电力有源滤波器的工作原理
- 格式:docx
- 大小:26.42 KB
- 文档页数:2
有源滤波原理
有源滤波器是一种电子滤波器,它由电路中的主动元件(如晶体管、集成电路等)产生,可以对信号进行滤波处理,以实现特定的滤波效果。
有源滤波器通常由无源元件(如电阻、电容、电感等)和运算放大器构成,具有电路简单、体积小、重量轻、成本低等优点。
有源滤波器的原理是利用电子元件的特性对信号进行滤波处理。
在有源滤波器中,运算放大器是最关键的元件之一,它能够对信号进行放大、缓冲、调整阻抗等处理,从而实现滤波效果。
根据滤波器的类型不同,运算放大器和其他元件的连接方式也会有所不同。
有源滤波器通常分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器四种类型。
低通滤波器允许通过低频信号,抑制高频信号;高通滤波器允许通过高频信号,抑制低频信号;带通滤波器允许通过一定频段的信号,抑制其他频段的信号;带阻滤波器允许通过一定频段的信号,抑制特定频段的信号。
有源滤波器的应用非常广泛,可以用于音频处理、通信、仪器仪表、电力电子等领域。
在音频处理中,有源滤波器可以用于音响系统的音调控制、噪声抑制等;在通信中,有源滤波器可以用于调制解调、信道滤波等;在仪器仪表中,有源滤波器可以用于信号调理、数据采集等;在电力电子中,有源滤波器可以用于电力系统的谐波抑制、无功补偿等。
有源滤波器的工作原理及应用一、概述随着电力电子技术的迅猛发展和成熟,电力系统中的大型功率电子装置日益增多,在提高工业自动化水平和效益的同时,由于是各种使用传统相控整流技术的大容量非线性负荷,在运行过程中所产生的高谐波和低功率因数的运行状态,严重危害着电力系统的安全和电网供电质量。
针对电网谐波的复杂情况而研发的有源滤波器作为一款先进的电能质量治理产品,综合了电力电子技术、数字控制技术、数字信号处理技术等前沿技术,具有较高技术含量。
二、工作原理及容量选择有源电力滤波器通过电流互感器检测负载电流,并通过内部DSP计算,提取出负载电流中的谐波成分,然后通过PWM信号发送给内部IGBT,控制逆变器产生一个和负载谐波电流大小相等,方向相反的谐波电流注入到电网中,达到滤波的目的。
1.改造项目可以通过对电网的实测,得出谐波电流。
需要测试的量有:相电流有效值:I0,电流总谐波畸变率:THDi,那么可以根据如下的公式得到谐波电流有效值:上式中,IH表示总谐波电流含量。
2.新设计项目在变压器二次侧进行集中治理时,可以通过如下公式来估算:上式中,S表示变压器容量,K表示负荷率,U表示线电压。
一般情况下,K取0.5~0.7之间;而THDi根据不同行业的负载情况取不同的经验值三、有源滤波器的发展趋势有源滤波器是改善供电质量,净化电网污染的一种有效装置,自从七十年代提出以来,有源滤波技术得到了长足的发展,越来越多的有源滤波器投入了运行,无论从现实功能还是运行功率上都有明显进步。
目前,有源滤波器已经运用在提高电能质量,解决三相电力系统中终端电压调节,电压波动抑制,电压平衡改善以及谐波消除和无功补偿等问题上。
从近年来的研究和应用可以看出,有源滤波器的发展前景如下:(1)随着新型能源的发展,有源滤波器的运用范围得到极大扩展。
特别是新型能源发电后并入电网时,有源滤波器可减少其对电网产生危害。
(2)从成本和效率,以及扩大容量来说,模块化的有源滤波器系统将得到更加广泛得运用。
有源滤波器工作原理有源滤波器是一种电子滤波器,它利用有源元件(如放大器)来增强滤波器的性能。
它可以通过放大器的放大作用来提高滤波器的增益和带宽,并且可以实现各种滤波器的功能,如低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
有源滤波器通常由放大器、电容器和电感器组成。
放大器可以是运算放大器、场效应管放大器或其他类型的放大器。
电容器和电感器用于构建滤波器的频率响应。
有源滤波器的工作原理可以通过以下步骤来解释:1. 信号输入:将待处理的信号输入到有源滤波器的输入端口。
这个信号可以是音频信号、视频信号或其他类型的电信号。
