现给水的调节。为了保证给水泵工作在安全工作区内,设计了一个给水泵出口压力调节系统(PI3),通过改变阀门开度来改变泵的出口压力。高压加热器出口分别取给水压力信号送入小值选择器。当机组正常运行时,高压加热器出口的给水压力总是低于泵的出口压力。这时,应选高压加热器出口给水压力作为压力测量值,使泵的实际工作点在泵下限特性曲线偏左一些,确保泵工作在安全工作区内。当机组热态启动时,高压加热器出口的给水压力高于泵的出口压力,小组选件输出为泵出口压力,保证泵出口给水压力升压过程中,两个调节阀门均处于关闭状态,直到泵出口压力大于高压加热器出口给水压力时才按高压加热器出口的给水压力进行调节,控制两个阀门开度。

图一方案一系统示意图

这个方案结构合理,经济性好,切换较简单,安全可靠性也较好,不足之处是压力调节系统和水位调节系统互相影响,同时两个系统切换动作频繁,使调节阀磨损较快。

2.1.2 方案二

如图2所示。这是一个一段调节的方案,在肌肤何时采用PI1单冲量系统,GH1值经大值选择器来控制调速泵,是泵维持在允许的最低转速。此时给水量是通过改变调节阀开度来调节的。高负荷时,阀门开到最大,为了减小阻力,把并联的调节阀也开到最大,三冲量调节器PI2的输出大于GH1的值,故可直接改变调速泵转速控制给水量。

在冷态启动时,GH1起作用,既让泵工作在最低转速。在热态启动时取决于Pd值,泵可以直接工作在较高的转速。该方案中午专门设计泵的出口压力安全调节系统,解决给水泵在安全工作取得办法是利用调速泵运行的自然特性,即在定压运行使用两台泵同时给水地方法,使每台泵的负荷不超过86%,可使泵工作在安全区内。

图2方案系统示意图

该方案结构最简单,系统和调节段两种切换相互错开,Pd是开换调节,调节段是无触点自由过度,安全性能好,是一个好方案。

总体设计

典型的300MW机组给水热力系统如图3所示。每台机组拍有一台50%容量的电动给水泵和两台均为50%容量的启动给水泵。在机组启动阶段,由于需要的给水流量小,且没有稳定的汽源,汽动给水泵无法使用,故先用电动给水泵。为满足机组启动过程中最小控制流量的需要,在电动泵出口至水母管之间装有两条并联的管路,一条支路上装有主给水截止阀,另一条之路上装有给水旁路截止阀和一只约15%容量的给水旁路调节阀。启动时通过给水旁路调节阀控制汽包水位,旁路阀接近全开时,打开主给水截止阀,调整电动给水泵的转速控制器包水位,电动给水泵转速通过液力耦合器调整。两台汽动给水泵由给水泵汽轮机驱动,给水泵汽轮机电液控制系统(MEH)接受锅炉给水控制系统的指令,独立完成汽动给水泵的转速控制任务。

给水全程控制系统通常采用变结构控制,随负荷变化进行单冲量和三冲量控制方式的切换,同时,给水泵的运行方式以及控制作用方式也进行相应的切换。需设计较为复杂的跟踪回路,以实现系统之间的勿扰切换。通常的设计原则为:在单冲量调节器工作(低负荷)时,三充量调节器的主调跟踪给水流量信号,副调跟踪阀位信号;在三冲量调节器工作(高负荷)时,单冲量调节器跟踪阀位信号。

图3 300MW 机组给水热力系统图

详细设计

汽包水位决定于汽包中的储水量和水面下的气泡容积。因此凡是引起其保中储水量变化和水面下的气泡容积变化的各种因素都是给水控制对象的扰动,给水对象的主要扰动包括:给水流量扰动、蒸汽负荷扰动和炉膛热负荷扰动。为了实现全程给水控制,需要设计的系统要克服以上的扰动。

2.3.1信号的测量部分

锅炉从启动到正常运行或是从正常运行到停炉的过程中,蒸汽参数和负荷在很大的范围内变化,这就使水位、给水流量和蒸汽流量的测量准确性受到很大影响。为了实现全程给水自动控制,要求这些测量信号能够自动的进行温度、压力校正。测量信号自动校正的基本方法是:先推导出被测参数随温度,压力变化的数学关系,然后利用各种功能模块进行运算,实现自动控制。

(1)汽包水位的测量和校正

汽包锅炉通常利用压差原理来测量其水位,而锅炉从启、停到正常负荷的整个运行范围内,汽包内饱和蒸汽和饱和水密度随压力变化,这样就不能直接用压差信号来代表水位,需对测量信号进行压力校正。

由单室平衡容器取样装置的水位测量原理可知:

g

)(g )(w s s a P L H ρρρρ-∆--= (1) 式中:P ∆为输入差压变送器的压差;w ρ为饱和水的密度;s ρ为饱和蒸汽的密度;a ρ为汽包外平衡容器内水的密度;g 是重力加速度。

有上市可见,水位H 是差压和汽、水密度的函数。密度a ρ与环境温度有关。在锅炉启动过程中,水温略有升高,这两方面变化对a ρ的影响基本上可以抵消,既可以近似的认为a ρ是恒值。饱和水和饱和蒸汽的密度均为汽包压力的函数,在汽包压力小于的范围内,(s a ρρ-)与汽包压力可近似为线性关系,而(s ρρ-w )与汽包压力为非线性关系。

)

(21b b b P f P

P K K H ∆--=