电力变压器故障诊断之变压器诊断
- 格式:docx
- 大小:1.83 MB
- 文档页数:10
变压器故障的诊断与修复在电力系统中,变压器作为一种重要的电气设备,承担着电能的传递和转换的任务。
然而,由于工作环境、设备老化等原因,变压器故障是难以避免的。
为了确保电力系统的安全稳定运行,及时准确地对变压器故障进行诊断与修复至关重要。
本文将介绍变压器常见的故障类型以及相应的诊断与修复方法。
1. 短路故障短路故障是变压器中最常见的故障之一。
它通常是由于绝缘材料受损或绝缘击穿引起的。
当变压器出现短路故障时,首先需要进行外观检查,检查绝缘子是否破裂、线圈是否有明显的烧损迹象。
接下来,可以采用绝缘电阻测试仪对绝缘材料进行测试。
如果绝缘电阻值较低,说明存在绝缘材料损坏的可能性。
修复短路故障时,需要更换损坏的绝缘材料,并进行必要的绝缘处理。
2. 渗漏故障渗漏故障是指变压器绕组之间或绕组与地之间发生的电气连接中断,导致电流“渗漏”到其他部分。
渗漏故障的产生可能是因为绝缘材料老化、绝缘子损坏等原因。
对于渗漏故障的诊断,可以通过红外热像仪对变压器进行扫描,检测具有异常温度的部位,进而确定渗漏故障的位置。
修复渗漏故障时,应根据具体情况进行线圈绝缘修复或绝缘子更换。
3. 过载故障当变压器长时间工作在超过额定容量的载荷下时,可能会导致过载故障。
过载故障主要表现为变压器温升过高、绕组电流异常等。
对于过载故障的诊断,首先需测量变压器的温度和电流,判断是否超过额定值。
另外,还可以对变压器油进行化验分析,检测油中是否存在异常物质。
修复过载故障的方法包括降低负载、增加冷却措施以及维护液压油等。
4. 绕组接地故障变压器绕组接地故障是指绕组中的线圈或导线与地之间发生不正常的电气连接。
这种故障可能会引起变压器的工作异常和安全隐患。
对于绕组接地故障的诊断,可以使用交流电阻测试仪进行测量,找出接地点的位置。
修复绕组接地故障时,需要清除接地点的外部污垢,并进行绝缘处理或更换线圈。
总结:变压器故障的诊断与修复是保证电力系统安全稳定运行的关键。
电力变压器状态检修及故障诊断方法简析摘要:电力变压器是电力系统当中最主要的设备之一,它在保障人们的用电安全方面有着关键性的作用和意义。
但是如果电力变压器存在故障,就容易为电力企业的发展带来不良影响。
在这样的背景之下,我们需要对电力变压器的状态检修以及故障的诊断方法开展全方面的解析工作。
关键词:电力变压器;状态检修;故障诊断方法如果电力变压器在使用过程中出现故障,那么不仅会对人们的日常正常生活带来影响,同时也会使得电力企业的经济效益也受到影响。
在这样的背景之下,电力企业必须要高度重视电力变压器的状态检修工作,及时对它的故障进行诊断和排除,有效地降低电力事故发生的可能性和几率。
一、引起电力变压器出现故障的因素1、线路过热电力变压器在工作运转的过程当中容易出现过热的现象。
这种现象的存在,很大程度上是由于电流在传输的过程当中出现涡流的问题,因此导致线路过热。
当电力变压器的线路出现过热的情况时就容易导致电路短路问题的出现,最终造成电力变压器出现故障。
2、线路绝缘电力变压器出现绝缘故障主要是受到了外界因素的影响。
首先电力变压器是暴露在空气当中的,在这样的情况之下,如果有雨水渗入到电力变压器当中,就会容易导致变压器存在受潮的情况。
变压器内部的引线以及电线的绕组就容易出现绝缘方面的事故。
其次电力变压器在安装的时候,如果内部有金属异物的存留,或者电力变压器内部的结构出现受损的情况,也会导致电力变压器线路绝缘现象的出现。
在夏季的时候,电力变压器是比较容易遭受到雷击的。
在这样的背景之下,如果电力变压器自身的性能不够高,那么在防雷击能力的方面就不强,最终会导致变压器出线接线短路的情况,从而致使其出现绝缘方面的事故。
3、线路损坏电力变压器的线路受损容易导致线路损坏故障的发生,最终致使电力变压器的正常运行受到影响。