2. 放大器增益:输入信号经过放大器放大,增益可以根据需求进行调整。
放大器的增益可以控制滤波器的信号强度。
3. 频率选择:有源滤波器根据电容器和电感器的数值选择特定的频率范围。
不同的电容器和电感器数值可以实现不同的滤波器类型。
4. 信号处理:滤波器通过电容器和电感器的组合来处理输入信号。
电容器可以通过储存和释放电荷来控制信号的频率响应。
电感器则可以通过储存和释放磁场来控制信号的频率响应。
5. 输出信号:经过滤波器处理后的信号输出到有源滤波器的输出端口。
输出信号的频率范围和幅度可以根据滤波器的设计进行调整。
有源滤波器的优点是它可以提供较高的增益和较宽的带宽。
由于有源滤波器使用放大器来增强信号,因此可以在滤波器的输入和输出之间提供较大的信号增益。
此外,有源滤波器还可以实现复杂的滤波器功能,如可调谐滤波器和多级滤波器。
然而,有源滤波器也存在一些缺点。
首先,有源滤波器的设计和构建相对复杂,需要选择合适的放大器和电容器、电感器组合。
其次,有源滤波器可能会引入噪声和失真,特别是在高增益和宽带宽的情况下。
因此,在设计有源滤波器时需要权衡增益、带宽和信号质量。
总结起来,有源滤波器是一种利用有源元件来增强滤波器性能的电子滤波器。
它通过放大器的放大作用来提高滤波器的增益和带宽,并且可以实现各种滤波器的功能。
有源电力滤波器技术与发展综述有源电力滤波器啊,这可是个相当厉害的玩意儿呢。
就好比是电力系统里的超级清洁工,专门把那些捣乱的谐波杂质给清扫干净。
咱先得知道啥是谐波啊。
简单来说呢,正常的电就像整齐排列的士兵,规规矩矩地按照一定的频率和波形前进。
可是呢,这谐波就像是混进队伍里的调皮鬼,把原本整齐的队伍搅得乱七八糟。
这些调皮鬼是从哪儿来的呢?各种非线性负载啊,就像那些不太听话的电器设备,它们工作的时候就会产生谐波。
这谐波可不得了,就像小虫子在咬电线一样,会让电线发热,还会让电器设备不正常工作,甚至缩短设备的寿命。
这时候,有源电力滤波器就闪亮登场啦。
有源电力滤波器的工作原理,说起来就像是一场精彩的魔术表演。
它能够快速地检测到那些捣乱的谐波,然后呢,就像变魔术一样,产生一个和这些谐波大小相等、方向相反的信号。
这两个信号一碰上啊,就像两个相反的力量撞到一起,“嘭”的一下,谐波就消失得无影无踪了。
这可太神奇了,就像在黑暗中突然有了一盏明灯,把那些隐藏的危险都给消除掉了。
有源电力滤波器的发展历程也挺有趣的。
最开始的时候呢,它就像一个刚刚学会走路的小孩子,功能比较简单,能够处理的谐波也有限。
但是随着科技的不断进步,就像小孩子慢慢长大一样,它变得越来越强大。
现在啊,它已经能够处理各种各样复杂的谐波情况了。
而且啊,它还变得越来越聪明,就像一个经验丰富的老电工一样,能够自动适应不同的电力环境。
从技术方面来看,有源电力滤波器的控制策略就像它的大脑一样重要。
好的控制策略能让它更高效地工作。
比如说,有些控制策略就像精确的导航系统,能够准确地引导滤波器去捕捉谐波。
还有它的电路结构,就像它的身体一样。
不同的电路结构有不同的特点,就像不同身材的人有不同的优势一样。
有的电路结构能够承受更大的电流,就像强壮的大力士;有的电路结构则更加灵活,就像敏捷的小猴子。
在实际应用中,有源电力滤波器可是到处都在发挥作用呢。
在工厂里,有各种各样的大型设备,这些设备就像一群饥饿的巨兽,不停地消耗着电力,同时也产生大量的谐波。
有源滤波器工作原理有源滤波器是一种电子滤波器,它使用有源元件(如运算放大器)来实现滤波功能。
有源滤波器可以根据频率对信号进行选择性放大或衰减,从而实现滤波效果。
其工作原理基于运算放大器的放大和反馈原理。
有源滤波器一般由运算放大器、电容和电阻等元件组成。
运算放大器是有源滤波器的核心元件,它可以提供高增益和低失真的放大功能。
电容和电阻则用于构建滤波器的频率响应特性。
有源滤波器可以分为两种类型:主动滤波器和积分滤波器。
主动滤波器是指使用运算放大器来实现放大和滤波功能的滤波器。
积分滤波器则是指使用电容和电阻组成的积分电路来实现滤波功能的滤波器。
主动滤波器的工作原理如下:输入信号经过运算放大器的放大后,进入滤波器电路。
