(完整版)微分方程例题选解
- 格式:doc
- 大小:547.50 KB
- 文档页数:10
45 / 2045习 题3-1 复摆重P ,对质心的回转半径为C ρ,质心距转动轴的距离为a ,复摆由水平位置无初速地释放,列写复摆的运动微分方程。
解:系统具有一个自由度,选复摆转角ϕ为广义坐标,原点及正方向如如题4-1图所示。
复摆在任意位置下,根据刚体绕定轴转动微分方程O O M J =ϕ其中)(22a gP J C O +=ρ 得到复摆运动微分方程为ϕϕρcos )(22Pa a gP C =+ 或0cos )(22=-+ϕϕρga a C3-2均质半圆柱体,质心为C ,与圆心O 1的距离为e ,柱体半径为固定R ,质量为m ,对质心的回转半径为C ρ,在平面上作无滑动滚动,如题3-2图所示,列写该系统的运动微分方程。
解:系统具有一个自由度,选θ为广义坐标。
半圆柱体在任意位置的动能为:222121ωC C J mv T +=题3-1图题3-2图46 / 2046用瞬心法求C v :2222*2)cos 2()(θθθ Re R e CC v C -+== θω = 2CC m J ρ= 故2222221)cos 2(21θρθθ Cm Re R e m T +-+=系统具有理想约束,重力的元功为 θθδd mge W sin -=应用动能定理的微分形式W dT δ=θθθρθθd mge m Re R e m d C sin 21)cos 2(2122222-=⎥⎦⎤⎢⎣⎡+-+ θθθθθθθθθθρd mge d mRe d mRe d R e m C sin sin cos 2)(2222-=+-++ 等式两边同除dt ,θθθθθθθθθθρ sin sin cos 2)(2222mge mRe mRe R e m C -=+-++ 0≠θ ,等式两边同除θ故微分方程为0sin sin )cos 2(2222=+++-+θθθθρθmge mRe Re R e m C ① 若为小摆动θθ≈sin ,1cos ≈θ,并略去二阶以上微量,上述非线性微分方程可线性化,系统微摆动的微分方程为0])[(22=++-θθρge r R C要点及讨论(1)本题也可以用平面运动微分方程求解。
微分方程例题选解1. 求解微分方程3ln (ln )0,|2x e x xdy y x dx y =+-==。
解:原方程化为x y x x dx dy 1ln 1=+, 通解为 ⎰+⎰⎰=-]1[ln 1ln 1C dx e xe y dx x x dx x x⎰+=]ln [ln 1C dx x x x ]ln 21[ln 12C x x += 由e x =,23=y ,得1=C ,所求特解为 11ln ln 2y x x =+。
2. 求解微分方程22'0x y xy y -+=。
解:令ux y =,u x u y '+=',原方程化为 2u u u x u -='+,分离变量得 dx x udu 12=-, 积分得C x u+=ln 1, 原方程的通解为 ln xy x C=+。
3. 求解微分方程dy y y x dx xy x )()(3223+=-。
解:此题为全微分方程。
下面利用“凑微分”的方法求解。
原方程化为 03223=---dy y ydy x dx xy dx x , 由 dy y ydy x dx xy dx x 3223---42222441)(2141dy dy x dx y dx -+-=)2(414224y y x x d --=, 得 0)2(4224=--y y x x d ,原方程的通解为 C y y x x =--42242。
注:此题也为齐次方程。
4. 求解微分方程2''1(')y y =+。
解:设y p '=,则dx dp y ='',原方程化为21p dxdp+=, 分离变量得dx p dp=+21,积分得 1arctan C x p +=,于是 )tan(1C x p y +==', 积分得通解为 12ln cos()y x C C =-++。
5. 求解微分方程''2'20y y y -+=。
第十章 微分方程习题一.填空题:(33)1-1-40、 微分方程4233''4''')'(x y x y y =++的阶数是 . 1-2-41、 微分方程0'2'2=+-xy yy xy 的阶数是 . 1-3-42、 微分方程0d d d d 22=++s x sx s 的阶数是 .1-4-43、x y y y y sin 5''10'''4)()4(=-+-的阶数是 . 1-5-44、微分方程xy x y2d d =满足条件1|'0==x y 的特解是 . 1-6-45、微分方程0d d =+y x y的通解是 .1-7-46、方程y e y x='的通解是 . 1-8-47、 方程y y y ln '=的通解是 . 1-9-48、方程04'4''=+-y y y 的通解是 . 1-10-49、方程04'4''=+-y y y 的通解是 . 1-11-50、方程013'4''=+-y y y 的通解是 .1-12-51、已知特征方程的两个特征根,3,221-==r r 则二阶常系数齐次微分方程为1-13-52、微分方程xe y =''的通解为 . 1-14-53、微分方程x e y x sin ''2-=的通解为 . 1-15-54、若0d ),(dx ),(=+y y x Q y x P 是全微分方程, 则Q P ,应满足 . 1-16-55、与积分方程xy x f y x x d ),(0⎰=等价的微分方程初值问题是 .1-17-56、方程0d )2(d )(22=-++y xy x x y xy 化为齐次方程是 . 