如果电力变压器有线路损坏的情况存在,也会导致变压器的线圈出现变形的情况,最终给电力变压器的整体绝缘结构带来严重的影响。
电力变压器故障诊断及处理方法第一章变压器故障油浸电力变压器的故障常被分为内部故障和外部故障两种。
内部故障为变压器油箱内发生的各种故障,其主要类型有:各相绕组之间发生的相问短路、绕组的线匝之间发生的匝问短路、绕组或引出线通过外壳发生的接地故障等。
外部故障为变压器油箱外部绝缘套管及其引出线上发生的各种故障,其主要类型有:绝缘套管闪络或破碎而发生的接地<通过外壳)短路,引出线之间发生相问故障等而引起变压器内部故障或绕组变形等。
变压器的内部故障从性质上一般又分为热故障和电故障两大类。
热故障通常为变压器内部局部过热、温度升高。
根据其严重程度,热性故障常被分为轻度过热(一般低于150℃)、低温过热(150—300℃)、中温过热(300~700℃)、高温过热(一般高于700℃)四种故障隋况。
电故障通常指变压器内部在高电场强度的作用下,造成绝缘性能下降或劣化的故障。
根据放电的能量密度不同,电故障又分为局部放电、火花放电和高能电弧放电三种故障类型。
由于变压器故障涉及面较广,具体类型的划分方式较多,如从回路划分主要有电路故障、磁路故障和油路故障。
若从变压器的主体结构划分,可分为绕组故障、铁心故障、油质故障和附件故障。
同时习惯上对变压器故障的类型一般是根据常见的故障易发区位划分,如绝缘故障、铁心故障、分接开关故障等。
而对变压器本身影响最严重、目前发生机率最高的又是变压器出口短路故障,同时还存在变压器渗漏故障、油流带电故障、保护误动故障等等。
所有这些不同类型的故障,有的可能反映的是热故障,有的可能反映的是电故障,有的可能既反映过热故障同时又存在放电故障,而变压器渗漏故障在一般情况下可能不存在热或电故障的特征。
因此,很难以某一范畴规范划分变压器故障的类型,本书采用了比较普遍和常见的变压器短路故障、放电故障、绝缘故障、铁心故障、分接开关故障、渗漏油气故障、油流带电故障、保护误动故障等八个方面,按各自故障的成因、影响、判断方法及应采取的相应技术措施等,分别进行描述。
电力变压器失效机理及故障诊断技术研究电力变压器是电网中不可或缺的重要元件,它通过变化电压和电流的比例,实现电能的输送和转换。
然而,在使用过程中,由于各种原因,变压器存在失效的风险,给电网带来安全隐患。
因此,研究电力变压器失效机理和故障诊断技术,对于保障电网稳定运行具有非常重要的意义。
一、电力变压器失效机理电力变压器失效的机理很复杂,主要包括以下几个方面。
1、绝缘材料老化绝缘材料是变压器中起着重要保护作用的重要材料。
然而,长期使用下来,绝缘材料遭受环境氧化、紫外光辐射、电场、热度和湿度等因素的影响,导致其老化、破损和变形,从而导致绝缘性能的降低和故障率的升高。
2、电气热疲劳电力变压器在长期运行过程中,由于正常工作时的电磁感应热和短路故障时的电弧压力波热等因素的作用,导致绕组内部和外部部件的温度产生差异,引起部分区域热膨胀变形,对变压器机械和电气性能都会产生一定程度的影响,从而影响变压器的运行效果。
3、电化学腐蚀变压器油中的有机酸和硫酸等成分,长期在电场和温度环境的作用下,会产生氧化、硫化和析出颗粒等电化学过程,从而导致变压器铜导体的电阻率增加、连接件锈蚀和变形等故障。
4、地震和外力冲击电力变压器在近年来的地震和强风天气中,很容易遭受物理力学外力作用,例如,铁心板、铁芯凸台等组件出现裂纹、变形、移位等痕迹,铁芯和线圈相对间距发生了变化,变压器阻抗比正常值增加,导致电路的容量下降和电压波动等失效现象。
5、油污污秽电力变压器的绝缘油负责对绝缘材料进行保护,因此其质量的优劣直接影响电力变压器的性能。
油质污秽和水份的渗入,会引发油品老化、氧化和相变,同时,因为导致电气界面强度下降和绝缘性能退化,使得变压器的故障率上升。