滤波器电路由电容和电阻组成,电容和电阻的数值可以根据需要选择。
滤波器的频率响应特性可以通过选择合适的电容和电阻数值来调整。
滤波器的输出信号经过运算放大器的放大后输出。
积分滤波器的工作原理如下:输入信号经过电阻后进入电容,电容会对信号进行积分操作。
积分操作可以使低频信号通过,而高频信号被衰减。
因此,积分滤波器可以实现低通滤波功能。
积分滤波器的输出信号经过运算放大器的放大后输出。
有源滤波器的优点是具有高增益和灵活性。
由于使用了运算放大器,有源滤波器可以实现高增益的放大功能,从而提高信号的质量。
同时,有源滤波器的频率响应特性可以通过选择合适的电容和电阻数值来调整,从而满足不同的滤波需求。
然而,有源滤波器也存在一些缺点。
首先,有源滤波器的设计和调试相对复杂,需要考虑运算放大器的失调和偏置等因素。
其次,有源滤波器的功耗较高,需要额外的电源供应。
此外,有源滤波器的频率响应特性可能受到温度和元件参数的影响。
总结起来,有源滤波器是一种利用运算放大器和电容、电阻等元件实现滤波功能的电子滤波器。
它可以根据频率对信号进行选择性放大或衰减,从而实现滤波效果。
有源滤波器具有高增益和灵活性的优点,但也存在设计复杂和功耗较高的缺点。
有源滤波器工作原理有源滤波器是一种电子滤波器,它利用有源元件(如运算放大器)来增强滤波器的性能。
有源滤波器可以实现更高的增益、更低的失真和更宽的频率范围,因此在许多应用中得到广泛使用。
有源滤波器的工作原理基于运算放大器的反馈原理。
运算放大器是一种高增益的电子设备,可以将输入信号放大到较高的电压范围。
它由一个差分放大器和一个反馈网络组成。
在有源滤波器中,输入信号首先经过一个滤波器电路,该电路可以是低通、高通、带通或带阻滤波器。
滤波器电路的作用是根据频率选择性地传递或阻止信号。
滤波器电路的输出信号然后通过运算放大器。
运算放大器将输入信号放大到一个较高的电压范围,并将其输出到反馈网络。
反馈网络将一部分输出信号反馈到运算放大器的负输入端,形成一个闭环反馈。
这种反馈机制可以改变运算放大器的增益和频率响应,从而实现滤波器的特定功能。
具体来说,根据反馈网络的设计,有源滤波器可以实现以下几种滤波器类型:1. 低通滤波器:低通滤波器可以传递低于某个截止频率的频率成分,同时阻止高于该截止频率的频率成分。
在有源滤波器中,低通滤波器的反馈网络通常包含一个电容,该电容将高频信号引导到地,从而实现滤波效果。
2. 高通滤波器:高通滤波器可以传递高于某个截止频率的频率成分,同时阻止低于该截止频率的频率成分。
在有源滤波器中,高通滤波器的反馈网络通常包含一个电容,该电容将低频信号引导到地,从而实现滤波效果。
3. 带通滤波器:带通滤波器可以传递某个频率范围内的频率成分,同时阻止其他频率范围内的频率成分。
在有源滤波器中,带通滤波器的反馈网络通常包含一个电容和一个电感,它们共同决定了滤波器的中心频率和带宽。
4. 带阻滤波器:带阻滤波器可以阻止某个频率范围内的频率成分,同时传递其他频率范围内的频率成分。
在有源滤波器中,带阻滤波器的反馈网络通常包含一个电容和一个电感,它们共同决定了滤波器的中心频率和带宽。
有源滤波器的工作原理可以通过以下步骤总结:1. 输入信号经过滤波器电路,根据滤波器类型选择性地传递或阻止特定频率成分。
原理阐述:电力有源滤波器是一种用于动态抑制谐波、补偿无功的新型电力电子装置,它能对大小和频率都变化的谐波以及变化的无功进行补偿,其应用克服LC滤波器等传统的谐波抑制和无功补偿方法的缺点。
基本原理:下图所示为最基本的电力有源滤波器系统构成的原理图。
图中,e s表示交流电源,负载为谐波源,它产生谐波并消耗无功。
电力有源滤波器系统由指令电流运算电路和补偿电流发生电路两部分组成。
其中指令电流运算电路的核心是检测出补偿对象电流中的谐波和无功等电流分量,补偿电流发生电路的作用是根据指令电流运算电路得出的补偿电流的指令信号,产生实际的补偿电流,它由电流跟踪控制电路、驱动电路和主电路三个部分构成。
主电路目前均采用PWM变流器。