1-18-57、通解为21221,(C C e C e C y xx +=为任意常数)的微分方程为 .1-19-58、方程yx e y -=2'满足条件00==x y 的特解是 .1-19-59、方程0dy 1dx 2=-+x xy 化为可分离变量方程是1-20-60、方程xy y 2'=的通解是1-21-61、 方程x y xy x y x y d d d d 22=+化为齐次方程是1-22-62、 若t y ωcos =是微分方程09''=+y y 的解, 则=ω .1-23-63、若ktCe Q =满足Qdt dQ03.0-=, 则=k .1-24-64、y y 2'=的解是1-25-65、某城市现有人口50(万), 设人口的增长率与当时的人口数x (万)和x -1000的积成正比, 则该城市人口)(t x 所满足的微分方程为1-26-66、 圆222r y x =+满足的微分方程是1-27-67、 axae y =满足的微分方程是1-28-68、一阶线性微分方程)()(d dyx Q y x P x =+的通解是 .1-29-69、已知特征方程的两个根3,221-==r r , 则二阶常系数线性齐次微分方程为 .1-30-70、方程25x y =是微分方程y xy 2'=的 解.1-31-71、二阶常系数非齐次微分方程的结构为其一个特解与 之和. 1-32-72、二阶常系数齐次线性微分方程0'''=++qy py y 对应的特征方程有两个不等实根,则其通解为 .1-33-73、将微分方程0)2()(22=---dy xy x dx y xy 写成齐次微分方程的标准形式为二.选择题:(29)2-1-56、微分方程yx2dx dy=的通解是 ( )A.2x y = B. 25x y = C. 2Cx y = D.Cx y =2-2-57、 微分方程0dy 1dx 2=-+x xy 的通解是 ( ) A.21x ey -= B.21x Cey -= C.x C y arcsin = D. 21x C y -=2-3-58、下列方程中是全微分方程的是 ( )A.0dy dx )(2=--x y x B. 0dy dx =-x y C. 0dy )(1dx )1(=-++xy y xy D.0dy dx )(22=++xy y x 2-4-59、下列函数组中,线性无关的是 ( )A.x x e e 32,B.x x 2sin ,2cosC. x x x sin cos ,2sinD.2ln ,ln x x2-5-60、方程03'2''=--y y y 的通解是 ( )A.x x e C e C y 321--+=B. x x e C e C y 321+=C. x x e C e C y 321-+=D. x x e C e C y 321+=-2-6-61、方程0''=+y y 的通解是 ( ) A.x C y sin = B.x C y cos = C.x C x y cos sin += D.x C x C y cos sin 21+=2-7-62、 下列方程中是可分离变量的方程是 ( )A. xy y x -=33dx dyB.0dy 2dx )3(2=++xy y e x C. 234dx dy xy y x += D.y x xy y 321dx dy ++= 2-8-63、 微分方程0cot '=-x y y 的通解是 ( ) A. x C y cos = B. x C y sin = C. x C y tan = D. x C y csc =2-9-64、已知微分方程0''=+-p y y 的通解为)(212x C C e y x +=,则p 的值是 ( )A.1B.0C.21D.412-10-65、微分方程02'=-y y 的通解是 ( )A.C x y +=2sinB.C e y x +=24C.x Ce y 2=D. xCe y =2-11-66、方程xy 2dx dy=的通解是 ( )A.C e x +2B.Cxe+2C. 2Cx eD. 2)(C x e +2-12-67、 xe y -=''的通解为=y ( )A.x e --B. xe - C. 21C x C ex++- D. 21C x C e x ++--2-13-68、微分方程xe 21dx dy -=满足10-==x y 的特解为 ( )A.1221+-=-x ey B. 3221-=-x ey C. C ey x +-=-212 D.212121--=-xe y2-14-69、微分方程0ydy -dx 3=x 的通解是 ( )A.C y x =-2422B. C y x =+2422C. 02422=-y xD. 12422=+y x2-15-70、 微分方程0ydy -dx 3=x 的通解是 ( )A.222=+y xB. 933=+y xC. 133=+y x D. 13333=+y x2-16-71、 过点,0()2-的曲线,使其上每一点的切线斜率都比这点纵坐标大5的曲线方程是( )A.32-=x yB. 52+=x yC.53-=x e yD.5-=x Ce y 2-17-72、齐次方程x yxy tandx dy =化为可分离变量的方程, 应作变换 ( ) A. 2ux y = B. 22x u y = C. ux y = D.33x u y =2-18-73、 设方程)()('x Q y x P y =+有两个不同的解21,y y ,若21y y βα+也是方程的解,则( )A.