二、电力变压器故障诊断技术研究为了有效地防范电力变压器故障,提高能源利用效率,建立起全面高效的电力保障机制,必须对电力变压器失效机理进行研究并且开展故障诊断技术的开发研究。
目前,电力变压器故障诊断技术主要包括以下几种。
变压器常见故障诊断处理方法电力变压器是保证电网正常运行的关键部分,也是保证电网持续稳定供电的重要设备基础。
变压器在日常的使用中,可能会由于使用时间长、设备零部件老化、雨水侵蚀、灰尘积蓄及使用不当等造成变压器故障,这些都给电力系统的平安运行带来潜在的隐患,因此电力管理部门需要加强电力设备的管理,尤其是变压器的日常检修工作。
一、常见的变压器故障1.变压器漏渗油变压器的漏渗油是电力变压器的常见故障之一,消失该故障往往会影响变压器的正常运行,漏渗出来的油会对环境造成污染,同时还会造成较大的经济损失,状况严峻时甚至会消失电力系统停运的状况。
因此一旦变压器消失该种故障需要准时进行处置,避开带来更大的危害。
消失该类故障依据其漏油位置的不同可以分为不同的缘由。
变压器漏油一般消失在油箱焊缝处漏油、低压侧套管漏油和防爆管漏油。
消失该故障的缘由有有可能是由于油箱在焊接时操作不规范,导致油箱过早发生漏油;高压套管上升座的位置使用胶垫,使得法兰连接消失裂缝,并造成漏油;变压器低压侧由于由于母线拉伸和引线过短的影响,使得胶珠压在螺纹上也会造成漏油。
2.接头过热载流接头是连接变压器和其他部件的桥梁,载流接头的运转状况直接影响变压器的运行效率,实际使用过程中载流接头简单消失过热的状况,一般是由于变压器的一处断和连接的引出段存在电位差,从而产生发热并造成重大平安事故;另外,变压器的接头处有杂质也可能消失发热的状况,或是接头中的导电膏薄膜随着使用时间的延长渐渐变薄,也会发生发热的状况;油浸式变压器的导电密封头由于密封不全使用载流接头松动或粘连,也会产生发热的状况。
3.铁芯多点接地变压器使用时可采纳一点接地和多点接地两种方式,实际使用中变压器消失多点接地会产生电流回路,导致铁芯消失故障,并导致局部发热、变压器油分解和铁芯硅钢片变形的状况,使得变压器难以进行正常平安运行。
4.变压器受潮变压器受潮可能是由于变压器内部件存在水分渗漏,外部水分延管线和配件进入邮箱或绝缘油中存在水分等。
变压器常见故障及诊断方法摘要:电力变压器是指电力系统一次回路中用于输电、配电和供电的变压器。
电力变压器结构复杂,运行环境相对较差。
如果发生故障,也会对电网的波动和供电的可靠性产生很大影响。
因此,需要针对具体情况采取相应措施。
由于变压器处于连续运行状态,在实际工作中可能会发生各种故障。
重大事故不仅会对变压器本身造成损坏,还会造成供电中断,给工厂造成一定的经济损失。
因此,变压器的日常点检和维护在工作中起着非常重要的作用。
更重要的是,值班人员应学习并应用变压器可能发生故障的处理措施。
关键词:变压器;常见故障;诊断方法导言:在现代生产中,电气设备的使用频率逐渐增加,这也给供电系统带来了巨大的压力。
变压器可以保证供电的安全稳定,通过电压和电流的调节实现电能的稳定输出。
然而,如果变压器本身在运行过程中出现故障,可能会引发一系列安全问题,从设备损坏到安全生产,以及一系列安全事故。
因此,有必要对变压器故障问题进行研究。
在今后的工作中,还需要提高变压器的故障诊断能力,确保变压器的运行可靠性,确保电力系统的稳定运行,为生产运行提供可靠的电能支持。
1电力变压器概述电力变压器是发电厂和变电站的主要设备之一。
电力变压器配电工作主要在交流输电过程中进行。
具体工作内容:改变输入交流电流的电压后,可以确保电能能够传输到更远的距离,并减少相关损耗,但这一过程对直流电流没有太大影响。
电力变压器主要由输入线圈、输出线圈和铁芯组成。