有源滤波器通过检测补偿对象的电压和电流,经指令电流运算电路计算得出补偿电流的指令信号,该信号经补偿电流发生电路放大,得出补偿电流,补偿电流与负载电流中要补偿的谐波及无功等电流抵消,最终得到期望的电源电流。
如果要求电力有源滤波器在补偿谐波的同时,补偿负载的无功,则只要在补偿电流的指令信号中增加与负载电流的基波无功分量反极性的成分即可。
单独使用的并联型电力有源滤波器:指令电流运算电路:作用是根据电力有源滤波器的补偿目的得出补偿电流的指令信号,核心是谐波和无功电路实时监测方法;电流跟踪控制电路:作用是根据补偿电流的指令信号和实际补偿电流之间的相互关系,得出控制补偿电流发生电路中主电路各个器件通断的PWM信号,控制的结果应保证补偿电流跟踪其指令信号的变化。
目前跟踪型PWM控制主要有两种:瞬时值比较方式和三角波比较方式。
以瞬时值比较方式为例,对于a相,i c的方向如上图所示,则U的器件导通时,i c将减小,而当X的器件导通时,i c将增大。
下图是为实现上述逻辑的电路图。
电力有源滤波器的主电路形式之一:。
探讨有源电力滤波器(APF)在谐波治理中应用随着社会用电量需求越来越大,电网覆盖的范围也越来越广,这就导致电网运行过程中会有更多问题出现。
而谐波就是影响电网正常运行的因素,其会在电网运行的过程中对其造成破坏,严重时诱发安全事故。
本文将分析谐波产生的原因及谐波的危害,并根据有源电力滤波器的原理和特征分析,对其在谐波治理中的应用进行探讨。
标签:有源电力滤波器;谐波治理;应用0 引言在欧美工业和电力技术发达的的国家,电网中对有源电力滤波器的应用极其广泛,这让电网的整体供电质量得到有效提升,其中就包含对谐波的治理。
随着我国工业化进程的不断推进,谐波成为影响工业用电的主要问题,对我国的工业发展带来严重的阻碍。
目前有源电力滤波器在我国电网中的应用取得了一定的成果,但从整体上来看谐波仍然严重影响着我国电网的正常运行,所以对于我国的工业发展而言,加强对有源电力滤波器在谐波治理中的应用研究有着重要意义。
1 谐波产生的原因及其危害1.1 谐波产生的原因1.1.1 因发电源质量问题产生的谐波。
在发电机发电的过程中,由于发电机内部三项绕组的制作不能达到绝对意义上的对称,所以在发电机的实际运行中会产生谐波。
同时,发电机内部铁芯也不能达到绝对意义上的均匀一致,所以也会导致发电机工作时谐波的出现。
1.1.2 配电网问题引起的谐波。
在配电网和输电网中会有电力变压器的存在,而电力变压器在运行的过程中会不可避免的产生谐波,导致配电网和输电网在正常运行的时候受到谐波的影响。
1.1.3 用电设备产生的谐波。
由于用电设备中存在非线性负载,其在运行的过程中就会产生谐波,导致正常用电受到影响。
1.2 谐波的危害1.2.1 导致输电和用电效率下降。
在电网运行的过程中,部分原件受到谐波的影响会有附加损耗的产生,这样就导致用电和输电的效率不断下降。
1.2.2 干扰和误动。
由于谐波的影响,电网中的自动控制装置和继电保护装置等会在运行的过程中受到干扰,有时甚至会出现误动的情况,严重影响电网的正常运行。
apf有源滤波容量计算APF有源滤波容量计算引言:有源滤波器(Active Power Filter,APF)作为一种新型的滤波器,具有在电力系统中消除谐波和改善电能质量的重要作用。
APF的设计需要对其容量进行合理的计算,以确保其能够有效地滤除谐波。
本文将介绍APF有源滤波容量的计算方法。
一、APF有源滤波器的基本原理APF有源滤波器主要由功率电子器件、控制电路和滤波电路组成。
其基本原理是通过控制功率电子器件的开关状态,将反向的谐波电流注入电力系统中,以抵消谐波电流,从而实现谐波的消除。
二、APF有源滤波器容量的计算方法APF的容量计算需要考虑以下几个因素:1. 谐波电流的特性:首先,需要对谐波电流的特性进行分析,包括谐波电流的频率、幅值和相位。
这些参数的确定可以通过对电力系统进行谐波测量得到,也可以通过仿真软件进行模拟计算。
2. 谐波电流的限制:根据国家标准或行业规范,谐波电流的限制值是有严格要求的。
在计算APF容量时,需要根据这些限制值来确定滤波器的最大容量。
3. 谐波功率的计算:根据谐波电流的特性和限制条件,可以计算出谐波功率的大小。