βα=B. 0=+βαC. 1=+βαD. βα,为任意常数2-19-74、 方程dx 2dx dy y x x =+的通解是 ( )A.x Cx y +=2B. x x C y +=2sinC. C x y +=2cosD.C x y +=22-20-75、下面各微分方程中为一阶线性方程的是 ( )A.x y xy =+2' B .x xy y sin '=+ C .x yy =' D .xy y -=2'2-21-76、曲线上任一点P 的切线均与OP 垂直的曲线方程是 ( )A.y x y -=' B. y x y =' C. x y y -=' D. x y y ='2-22-77、方程2)3(,0'==+y y y 的解是 ( )A.x e y -=32B. x e y --=32C. 32-=x e yD. 32--=x e y2-23-78、 微分方程x y y ln '=的通解是 ( )A.x x e y ln =B. x x Ce y ln =C. x x x e y -=lnD. x x x Ce y -=ln2-24-79、下列哪个不是方程y y 4''=的解 ( )A. x e y 22=B. x e y 2=C. x e y 2-=D. x e y 2=2-25-80、方程0sin '''653)4(=-+++y y y y x xy y 的阶是 ( ) A. 6 B. 5 C. 4 D. 32-26-81、如果一条曲线在它任意一点的切线斜率等于y x2-,则这条曲线是( )A. 椭圆B. 抛物线C. 双曲线D. 圆2-27-82、下列可分离变量的方程是 ( )A. xy y x dx dy-=33 B.02)3(2=++xydy dx y e x C. xy yx dx dy += D.y x xy y dx dy 321++= 2-28-83、微分方程0cot '=-x y y 的通解是 ( ) A. x C y cos = B. x C y sin = C. x C y tan = D. x C y csc = 2-29-84、 已知微分方程0''=+-p y y 的通解为)(212x C C e y x +=,则p 的值( )A. 1B. 0C. 21D. 41三.计算题:(59)3-1-52、0d tan sec d tan sec 22=+y x y x y x 3-2-53、 0ln '=-y y xy3-3-54、0d sec )2(d tan 32=-+y y e x y e x x 3-4-55、y x y y x x y 22222')1(=-+- 3-5-56、 y xe y e x dx dy +-=- 3-6-57、 0)1()1(=-++xdy y ydx x3-7-58、 x x y y y x d sin cos d sin cos =,4|0π==x y3-8-59、0)0(,02')1(22==+-y xy y x 3-9-60、 1)(,ln 2'==e y x y y3-10-61、 x x y y y x d sin cos d sin cos =,4|0π==x y3-11-62、 0y)dx -(x dy )(=++y x3-12-63、 )ln (ln dx d x y y yx-=3-13-64、0)2(22=+-dy x dx xy y 3-14-65、x yx y xy tan'=-3-15-66、x yx y x y xy ++=-ln)('3-16-67、dx dy xy dx dy x y =+223-17-68、x y y x y +=', 2|1==x y3-18-69、x y x y y +=', e y e x ==|3-19-70、2|,'122=-=-=x y y x y xy3-20-71、x x y x y sin 1'=+, 1|==πx y 3-21-72、x e x y x y 43'=-3-22-73、 342'x xy y =-3-23-74、x y x y ln 11'=-3-24-75、x e y x x y x 21'=-+ 3-25-76、 x x y y sec tan '=-,|0==x y3-26-77、x x y x y sin 1'=+, 1|==πx y 3-27-78、22112'x y x xy +=+-, 0|0==x y3-28-79、x xy xy ln '=-, e y e x ==|3-29-80、 22d dyxxe xy x -+=3-30-81、)sin (cos d dy2x x y y x -=+ 3-31-82、5d dyxy y x =- 3-32-83、02d dy4=++xy xy x3-33-84、4)21(3131d dy y x y x -=+3-34-85、xy xy x 2d dy 2-= 3-35-86、x y y +='''3-36-87、01)'(''2=++y yy 3-37-88、01''3=+y y3-38-89、y y 3''=, 1|0==x y , 2|'0==x y3-39-90、223''yy =, 1|3==x y , 1|'3==x y3-40-91、02''=+y y 3-41-92、013'4''=++y y y 3-42-93、0'2''=+-y y y 3-43-94、04'5''=+-y y y 3-44-95、04'3''=--y y y ,|0==x y ,5|'0-==x y 3-45-96、029'4''=++y y y , 0|0==x y ,15|'0==x y3-46-97、0'4''4=++y y y , 2|0==x y , 0|'0==x y 3-47-98、0'4''4=++y y y ,2|0==x y ,|'0==x y 3-48-99、013'4''=+-y y y , 0|0==x y , 3|'0==x y3-49-100、04'4''=+-y y y ,|0==x y ,1|'0==x y3-50-101、xe y y y 2'''2=-+3-51-102、x e y y x cos ''+=+ 3-52-103、x e x y y y 3)1(9'6''+=+-3-53-104、'''22xy y y e --=3-54-105、123'2''+=--x y y y 3-55-106、''sin 20y y x ++=, 1|==πx y , 1|==πx y3-56-107、52'3''=+-y y y ,1|0==x y ,2|'0==x y3-57-108、xe y y y 29'10''=+-,76|0==x y ,733|'0==x y 3-58-109、xxe y y 4''=-, 0|0==x y , 1|'0==x y 3-59-110、xxe y y y 26'5''=+-四.