其中,输入线圈又称初级绕组,具体结构是在输入端缠绕在铁芯上的导线;输出线圈,也称为次级绕组,主要是缠绕在铁芯上的电线。
电力变压器的工作原理:如果交流电源输入初级绕组,则交流电源的一端会出现交流磁场,因此铁芯中会出现交流磁通。
此外,由于磁场会产生电场,在铁芯的磁传导作用下,交变磁通会作用在次级绕组上,使其产生感应电流。
此时,产生的感应电流为交流电。
2 电力变压器常见故障2.1 短路故障短路故障是电力变压器的常见故障之一。
电力变压器故障诊断及检修电力变压器作为电力系统中重要的设备,其故障对系统运行会产生严重的影响,甚至可能造成设备损坏和停电事故。
电力变压器的故障诊断及检修工作显得尤为重要。
本文将重点介绍电力变压器故障的诊断方法和检修流程,以便广大电力工程师和电气维修人员能够更好地了解和处理变压器故障。
一、变压器故障的识别电力变压器故障主要有绝缘击穿、绕组短路、接地故障、油泄漏等,这些故障在实际运行中可能表现为温度升高、噪音增大、油温异常等现象。
变压器故障的识别需要依靠仪器设备和操作经验相结合,下面分别介绍几种常见的诊断方法:1. 热感诊断变压器故障的热感诊断是通过测量变压器的温度来判断其工作是否正常。
在实际运行中,变压器的各部分都会有一定程度的温升,如果某个部分的温升明显高于其他部分,就可能存在故障。
这时可以通过红外热像仪对变压器进行扫描,观察是否有异常的热点,从而判断可能存在的故障。
2. 声频诊断变压器故障常常会伴随有异常的声音,例如绕组短路时会出现较大的短路电流和噪音。
此时可以通过超声波探测仪对变压器进行测试,检测是否有异常的声音,从而判断变压器是否存在故障。
3. 油质检测变压器内部的油质也可以反映出变压器的运行状况。
通过对变压器油质的采样检测,可以了解油质的电气性能、化学性能是否正常,从而判断变压器是否存在故障。
4. 电气参数监测当变压器出现故障时,需要及时进行检修,以避免进一步损坏或事故发生。
检修变压器需要严格按照相关规程和标准进行,下面给出一般的变压器故障检修流程:1. 停电与验电在进行变压器检修之前,首先需要对变压器进行停电操作,并且进行验电工作,确保变压器已经从电力系统中隔离,并且不存在残余电荷。
2. 拆卸与清洁拆卸变压器外罩,对变压器进行清洗和清理,清除表面的杂物和油渍等。
清洁后需要对变压器进行检查,观察是否有明显的损坏或异常。
3. 绝缘测量对变压器的绝缘进行测量,检查绝缘电阻和介损因数等参数,以判断绝缘是否正常。
电力变压器状态评估及故障诊断方法电力变压器是电力系统中不可缺少的一部分,对人们的日常用电起着关键性的作用。
但在电力变压器的运行过程中,受到运行负荷以及环境因素的影响,却存在着发生故障的隐患。
本文以我国电力变压器的发展为背景,分析了进行变压器运行状态评估的相关方法,并探讨了变压器若干故障诊断的相应措施,为我国供电系统的良好运行发展提供了非常有利的条件。
关键字:电力变压器状态评估故障诊断随着我国电力工程的逐步发展,人们对电能的需求量逐渐提升,电力变压器的运行负荷相比于以往也有了很大程度的提升。
在此背景下,电力变压器更容易出现运行上的故障,从而对正常的供电造成严重的影响。
因此,在目前变压器的运行过程中,进行变压器状态的评估以及对故障的及时准确诊断非常重要。
而我国电网的覆盖面积非常广,电力变压器更是往往会在条件较为恶劣的地区工作运行,增加了发生变压器故障的几率,更需要在日常运行中加大状态评估的力度,并对每一类故障进行分类的针对性诊断。
一、电力变压器状态评估方法在一般情况下,电力变压器的运行处于较为正常的工作状态,但如果变压器长期处在高负荷运行状态下,或者运行时间教久,或者外界环境较为不利于变压器的正常工作,就需要尤为注意进行变压器的状态评估。
经过多年的工作经验总结发现,要准确、可靠地分析电力变压器的运行状态,可以将实验数据作为评估核心,运用多种评估方法,在综合各项数据之后得到最终的评估结果。