谐波功率是指谐波电流通过谐波频率所产生的功率。
4. APF容量的确定:根据谐波功率和滤波器的效率,可以计算出APF的容量。
一般来说,APF容量应该略大于谐波功率,以确保其能够有效地消除谐波。
5. 容量的选择:在确定了APF的容量后,需要选择合适的容量规格。
一般来说,可以选择符合要求的已有容量规格,也可以根据实际情况定制特殊规格的容量。
三、示例分析为了更好地理解APF有源滤波容量的计算方法,下面以一个示例来进行分析。
假设某电力系统中存在50Hz的三次谐波电流,其幅值为10A,相位与基波电流相同。
根据国家标准,该电力系统对三次谐波电流的限制为5A。
则谐波功率为:谐波功率= (10A)^2 / (2 * 5Ω) = 10W假设APF滤波器的效率为90%,则APF的容量为:APF容量 = 10W / 0.9 = 11.11W在选择容量规格时,可以选择符合要求的标准容量,如选择15W 的滤波器。
有源滤波器工作原理有源滤波器是一种电子滤波器,使用一种或多种有源元件(如晶体管、运算放大器等)来增强滤波器的性能。
它可以实现对特定频率范围内信号的放大或衰减,从而实现对信号的滤波功能。
有源滤波器的工作原理可以分为两个方面:放大和滤波。
1. 放大有源滤波器中的有源元件(如晶体管)可以对输入信号进行放大。
通过控制有源元件的工作状态(如偏置电压、工作点等),可以使输入信号在特定频率范围内得到放大。
这样,输入信号的幅度可以增加,从而增强了滤波器的输出信号。
2. 滤波有源滤波器中的有源元件还可以根据电路的设计和参数来实现对特定频率范围内信号的衰减或放大。
根据电路的结构和元件的特性,有源滤波器可以分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
- 低通滤波器:允许低于截止频率的信号通过,而将高于截止频率的信号衰减。
- 高通滤波器:允许高于截止频率的信号通过,而将低于截止频率的信号衰减。
- 带通滤波器:允许某个频率范围内的信号通过,而将其他频率范围内的信号衰减。
- 带阻滤波器:允许某个频率范围外的信号通过,而将该频率范围内的信号衰减。
有源滤波器的设计需要根据具体的应用需求来确定滤波器的参数,如截止频率、增益、带宽等。
通过选择合适的元件和调整电路的参数,可以实现对特定频率范围内信号的放大或衰减,从而满足不同应用场景的要求。
总结:有源滤波器是一种使用有源元件来增强滤波器性能的电子滤波器。
它通过有源元件的放大和滤波功能,实现对特定频率范围内信号的放大或衰减。
有源滤波器可以根据应用需求选择不同的滤波器类型,如低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
通过合适的元件选择和电路参数调整,可以实现满足不同应用场景的滤波要求。
谐波滤除器Harmonic filter谐波和无功的产生和危害Occurrence and harm of harmonics and reactive power现代工业和家电业的技术发展,使得电力电子设备被广泛使用,电力电子设备中大量使用了半导体开关器件,这些器件只允许电流在整个周期的某一部分导通,从而使用户端电网侧电流不连续,造成电流波形的失真。
另外对于三相四线制系统,如果三相负荷不平衡,会造成三相电流的不对称。
Nowadays the power and electronic equipment are widely used, these equipments adopted many semi-conductive components, which allow some section of a full current wave only, and result in discontinuous current, namely current distortion. Also for the 3-phase 4-wire system, if the three-phase load is unbalanced, it will lead to asymmetrical current.根据傅里叶(Fourier) 定理,任何周期函数可以分解为一个直流量和一系列正弦量(频率为原始周期函数频率的整数倍) 的和,频率等于是原始周期函数的正弦量称为基波,频率等于基波频率“n”倍的正弦量波形称为“n”次谐波。