应用解答题:(14)4-1-9、一曲线通过点)3,2(, 它在两坐标轴间的任一切线段均被切点所平分, 求这曲线方程.4-2-10、已知⎰--=+xx x y t t y t t 03231d )(12, 求函数)(x y4-3-13、求一曲线, 这曲线通过原点, 并且它在点),(y x 处的切线斜率等于y x =2.4-4-14、试求x y =''的经过点)1;0(M 且在此点与直线12+=xy 相切的积分曲线.4-5-15、设某曲线,它上面的任一点的切线与两坐标轴所围成的三角形面积总等于2,求这条曲线的方程所满足的微分方程. 4-6-16、已知某曲线经过点)1,1(, 它的切线在纵轴上的截距等于切点的横坐标,求它的方程.4-7-17、设可导函数)(x ϕ满足⎰+=+xx t t t x x 01d sin )(2cos )(ϕϕ, 求)(x ϕ.4-8-10、已知某商品需求量Q 对价格p 的弹性为22p Ep EQ-=, 最大需求量为1000=Q , 求需求函数)(p f Q =.4-9-11、设质量为m 的物体在高空中静止下落, 空气对物体运动的阻力与速度成正比. 求物体下落的数率v 与时间t 的关系, 再求物体下落距离与时间t 的关系 4-10-12、在串联电路中, 设有电阻R, 电感L 和交流电动势tE E ωsin 0=, 在时刻0=t 时接通电路, 求电流i 与时间t 的关系(0E , ω为常数).4-11-13、如图, 位于坐标原点的我舰向位于x 轴上)0,1(A 点处的敌舰发射制导鱼雷, 鱼雷始终对准敌舰, 设敌舰以常数0v 沿平行与y 轴的直线行驰,又设鱼雷的速度为2v , 求鱼雷的航行曲线方程.4-12-14、根据经验可知, 某产品的纯利润L 与广告支出x 有如下关系)(ddL L A k x -=,(其中0,0>>A k ), 若不做广告, 即0=x 时纯利润为L , 且AL <<00, 试求纯利润L 与广告费x 之间的函数关系.4-13-15、在宏观经济研究中, 知道某地区的国民收入y , 国民储蓄S 和投资I均是时间t 的函数, 且在任一时刻t , 储蓄)(t S 为国民收入)(t y 的101, 投资额)(t I 是国民收入增长率t d dy 的31. 设0=t 时国民收入为5(亿元), 假定在时刻t 的储蓄全部用于投资,试求国民收入函数.4-14-16、试建立描述市场价格形成的动态过程的数学模型.五.证明题:(2)5-1-18、设),(1x y )(2x y 是二阶齐次线性方程0)(')(''=++y x q y x p y 的两个解,令)()(')(')()(')(')()()(21212121x y x y x y x y x y x y x y x y x w -==证明: )(x w 满足方程0)('=+w x p w5-2-19、设1y , 2y , 3y 是线性方程)()(d dyx Q y x P x =+的3个相异特解,证明 1213y y y y --为一常数.部分应用题答案487.在串联电路中, 设有电阻R, 电感L 和交流电动势tE E ωsin 0=, 在时刻0=t 时接通电路, 求电流i 与时间t 的关系(0E , ω为常数).解. 设)(t i i =, 由回路电压定律tE dt diLRi ωsin 0=+, 即t L E L R dt di ωsin 0=+∴⎰+⎰⎰=-]sin [)(0C dt te L E e t i t dt LR L Rω=⎰+-]sin [0C dt te L E ett L R LR ω=)cos sin (2220t L t R L R E Cet LR ωωωω-++-将|0==t i 代入通解得2220L R LE C ωω+=∴)cos sin ()(2220t L t R Le L R E t i t LR ωωωωω-++=-488. 设质量为m 的物体在高空中静止下落, 空气对物体运动的阻力与速度成正比. 求物体下落的数率v 与时间t 的关系, 再求物体下落距离与时间t 的关系 解:.物体重力为mg w =, 阻力为kv R -=, 其中g 是重力加速度, k 是比例系数.由牛顿第二定律得kvmg dt dv m-=,从而得线性方程g v m kdt dv =+, 0|0==t v∴ ⎰--+=+⎰⎰=t m kdt dt Ce g k m C dt ge e v km m k ][, 将0|0==t v 代入通解得 g k m C -=∴ )1(tm k e g k m v --=, 再积分得122C ge k m gt k m S t m k++=-,将0|0==t S 代入求得g k m C 221-=∴ )1(22-+=-t m ke g k m gt k m S489. 如图, 位于坐标原点的我舰向位于x 轴上)0,1(A 点处的敌舰发射制导鱼雷, 鱼雷始终对准敌舰, 设敌舰以常数0v 沿平行与y 轴的直线行驰, 又设鱼雷的速度为2v , 求鱼雷的航行曲线方程.解:设鱼雷的航行曲线方程为)(x y y =, 在时刻t , 鱼雷的坐标巍巍),(y x P , 敌舰的坐标为),1(0t v Q .因鱼雷始终对准敌舰, 故x y t v y --=1'0, 又弧OP 的长度为⎰=-xtv dx y 0022'1,从以上两式消去tv 0得''121''')1(2y y y y x -+=--, 即2'121'')1(y y x +=-根据题意, 初始条件为0)0(=y , 0)0('=y令p y =', 原方程化为2121')1(p p x +=-, 它是可分离变量得方程,解得21)1(112--=++x C p p , 即21)1('1'12--=++x C y y 将0)0('=y 代入上式得11=C , 故21)1('1'2--=++x y y而21)1(''1'1'122--=-+=++x y y y y , 得2121)1()1(21'x x y -+-=-积分得22321)1(31)1(C x x y +-+--=, 将0)0(=y 代入上式得322=C , 所以鱼雷的航行曲线为32)1(31)1(2321+-+--=x x y490.