(一)气体色谱分析法对气体色谱的分析,目前主要针对于变压器中的油分,进行的一种评估措施。
如果变压器的运行存在着局部放电或者局部过热等现象,那么油中的气体色谱就会呈现出异常现象,非常容易区分。
但如果变压器的绕组发生了形变,那么在这种情况下出现的局部放电以及局部过热现象就不能够通过对油中的色谱进行分析的方法来得到准确的结果。
(二)放电电量实验法进行放电电量实验,在变压器出现了局部放电现象的时候非常实用,是一种准确有效的变压器状态评估方法。
电力变压器常见故障分析及处理一、常见故障分析1、内部声音异常正常运行的变压器,会发出均匀的电磁交流声,在变压器运行不正常时,有时会出现声音异常或声音不均匀。
造成该现象的主要原因:变压器过负荷运行时,内部会发出很沉重的声音,在内部零件发生松动的情况下,会有不均匀的强烈噪声发出.假如未夹紧铁芯最外层硅钢片,则会在运行时产生震动,发出噪音。
此外,变压器发出异响还有可能是由于变压器顶盖螺丝松动所致.变压器内部过电压时,会导致铁芯接地线断路,或一二次绕组对外壳闪络,在外壳及铁芯感应出高电压,使变压器内部发出噪音。
假如变压器内部发生击穿或者接触不良,会由于放电而发出吱吱的声音。
若发生短路或接地,将有较大的短路电流出现在变压器绕组中,使其发出大且异常的声音.若设备有可能产生谐波,或将大容量的用电设备接在变压器负载上,则易产生较大的启动电流会使变压器发出异常噪音。
2、瓦斯保护故障一种情况是发生了瓦斯保护信号动作。
瓦斯保护其动作灵敏可靠,变压器内部大部分故障都可被瓦斯保护有效监视。
在瓦斯保护信号动作发生后,即可恢复到正常音响信号,对变压器的运行情况严密监视.一般来讲,有几种原因可以引起瓦斯保护动作:一是在变压器进行滤油或加油时,没有及时排出带入变压器内部的空气,变压器运行时油温升高,逐渐排出内部空气,引发瓦斯保护动作;二是变压器发生穿越性短路,或者由于内部故障产生气体而引发瓦斯保护动作。
当发生瓦斯保护信号动作时,若检查中未发现异常,就要立刻对瓦斯继电器中的气体进行收集,并分析试验。
假如气体不燃烧且无色无味,则可认为变压器内部被空气侵入,这种情况下,变压器是正常运行的,只需立即将瓦斯继电器中的气体放出即可,同时注意观察信号动作时间间隔是否越来越长,直至不久消失。
假如气体是可燃的,则可证明变压器发生了内部故障,应将变压器立刻停止运行,并进行电气试验,查找事故原因,送去检修。
另一种情况是发生了瓦斯保护动作与跳闸。
发生此情况的原因有以下几种:首先是有严重故障发生在变压器内部;此外还有保护装置二次回路发生了故障;假如变压器是大修后或者新近安装投入运行的,有可能因为变压器油中含有的空气过快分离而造成保护动作与跳闸;还有一种原因是由于变压器内的油位下降速度过快而引起。
电力变压器的故障诊断与预测电力变压器(Power Transformer)是电力系统中非常重要的设备,它将高电压输入转换为适用于输送和分配的低电压输出。
然而,由于使用环境、负载变化以及设备老化等原因,电力变压器可能会发生故障,这不仅会造成停电和电力损失,还可能对电力设备和系统造成严重损害。
因此,故障诊断与预测成为电力变压器运行与维护的重要组成部分。
第一章:电力变压器的基本工作原理电力变压器是利用电磁感应的原理工作的。
其基本结构包括主绕组、副绕组、铁芯等元件。
主绕组通过铁芯的磁路连接副绕组,将高电压输入转换为低电压输出。
同时,在变压器中还会存在一些常见的故障类型,例如绝缘老化、绕组短路、接地故障等。
第二章:电力变压器故障诊断方法1. 绝缘状况评估绝缘老化是电力变压器常见的故障类型之一。
通过绝缘状况评估可以了解绝缘系统的健康状况。
对绝缘电阻、介质损耗因数和介质含水率等指标进行测试和分析,可以判断绝缘是否出现问题。
2. 油质分析变压器油中含有大量的信息,通过油质分析可以了解变压器内部是否存在故障。