可见纯正弦化的电流波形不含谐波电流成分,而前述的失真的电流波形则含有谐波电流成分。
According to Fourier theorem, any periodical function can be decomposed as DC content and the sum of series of sinusoidal contents (its freq is integer multiple of original periodical function), the sinusoidal wave with freq same as original periodical function is basic wave, “n” times of the freq of basic wave is N power harmonic, consequently pure sinusoidal current wave does not contain harmonics, distorted current has harmonic contents.下图为典型变频器的输入侧电流波形及傅里The following figure is a typical case current wave of input side in inverter and Fourier未滤波的线电源%基波值Basic wave value of unfiltered line power source未滤波的线电源Unfiltered line power source一般通过波形的“总谐波畸变率简称THD) ”来定义波形的失真程度和谐波含量:Generally total harmonic distortion rate (abbreviation: THD) is defined as distortion degree and harmonic contents.其中U1为基波的有效值,Un为“n”次谐波的有效值。
有源电力滤波器( APF )引言谐波电流和谐波电压的出现,对于电力系统运行是一种“污染”,它们降低了系统电压正弦波形的质量,不但严重地影响电力系统自身,而且还危及用户和周围的通信系统。
近半个世纪以来,随着电力电子设备的推广应用,非线性负荷的迅速增加(例如电气机车、工业电炉等的应用),特别是高压直流输电的运用,谐波污染问题日趋严重,并因此受到人们普遍的关注和重视。
减小谐波影响的技术措施可以从两方面入手:一是从谐波源出发,减少谐波的产生;二是安装滤波装置。
常见的滤波器包括无源滤波器、有源滤波器以及混合滤波器。
无源滤波器(PF:Passive Filter)也称为LC滤波器,是由滤波电容器、电抗器和电阻器适当组合而成的滤波装置。
无源滤波器的工业应用已经有相当长的历史,其设计方法稳定可靠、结构简单,但其滤波效果依赖于系统阻抗特性,并容易受温度漂移、网络上谐波污染程度、滤波电容老化及非线性负荷的影响。
此外,无源滤波器仅能对特定的谐波进行有效地衰减,而出于经济和占地面积方面的考虑,滤波器个数均是有限的,所以对谐波含量丰富的场合,无源滤波器的滤波效果往往不够理想。
与无源滤波器对应的是有源滤波器( APF:Active Power Filter )。
有源电力滤波器采用开关变换器消除谐波电流,克服了无源滤波器的缺点。
有源电力滤波器有着无源滤波器无可比拟的技术优势,因此越来越受到人们的关注。
1.有源滤波器的发展历史有源滤波器的思想最早出现于1969年B.M.Bird和J.F.Marsh的论文中。
文中描述了通过向交流电源注入三次谐波电流以减少电源中的谐波,改善电源电流波形的新方法。
文中所述的方法认为是有源滤波器思想的诞生。
1971 年日本的H.Sasaki 和T.Machida 完整描述了有源电力滤波器的基本原理。