根据经验可知, 某产品的纯利润L 与广告支出x 有如下关系 )(ddL L A k x -=,(其中0,0>>A k ), 若不做广告, 即0=x 时纯利润为0L , 且A L <<00, 试求纯利润L 与广告费x 之间的函数关系.解:依题意得)(L A k dx dL-=,00|LL x ==, 解可分离变量得微分方程, 得通解 kx Ce A L -+=, 将00|L L x ==代入通解, 得A L C -=0, 所以纯利润L 与广告费x 之间的函数关系为kxe A L A x L --+=)()(.491.在宏观经济研究中, 知道某地区的国民收入y , 国民储蓄S 和投资I 均是时间t 的函数, 且在任一时刻t , 储蓄)(t S 为国民收入)(t y 的101, 投资额)(t I 是国民收入增长率t d dy 的31.设0=t 时国民收入为5(亿元), 假定在时刻t 的储蓄全部用于投资,试求国民收入函数.解:依题意:y S 101=, dt dy I ⋅=31, 解之得通解t Ce y 103=, 将5|0==t y 代入通解得5=C , 所以国民收入函数为te y 1035=492.试建立描述市场价格形成的动态过程的数学模型. 解:设在某一时刻t , 商品的价格为)(t p , 因供需差价, 促使价格变动. 对新的价格,又有新的供需差, 如此不断地调节价格, 就构成了市场价格形成的动态过程.假设价格)(t p 的变化率dt dp与需求和供给之差成正比. 记需求函数为),(r p f , 供给函数为)(p g , 其中r 为参数. 于是得微分方程)](),([p g r p f k dt dp-=,0)0(pp =, 其中p 为0=t 时商品的价格, k 为正常数.若需求供给函数均为线性函数, b kp r p f +-=),(, d cp p g +=)(, 则方程为)()(d b k p c k k dt dp-++=,0)0(pp =, 其中d c b k ,,,均为正常数, 其解为c k db ec kd b p t p t c k k +-++--=+-)(0)()(下面对所得结果进行讨论:(1) 设p 为静态均衡价格, 则应满足0)(),(=-p g r p f , 即d p c b p k +=+-,则c k db p +-=, 从而价格函数p e p p t p c k k +-=+-)(0)()(,取极限: p t p t =∞→)(lim .它表明: 市场价格逐步趋于均衡价格. 若初始价格p p =0 , 则动态价格就维持在均衡价格p 上, 整个动态过程就变为静态过程.(2) 由于t c k k e c k k p p dt dp )(0)()(+-+-=, 所以当p p >0时, 0<dt dp, )(t p 单调下降向p靠拢, 这说明: 初始价格高于均衡价格时,动态价格会逐渐降低, 逐渐接近均衡价格; 而当初始价格低于均衡价格时, 动态价格会逐渐增高, 逐渐接近均衡价格.。
选择题(50)(1)知识、概念层次,难度等级11、 下列四个微分方程中,为三阶方程的有()个.(1)43322320d y d y y dx dx ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭(2)336x dy dy x y e dx dx ⎛⎫++= ⎪⎝⎭ (3)1323yd y ye dx ⎛⎫+= ⎪⎝⎭(4)33sin d ydx dy e y dx +=(A )1 (B )2 (C )3 (D )4 答案: C难度等级1 知识点:常微分方程的阶的定义分析:根据微分方程的阶的定义,微分方程的阶是指方程中出现的未知函数的最高阶导数的阶数,因此,(1),(3),(4)均是三阶微分方程,故应选(C ) 2、 函数()是微分方程42y y x '=-的通解. ()(A)112y x =+ (B) 2x y Ce = (C )21212x y C e x C =++ (D)2112x y Ce x =++答案 D难度等级1 知识点:常微分方程通解的定义分析:判断一个函数是否是微分方程的通解,首先是函数代入方程能使方程变为恒等式,其次函数中所含任意常数的个数应与方程的阶数一致,选项(A )中不含任意常数,是方程的特解,选项(C )中任意常数的个数多于一个,因此不能选,(B )不满足方程,故应选(D )3、 下列等式中()是线性微分方程.(A) 22y x y '=+ (C) 2x y y e ''+= (B)20y x ''+= (D) 2y y xy '-=答案: B难度等级1 知识点:线性常微分方程的定义 分析:线性常微分方程是指方程中所含未知函数及其各阶导数均是一次有理整式,因为(A),(C),(D)选项中出现了非线性项2y ,故应选(B )4、 微分方程(1)2(1)(2)(1)n n xx nn n x n n d y d ydy e e e e y e dx dx dx-++-++++= 是().(A )n 阶常系数非齐次线性常微分方程 (B )n 阶常系数齐次线性常微分方程(C )n 阶变系数非齐次线性常微分方程 (D )n 阶常变系数齐次线性常微分方程 答案: C难度等级1 知识点:齐次线性常微分方程的定义分析:所给方程中所含未知函数及其各阶导数均是一次有理整式,故应为线性常微分方程,又因为其系数是变量x 的函数,故应是变系数,并且有自由项(2)n x e +,因此是非齐次方程,故应选(C ) 5、 微分方程633xy dye e y x y dx=+- 的一个解为( ). (A )6y = (B )6y x =- (C )y x =- (D )y x = 答案: D难度等级1 知识点:常微分方程解的定义 分析:将(A ),(B ),(C ),(D )所给函数代入所给方程,易知只有y x =满足方程,故应选(D )6、 下列函数组()在其定义区间内是线性相关().