油中气体的成分和含量、电离度、溶解气体的浓度等指标可以用来判断绝缘状况、放电情况和油的老化程度。
3. 振动测试电力变压器的运行过程中会产生振动,通过振动测试可以检测变压器内部是否存在异常情况。
例如,绕组松动、铁芯变形等故障都可能会引起振动的改变。
第三章:电力变压器故障预测方法1. 温度监测与分析电力变压器的温度是判断其运行状况的重要指标。
通过温度监测装置对变压器不同部位的温度进行实时监测,与历史数据进行对比分析,可以判断变压器内部是否存在过载、接触不良等问题。
2. 红外热像测试红外热像测试是一种无损检测技术,可以检测变压器内部的温度分布情况。
通过红外热像仪对变压器进行扫描,可以找出可能存在的热点,并及时采取措施进行修复,以避免故障的发生。
3. 气体成分分析当电力变压器发生故障时,会产生大量的气体,气体成分分析可以判断故障的类型和程度。
8 变压器8.1 变压器及其绝缘材料8.1.1 概述受绝缘水平的限制,发电机的输出电压不可能太高。
从火、水、核等发电站发出的电能,要经过升压电力变压器将电压升高送到电力网,然后又将电力网的高电压经过电力变压器变成符合用户各种电气设备要求的额定电压;同时,为了减少输电线路上的电能损耗,必须采用高压或超高压甚至特高压输电线路输送电能,但从区域电网到大区电网和大区电网之间的互联,不仅各区域电网的主系统与分系统间需要各种电压等级和容量的变压器连接,而且其主干网架与受端网架之间的电压等级变化也是通过电力变压器来实现。
因此,电力变压器和与之配套的电抗器、电流互感器、电压互感器等是电力系统最重要的电气设备,这些充有矿物绝缘油和以纸或层压纸板为绝缘材料的电气设备的运行状态(特别是电力变压器的运行状态)对电力系统运行的可靠性具有决定性意义。
一般认为,变压器容量为630kVA以下的属小型变压器,800~6300kVA的变压器属中型变压器,8000~63000kVA的变压器为大型变压器,9000kVA以上的统称为特大型变压器。
充油变压器是由导电材料(铜、铝合金等)、矽钢片、绝缘材料(纸、油等)、结构材料(铁、不锈钢)等很多部件和材料构成的。
充油变压器的构造如图8-1所示。
绝缘纸通常是使用电缆纸和马尼拉纸,但是为满足高电场下高气密性与高耐热化要求,也采用聚酰亚胺的复合纸。
图8-1 充油变压器由于变压器绝缘中的油隙较大,电压基本上都加在油隙上。
根据变压器中电极的形状,一般采用的设计电场强度为3kV/mm。
在充油变压器中,绝缘油也起着作为冷却媒体的重要作用。
由于变压器的能量损耗使得其发热量较大,而且随着外界负载的变化温度的变化也很大。
因此,要求变压器油必须热稳定性好、且不容易发生化学变化、不易氧化,为此变压器油以使用矿物油为主。
另外,对于以油循环为冷却方式的变压器,必须在内部形状及绝缘油方面采取措施,避免由于油的流动带电而引起的绝缘破坏。
下面,对变压器的结构加以说明。
小型变压器的线圈有用双层纱包线和漆包线包覆的圆截面导体等,大型变压器则使用纸绝缘包覆的矩形截面导体。
以上这些线圈的成型方法有直绕式和模绕式之分。
直绕式如图8-2所示,在层叠铁芯上加上绝缘材料,然后在其上绕制线圈,并进一步进行绝缘处理之后,再绕上高压线圈。
这种方法主要用于小容量(铁芯式构造)的柱上变压器。
图8-2直绕式绕组的布置图 8-2 直绕式绕组的布置模绕式则是在木制的绕线模和绝缘筒上绕上线圈,在进行绝缘处理之后再与铁芯组合起来。
这种方法的使用范围很广。
图8-3所示为各种模绕式线圈。
图上8-3(a)所示的是绕线方法上最为简单的筒型线圈。
图8-3(b)是沿径向处将图8.3(a)中的筒型线圈进行多重叠合得到的。
图8-3(c)表示的是将绕成饼状的线圈进行多层重叠的结果,这是在大容量高压线圈中使用最为广泛的一种方法。