1976 年美国西屋电气公司的L.Gyugyi 和E.C.Strycula 提出了采用脉冲宽度调制控制的有源电力滤波器,确定了主电路的基本拓扑结构和控制方法,从原理上阐明了有源电力滤波器是一理想的谐波电流发生器,并讨论了实现方法和相应的控制原理,奠定了有源电力滤波器的基础。
有源滤波器工作原理有源滤波器是一种电子滤波器,它利用有源元件(如运算放大器)来实现滤波功能。
有源滤波器具有高增益、低失真和灵活性等优点,常用于音频处理、通信系统和仪器仪表等领域。
有源滤波器的工作原理基于运算放大器的放大和反馈原理。
运算放大器是一种电子放大器,具有高增益、高输入阻抗和低输出阻抗的特点。
它由一个差分放大器和一个输出级组成。
差分放大器通过放大输入信号,并将放大后的信号送入输出级。
输出级将放大后的信号输出。
有源滤波器可以分为两种类型:主动滤波器和积分滤波器。
主动滤波器利用运算放大器的放大和反馈原理来实现滤波功能。
积分滤波器则利用电容器和电阻器的组合来实现滤波功能。
主动滤波器的工作原理如下:输入信号经过差分放大器放大后,进入反馈网络。
反馈网络将一部分输出信号反馈给差分放大器的负输入端,形成反馈环路。
通过调整反馈网络的参数,可以实现不同的滤波功能,如低通滤波、高通滤波、带通滤波和带阻滤波等。
差分放大器根据反馈信号和输入信号的差异来产生输出信号,从而实现滤波功能。
积分滤波器的工作原理如下:输入信号经过电容器和电阻器的串联组合,形成积分电路。
积分电路将输入信号进行积分操作,输出信号的幅度与输入信号的频率成反比。
通过调整电容器和电阻器的数值,可以实现不同的滤波功能,如高频滤波和低频滤波等。
有源滤波器的性能参数包括增益、带宽、失真和相位响应等。
增益是指滤波器对输入信号的放大倍数。
带宽是指滤波器能够通过的频率范围。
失真是指滤波器输出信号与输入信号之间的差异。
相位响应是指滤波器对输入信号的相位变化。
有源滤波器的设计需要根据具体的应用需求来确定。
在设计过程中,需要考虑滤波器的频率响应、幅频特性、相频特性、群延迟和稳定性等因素。
通过合理选择元件参数和电路结构,可以实现满足要求的滤波功能。
总结起来,有源滤波器是利用有源元件(如运算放大器)来实现滤波功能的电子滤波器。
它具有高增益、低失真和灵活性等优点。
有源滤波器的工作原理基于运算放大器的放大和反馈原理,可以分为主动滤波器和积分滤波器两种类型。
《装备维修技术》2021年第6期—377—电力有源滤波器(APF)的仿真分析郭泽华(许昌电气职业学院,河南 许昌 461000)Simulation analysis of active power filterGuo Zehua引言电网谐波来源于三个方面:其一是电源质量不高产生谐波;其二是输电网产生的谐波,但是由于发电设备和电网技术的更新,其二者对于谐波污染的贡献量已经很少;其三是用电设备产生的谐波,其对于谐波污染的贡献量最多。
产生谐波电气设备主要有:1.整流设备、2.电弧炉、电石炉、3.变频装置、4.家用电器。
谐波的危害概括起来,大致可以有以下几个方面:1谐波增加了系统中元件的附加谐波损耗,降低了发电、输电及用电设备的使用效率、2谐波影响各种电气设备的正常工作、3谐波频率与输电系统固有的特征频率重合时会发生谐振、4谐波会导致继电保护和自动装置的误动作、5谐波会对邻近的通信系统造成明显的干扰,降低通信质量、6与弱交流系统连接时可能出现谐波不稳定性。
1 并联型有源电力滤波器工作原理在有源电力滤波器的各种类型中,占主导地位的是并联型有源电力滤波器。
这种有源电力滤波器可认为由两大部分组成,即指令电流运算电路和补偿电流发生电路。
其中补偿电流发生电路由电流跟踪控制电路、驱动电路和主电路三部分构成的。
图1 并联型有源电力滤波器的原理框图(Fig.1 principle block diagram of shunt active power filter) 图1所示为并联型有源电力滤波器的原理框图。
图中e s 表示交流电源,负载为谐波源(即补偿对象),它产生谐波并消耗有功功率。