(A)2,x x (B) ln(),ln()x x x (C) cos(2),sin(2)x x (D)sin(2),cos()sin()x x x答案: D难度等级1 知识点:函数组的线性相关与线性无关 分析:由函数组线性相关与无关的判定,(A ),(B ),(C )中所给的两个函数的比值不为常数,而sin 22sin cos xx x= ,因此应选(D )7、 下列( )不是全微分方程.(A)32(3)0ydx x xy dy +-= (C) 3()()0x y dx x y dy ++-=(B)2210xy y xdx dy y y+-+= (D) 0ydx xdy += 答案: A难度等级1 知识点:全微分方程的判定分析:微分方程(,)(,)0M x y dx N x y dy += 是全微分方程的充要条件是M N y x ∂∂=∂∂ ,因此(B ),(C ),(D )均满足此条件,而22119M Nx y y x∂∂=≠-=∂∂ ,因此应选(A )8、 方程22()0ydx x y x dy -++= 的积分因子为( ).(A )21()x xμ=(B )21()y y μ= (C )221(,)x y x y μ=+ (D )1(,)x y x yμ=+ 答案: C难度等级1 知识点:积分因子的定义分析:微分方程(,)(,)0M x y dx N x y dy += 不是全微分方程时,若存在二元函数(,)x y μ ,使得(,)[(,)(,)]0x y M x y dx N x y dy μ+=是全微分方程,则称(,)x y μ为方程的积分因子,因此代入(A),(B ),(D )所给函数均不满足条件,因此应选(C )9、 下列方程中,既是齐次方程又是线性方程的是()(A )sin dy y dx x = (B) 1dy y dx x x =+ (C) 2dy y ydx x x ⎛⎫=+ ⎪⎝⎭ (D)1dy y dx x=+ 答案: D难度等级1 知识点:齐次方程与线性方程的判定分析:由题意只有(B),(D)是线性微分方程,而(B )不是齐次方程,因此应选(D )10、 试指出下列哪个()函数是二阶微分方程20,(0)y y ωω''+=>的通解.(式中12,C C 为任意常数).(A) 1cos 2sin y C x x ωω=+ (C) 12cos sin y C x C x ωω=+ (B)11cos 2sin y C x C x ωω=+ (D) 212cos sin y C x C x ωω=+答案: C难度等级1 知识点:二阶齐次线性常微分方程通解的定义分析:方程是二阶常系数齐次线性微分方程,其通解中应含有两个独立常数,故(A),(B)不符合要求,(D )中虽有两个独立常数,但210C > 不是任意常数,故应选(C )11、 若某个二阶常系数线性齐次微分方程的通解为12x x y C e C e -=+,其中12,C C 为独立的任意常数,则该方程为(). (A)xy y e ''-= (B)20y y ''-=(C)0y y ''+=(D)0y y ''-=答案: D难度等级1 知识点:二阶齐次常系数线性常微分方程 分析:由通解中的两个独立解,xxe e- 知,方程对应的特征方程的特征根为121,1λλ==- ,因此对应的特征方程是2(1)(1)10λλλ-+=-= ,因此对应的微分方程应是0y y ''-=,故应选(D )12、 若某个二阶常系数线性齐次微分方程的通解为12()x y C C x e =+,其中12,C C 为独立的任意常数,则该方程为(). (A) 20y y y '''--= (C) 20y y y '''-+=(B)210y y '''+=+ (D) 210y y '''-+=答案: D难度等级1 二阶齐次常系数线性常微分方程分析:由通解中的两个独立解,x xe xe 知,方程对应的特征方程的特征根为121λλ== ,因此对应的特征方程是22(1)210λλλ-=-+= ,因此对应的微分方程应是210y y '''-+=,故应选(D )13、 若某个三阶常系数线性齐次微分方程的通解为2123y C C x C x =++,其中123,,C C C 为独立的任意常数,则该方程为().(A)0y y '''+= (B) 30y y '''+'= (C)0y y '''-= (D) 0y '''=答案: D难度等级1 知识点:三阶齐次常系数线性常微分方程分析:由通解中的三个独立解21,,x x 知,方程对应的特征方程的特征根为1230λλλ=== ,因此对应的特征方程是30λ= ,因此对应的微分方程应是0y '''=,故应选(D )14、 若某个三阶常系数线性齐次微分方程的通解为123xy C C x C e =++,其中123,,C C C 为独立的任意常数,则该方程为().(A)0y y '''-= (C) 10y y y ''''''--=+(B)0y y ''''-= (D) 0y y '''''-=答案: D难度等级1 知识点:三阶齐次常系数线性常微分方程分析:由通解中的三个独立解1,,xx e 知,方程对应的特征方程的特征根为1230,1λλλ=== ,因此对应的特征方程是232(1)0λλλλ-=-= ,因此对应的微分方程应是0y y '''''-=,故应选(D ) 15、 可用变换( )将伯努利方程33dyx y y dx=+ 化为线性方程. (A )1z y -= (B )2z y -= (C )3z y -= (D) 4z y -= 答案: B难度等级1 知识点:一阶线性常微分方程、伯努利方程分析:在原方程的两边同除以3y ,得3231dyy y x dx--=+,因此要使方程为线性,只需令2z y -=,则32dz dy y dx dx -=- ,原方程则化为3112dz zx dx-=+,这是线性方程,故应选(B )16、 微分方程ln (ln )0y ydx x y dy +-= 是( ).