将厚度为1~4mm、宽度为5~15mm的纸包扁铜线重叠卷好后得到的线圈作为一个单元,把两个这样的线圈连接起来得到双线圈。
在这个双线圈之间加上足够数量的间隔片,再将其外侧的出口线进行串联。
图8-3(d)表示的是将矩形线圈螺旋状成多层重叠放,线圈与线圈之间加入绝缘隔离片,又称这种线圈为螺旋线圈。
这种方法由于绝缘油可在线圈间自由通过故其特点是冷却效果得到加强。
(a)筒型线圈(b)筒型线圈(c)饼型线圈(d)长方饼型线圈图8-3 模绕式线圈变压器绝缘可以区分为线圈本身的绝缘和铁芯、油箱与线圈间的绝缘、线圈之间的绝缘以及线圈的相间绝缘几部分。
针对于不同部位的绝缘,在如图8-4所示的情况下,使用的是电缆纸和层压隔板等。
特别是对于端部绝缘,按照电场强度分布的集中程度,使用了符合等电位面形状的压制成型绝缘层。
图8-4 主绝缘第一油隙的皱纹纸填充绝缘结构示例8.1.2 油浸式变压器用的绝缘材料1.变压器油这是最基本的绝缘材料,充满整个变压器油箱,起绝缘和散热两种重要作用。
它的耐电强度、传热性比空气好得多,热容量也比空气大得多。
在电压6千伏、容量10千伏安以上的变压器几乎均采用油浸式。
2.绝缘纸和纸板绝缘纸(包括绝缘纸板)由未经漂白的硫酸盐纤维制成。
纤维素(C6H10O5)n分子结构是链状,含有羟基,耐油和不熔;宏观结构纤维呈管状,纤维之间呈多孔状,因此具有透气性、吸水性和吸油性;击穿电场强度、机械强度和耐热性均不高,但浸渍变压器油后,电气性能良好。
透气性愈小则击穿电场强度愈高。
必须指出,透气性小并不意味浸渍性差,二者是不同的性能。
绝缘纸和纸板的品种有电容器纸、电缆纸、电话纸、卷绕纸、浸渍纸、绝缘纸板和钢纸(板和管)。
钢纸经氯化锌处理,不能用于高压油浸变压器;胶纸板(或筒)含有游离酚等杂质,也不宜用于高压变压器。
用于高压电力变压器主要有电缆纸、电话纸及绝缘纸板和筒。
3.油纸绝缘油与纸结合使用性能非常良好。
这是两种最常见和最经济的绝缘材料,但其组合具有极高的耐电强度,比一般其它绝缘材料高很多,也比二者分开时任何一种材料高得多。
纸在低温下无显著性能下降,也能承受短时较高温度和一般短路情况下的机械强度要求。
其他的绝缘材料还有漆布或带绝缘漆、玻璃丝或石棉电瓷。
8.1.3 变压器绝缘结构的分类变压器绝缘可以分为内绝缘和外绝缘。
图8-5所示为油浸式电力变压器的绝缘分类,(图8-6 a)为饼式或连续式绕组的布置情况。
(图8-6 b)为多层圆筒式绕组的布置情况。
内绝缘是处于油箱中的各部分绝缘,这些绝缘是油、固体绝缘材料和二者的组合。
外绝缘是空气绝缘,这是指套管上部对地和彼此之间的绝缘以及保护间隙。
内绝缘可以分为主绝缘和纵绝缘两种。
主绝缘是某一绕组与接地部分以及与其它绕组间的绝缘。
主绝缘由变压器的一分钟工频耐压和冲击耐压所决定。
处于绕组之外,连接绕组的各部分及绕组与套管的那些连接线本身的绝缘,称为引线绝缘,一般根据工频耐压试验电压而决定,但有时也要考虑冲击强度。
图8-5 油浸式变压器的绝缘分类图8-6 变压器绕组的绝缘布置情况a) 饼式绕组1-电工纸板角环2-匝间纸绝缘3-纸板角环4-纸板端部垫圈5-纸板筒6-纸板垫块b)圆筒式绕组1-纸板垫圈2-纸板隔板3-纸板垫圈间的折纸环4-屏蔽上的折纸环5-匝间纸绝缘6-线圈间纸板垫圈7-胶纸筒8-层间纸绝缘9-层间隔板同一绕组各部分间的绝缘称为纵绝缘,如不同线饼间、层间和匝间的绝缘等。
纵绝缘由变压器的冲击耐压所决定。
决定变压器绝缘的结构首先是变压器的电压等级,但是变压器的功率也有很大影响。
当功率增大时,绕组的尺寸、各元件间的距离、绕组间距离和对地距离都增大了,这由结构,机械强度和冷却等原因所决定,因此也改变了决定绕组内部的振荡条件和绝缘条件。
当额定电压在35千伏以下时,变压器功率增大引起绕组结构的改变使得绝缘各元件间的耐电强度裕度很大,因而绝缘的电性计算就不很重要,热性能常起主要作用。