有源滤波器与补偿对象并联接入电网,故称为并联型。
并联型APF的工作原理可由下式表示:(1-1)式中i Lf 为负载电流的基波分量,i c 为有源滤波器的补偿电流,i Lh 为负载电流的谐波分量。
由式(2-1)可以看到:当i Lh 被完全补偿后,系统电流变为理想的正弦波。
有源滤波器工作原理有源滤波器是一种电子滤波器,通过使用有源元件(如运算放大器)来增强滤波器的性能。
它可以滤除不需要的频率成份,只保留感兴趣的频率信号。
有源滤波器在许多电子设备中广泛应用,如音频设备、通信系统和电源管理等。
有源滤波器的工作原理基于运算放大器的放大和反馈原理。
运算放大器是一种高增益、差分输入、单端输出的电子设备,具有很好的线性性能。
它可以将输入信号放大到较高的增益,并通过反馈回路将输出信号与输入信号进行比较,从而实现滤波功能。
有源滤波器可以分为两种类型:主动滤波器和交叉耦合滤波器。
主动滤波器是指使用运算放大器和其他有源元件(如电容和电感)来构建滤波器。
它可以实现各种滤波器类型,如低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
主动滤波器的工作原理是通过调整运算放大器的增益和反馈网络的参数来选择所需的频率响应。
交叉耦合滤波器是一种特殊类型的有源滤波器,它使用多个运算放大器和被动元件(如电容和电感)构建。
交叉耦合滤波器可以实现更复杂的滤波器设计,如多级滤波器和带通滤波器。
它的工作原理是通过将多个运算放大器和被动元件进行耦合,形成一个复杂的滤波器网络,从而实现所需的频率响应。
有源滤波器的工作原理可以通过以下步骤来解释:1. 输入信号通过运算放大器的差分输入端进入滤波器电路。
2. 运算放大器将输入信号进行放大,并输出到反馈网络。
3. 反馈网络将运算放大器的输出信号与输入信号进行比较,并产生一个反馈信号。
4. 反馈信号通过运算放大器的反馈回路重新输入到运算放大器的输入端。
5. 反馈信号与输入信号的比较结果将决定运算放大器的输出信号。
6. 输出信号经过滤波器电路后,滤除不需要的频率成份,并保留感兴趣的频率信号。
7. 最终输出信号可以通过增益调节和滤波器参数调整来满足特定的应用需求。
有源滤波器具有许多优点,如高增益、灵便性和可调性。
它可以实现复杂的滤波器设计,并具有较低的失真和噪声。
然而,有源滤波器也存在一些限制,如较高的功耗和复杂的电路设计。
电力有源滤波器的工作原理电力有源滤波器是一种电子装置,用于去除电力系统中的谐波和干扰信号,以确保电力供应的质量和稳定性。
它通过引入一个电流源来补偿负载电流中的谐波成分,从而消除谐波。
以下是电力有源滤波器的工作原理的详细解释。
电力有源滤波器由三个主要部分组成:电流传感器、电压传感器和一个控制回路。
电流传感器用于监测负载电流的谐波成分。
负载电流经过电流传感器后,传感器会将其转换为电流信号,并将其发送到控制回路。
接下来,电压传感器用于监测电网电压的谐波成分。
电网电压经过电压传感器后,传感器会将其转换为电压信号,并将其发送到控制回路。
控制回路是电力有源滤波器的核心部分。
它根据电流传感器和电压传感器的信号,计算出负载电流谐波成分与电网电压谐波成分之间的差值。
然后,它将该差值转化为相应的电流源信号,并将其添加到负载电流中。
这样就能够实现对负载电流谐波成分的减少。
简单来说,工作原理是通过电流传感器和电压传感器对负载电流
和电网电压进行监测,然后控制回路根据监测到的谐波成分情况计算
出补偿电流源信号,并将其添加到负载电流中,从而减少谐波。
电力有源滤波器可以实现对不同频率的谐波的滤波,不仅可以有
效去除电力系统中的谐波,还能提供功率因数校正和无功功率补偿。
它的作用是优化电力系统的质量,减少电网对谐波敏感设备的影响,
提高电力供应的可靠性和稳定性。
总之,电力有源滤波器是一种通过引入补偿电流源来去除电力系
统中的谐波成分的装置。
它通过电流传感器和电压传感器对电流和电
压的监测,以及控制回路的计算和补偿,实现了对谐波的滤波和消除。
通过使用电力有源滤波器,可以提高电力系统的质量,减少谐波对设
备的影响,从而确保电力供应的稳定性和可靠性。