(A) 可分离变量方程 (B )线性方程 (C )全微分方程 (D )贝努利方程 答案: B难度等级1 知识点:一阶常微分方程类型的判定 分析:将方程改写为ln ln dy y ydx y x=-,因此不是可分离变量方程,也不是贝努利方程,又由(,)ln ,(,)ln M x y y y N x y x y ==- ,ln 1,1M Ny y x∂∂=+=∂∂ 因此不是全微分方程,又将方程改写为ln 11ln ln dx y x x dy y y y y y-==-+因此是线性方程(将x 看作关于变量y 的函数) ,故应选(B ) 17、 微分方程cos 2y x ''=的通解是().(A) 121sin(2)4y x C x C =++ (C) 121cos(2)4y x C x C =++(B)121sin(2)4y x C x C =-++ (D) 121cos(2)4y x C x C =-++答案: D难度等级1 知识点:可降阶的高阶常微分方程的求解 分析:将方程连续积分两次,得通解121cos(2)4y x C x C =-++,故应选(D ) 18、 微分方程21x y '=的通解是( ).(A)1y C x =+ (B) 1y C x =+ (C )1Cy x =-+ (D) 1y x C =-+答案: D难度等级1 知识点:一阶常微分方程的求解 分析:将方程改写为21dy dx x = 并积分,得通解1y xC =-+,故应选(D ) 19、 若某个三阶常系数线性齐次微分方程的通解为123cos sin y C C x C x =++,其中123,,C C C 为独立的任意常数,则该方程为(). (A)0y y '''''=- (B) 0y y -''''= (C)0y y '''''+= (D) 0y y ''''+=答案: D难度等级1 知识点:三阶齐次常系数线性常微分方程分析:由通解中的三个独立解1,cos ,sin x x 知,方程对应的特征方程的特征根为12,30,i λλ==± ,因此对应的特征方程是2(1)0λλ+= ,因此对应的微分方程应是0y y ''''+=,故应选(D )20、 若6y x = 是微分方程22(1)6y x y xy x '''''+++= 的唯一解,则初始条件应该是()(A )(1)6,(1)6,(1)0y y y '''=== (B )(1)6,(1)0,(1)6y y y '''=== (C )(1)6,(1)6,(1)6y y y '''=== (D )(1)0,(1)6,(1)0y y y '''=== 答案: A难度等级1 知识点:常微分方程的定解条件分析:由6y x =是方程原唯一解,应该满足初始条件,故有(1)6,(1)6,(1)0y y y '''===,故应选(A )(2)知识简单应用层次,难度等级221、 微分方程xy y e '''-=的通解是( ).(A) 122x x xy C C e e =++ (C) 121x x y C e C xe =++(B)12x x y C C e e x x =++ (D) 12x x y C C e xe =++答案: D难度等级2 知识点:二阶非齐次常系数线性常微分方程分析:方程为二阶非齐次常系数线性方程,对应的齐次方程为0y y '''-=,故其特征方程为2(1)0λλλλ-=-= ,特征根为120,1λλ== ,因此齐次方程的通解应为12xy C C e =+ ,因此应在(A),(D)中选择,又因函数2xx y e *=不满足方程,故应选(D )22、 若1()y x ϕ= , 2()y x ϕ=是一阶非齐次线性微分方程的两个不同特解,则该方程的通解为()。
选择题(50)(1)知识、概念层次,难度等级11、 下列四个微分方程中,为三阶方程的有()个.(1)43322320d y d y y dx dx ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭(2)336x dy dy x y e dx dx ⎛⎫++= ⎪⎝⎭ (3)1323yd y ye dx ⎛⎫+= ⎪⎝⎭(4)33sin d ydx dy e y dx +=(A )1 (B )2 (C )3 (D )4 答案: C难度等级1 知识点:常微分方程的阶的定义分析:根据微分方程的阶的定义,微分方程的阶是指方程中出现的未知函数的最高阶导数的阶数,因此,(1),(3),(4)均是三阶微分方程,故应选(C ) 2、 函数()是微分方程42y y x '=-的通解. ()(A)112y x =+ (B) 2x y Ce = (C )21212x y C e x C =++ (D)2112x y Ce x =++答案 D难度等级1 知识点:常微分方程通解的定义分析:判断一个函数是否是微分方程的通解,首先是函数代入方程能使方程变为恒等式,其次函数中所含任意常数的个数应与方程的阶数一致,选项(A )中不含任意常数,是方程的特解,选项(C )中任意常数的个数多于一个,因此不能选,(B )不满足方程,故应选(D )3、 下列等式中()是线性微分方程.(A) 22y x y '=+ (C) 2x y y e ''+= (B)20y x ''+= (D) 2y y xy '-=答案: B难度等级1 知识点:线性常微分方程的定义 分析:线性常微分方程是指方程中所含未知函数及其各阶导数均是一次有理整式,因为(A),(C),(D)选项中出现了非线性项2y ,故应选(B )4、 微分方程(1)2(1)(2)(1)n n xx nn n x n n d y d ydy e e e e y e dx dx dx-++-++++= 是().