8.2 变压器的绝缘诊断方法8.2.1 绝缘纸的老化诊断法1.油中气体分析在构成变压器绝缘的材料中,绝缘油的老化可以通过目测检查和电性检测等方法进行检测。
另外,即使发生了老化,对油进行净化处理、换油等也是可行的。
但当绝缘纸的老化不断发展而不能应用时,一般来讲是很难进行修理和替换的。
而且与导体直接接触的绝缘纸的温度会升高,因此可以认为变压器的老化由绝缘纸的老化所决定。
如果变压器的内部发生局部过热或局部放电,由于绝缘纸的分解、绝缘油的氧化、分解气体将溶入油中。
变压器内部的局部过热或局部放电而产生气体的一般情况如表8-1所示,过热或放电都会产生其特征气体。
只要检测出这类气体,就能诊断变压器的老化程度。
表8-1变压器不同异常种类所产生的气体成分异常的种类主要发生的气体过热绝缘油氢气(H2),甲烷(CH4),乙烯(C2H4),乙烷(C2H6),丙烯(C3H6),丙烷(C3H8)浸油固体绝缘一氧化碳(CO),二氧化碳(CO2),氢气(H2),甲烷(CH4),乙烯(C2H4),乙烷(C2H6),丙烯(C3H6),丙烷(C3H8)放电绝缘油氢气(H2),甲烷(CH4),乙炔(C2H2),乙烯(C2H4),乙烯(C2H4),乙烷(C2H6)浸油固一氧化碳(CO),二氧化碳(CO2),氢气(H2),甲烷(CH4),乙炔(C2H2),乙体绝缘烯(C2H4)丙烯(C3H6)注:1.黑体字表示特征气体。
2.变压器的绝缘诊断是通过分析溶入油中的气体来判定老化程度的。
油中气体的抽取一般是按照下面的程序进行的。
从变压器油箱的下部采油→利用鼓泡方式抽出气体→色谱分析→提出油中的特定成分。
日本电气协会研究报告书的1980年版提出电压等级划分为275kV和500kV,其容量划分为10 MV·A以上和10MV·A以下,但以后的大量数据表明,容量和电压对于分解气体并没有太大的差别,因而1999年的修正案中去掉了这样的分级,对检测出的气体量的规定也做了若干调整。
另外,修正案中追加了一氧化碳和二氧化碳(下面简写为(CO+CO2))与糠醛(C5H4O2)。
(CO+CO2)与绝缘纸的平均聚合度的关系。
这里,将糠醛与绝缘纸的平均聚合度的关系、糠醛与(CO+CO2)的关系分别用图8-7和图8-8表示。
图8-7 糠醛生成量与平均聚合度剩余率的关系图8-8 糠醛生成量与(CO+CO2)的生成量的关系可以看出,糠醛和(CO+CO2)与绝缘纸的老化有着密切的关系。
1999年的新修正案是以这些结果为依据的,提出了变压器的寿命指标是取线圈绝缘纸的平均聚合度为450,此时(CO+CO2)与糠醛的发生量为表8-2所示的值。
表8-2 老化指标成分的判定值老化指标成分要注意水平危险水平CO+CO20.2mL/g 2. 0mL/g糠醛0.0015mg/g 0.015mg/g 另一方面,在其他有关发生气体的修正案中,表示变压器异常的各气体量的判定分区,如表8-3、表8-4及表8-5所示,区分为:需注意I级、需注意II级,以及异常级三种类型。
表8-3 需注意I级TCG H2CH4C2H6C2H4C2H2CO500 400 100 150 10 0.5 300 注:只要有一个超过了上面的数值,就是需注意I级。
但是, C2H2达到了0.5以上时即是需注意II级。
表8-4 需注意II级①C2H2≥0.5ppm②C2H4≥10ppm并且当TCG≥500ppm时注:①、②中的条件只要达到一个,即是需注意II级。
表8-5 异常级①C2H2≥5ppm②C2H4≥100ppm并且当TCG≥700ppm时③C2H4≥100ppm并且当TCG的增加量≥700ppm/月时注:①、②、③中只要达到一个,即可作为异常级这里,可燃性气体总量(Tatal Combustible Gas,TCG)是指H2、CH4、C2H6、C2H4、C2H2以及CO的总和。