(A )n 阶常系数非齐次线性常微分方程 (B )n 阶常系数齐次线性常微分方程(C )n 阶变系数非齐次线性常微分方程 (D )n 阶常变系数齐次线性常微分方程 答案: C难度等级1 知识点:齐次线性常微分方程的定义分析:所给方程中所含未知函数及其各阶导数均是一次有理整式,故应为线性常微分方程,又因为其系数是变量x 的函数,故应是变系数,并且有自由项(2)n x e +,因此是非齐次方程,故应选(C ) 5、 微分方程633xy dye e y x y dx=+- 的一个解为( ). (A )6y = (B )6y x =- (C )y x =- (D )y x = 答案: D难度等级1 知识点:常微分方程解的定义 分析:将(A ),(B ),(C ),(D )所给函数代入所给方程,易知只有y x =满足方程,故应选(D )6、 下列函数组()在其定义区间内是线性相关().(A)2,x x (B) ln(),ln()x x x (C) cos(2),sin(2)x x (D)sin(2),cos()sin()x x x答案: D难度等级1 知识点:函数组的线性相关与线性无关 分析:由函数组线性相关与无关的判定,(A ),(B ),(C )中所给的两个函数的比值不为常数,而sin 22sin cos xx x= ,因此应选(D )7、 下列( )不是全微分方程.(A)32(3)0ydx x xy dy +-= (C) 3()()0x y dx x y dy ++-=(B)2210xy y xdx dy y y+-+= (D) 0ydx xdy += 答案: A难度等级1 知识点:全微分方程的判定分析:微分方程(,)(,)0M x y dx N x y dy += 是全微分方程的充要条件是M N y x ∂∂=∂∂ ,因此(B ),(C ),(D )均满足此条件,而22119M Nx y y x∂∂=≠-=∂∂ ,因此应选(A )8、 方程22()0ydx x y x dy -++= 的积分因子为( ).(A )21()x xμ=(B )21()y y μ= (C )221(,)x y x y μ=+ (D )1(,)x y x yμ=+ 答案: C难度等级1 知识点:积分因子的定义分析:微分方程(,)(,)0M x y dx N x y dy += 不是全微分方程时,若存在二元函数(,)x y μ ,使得(,)[(,)(,)]0x y M x y dx N x y dy μ+=是全微分方程,则称(,)x y μ为方程的积分因子,因此代入(A),(B ),(D )所给函数均不满足条件,因此应选(C )9、 下列方程中,既是齐次方程又是线性方程的是()(A )sin dy y dx x = (B) 1dy y dx x x =+ (C) 2dy y ydx x x ⎛⎫=+ ⎪⎝⎭ (D)1dy y dx x=+ 答案: D难度等级1 知识点:齐次方程与线性方程的判定分析:由题意只有(B),(D)是线性微分方程,而(B )不是齐次方程,因此应选(D )10、 试指出下列哪个()函数是二阶微分方程20,(0)y y ωω''+=>的通解.(式中12,C C 为任意常数).(A) 1cos 2sin y C x x ωω=+ (C) 12cos sin y C x C x ωω=+ (B)11cos 2sin y C x C x ωω=+ (D) 212cos sin y C x C x ωω=+答案: C难度等级1 知识点:二阶齐次线性常微分方程通解的定义分析:方程是二阶常系数齐次线性微分方程,其通解中应含有两个独立常数,故(A),(B)不符合要求,(D )中虽有两个独立常数,但210C > 不是任意常数,故应选(C )11、 若某个二阶常系数线性齐次微分方程的通解为12x x y C e C e -=+,其中12,C C 为独立的任意常数,则该方程为(). (A)xy y e ''-= (B)20y y ''-=(C)0y y ''+=(D)0y y ''-=答案: D难度等级1 知识点:二阶齐次常系数线性常微分方程 分析:由通解中的两个独立解,xxe e- 知,方程对应的特征方程的特征根为121,1λλ==- ,因此对应的特征方程是2(1)(1)10λλλ-+=-= ,因此对应的微分方程应是0y y ''-=,故应选(D )12、 若某个二阶常系数线性齐次微分方程的通解为12()x y C C x e =+,其中12,C C 为独立的任意常数,则该方程为(). (A) 20y y y '''--= (C) 20y y y '''-+=(B)210y y '''+=+ (D) 210y y '''-+=答案: D难度等级1 二阶齐次常系数线性常微分方程分析:由通解中的两个独立解,x xe xe 知,方程对应的特征方程的特征根为121λλ== ,因此对应的特征方程是22(1)210λλλ-=-+= ,因此对应的微分方程应是210y y '''-+=,故应选(D )13、 若某个三阶常系数线性齐次微分方程的通解为2123y C C x C x =++,其中123,,C C C 为独立的任意常数,则该方程为().(A)0y y '''+= (B) 30y y '''+'= (C)0y y '''-= (D) 0y '''=答案: D难度等级1 知识点:三阶齐次常系数线性常微分方程分析:由通解中的三个独立解21,,x x 知,方程对应的特征方程的特征根为1230λλλ=== ,因此对应的特征方程是30λ= ,因此对应的微分方程应是0y '''=,故应选(D )14、 若某个三阶常系数线性齐次微分方程的通解为123xy C C x C e =++,其中123,,C C C 为独立的任意常数,则该方程为().(A)0y y '''-= (C) 10y y y ''''''--=+(B)0y y ''''-= (D) 0y y '''''-=答案: D难度等级1 知识点:三阶齐次常系数线性常微分方程分析:由通解中的三个独立解1,,xx e 知,方程对应的特征方程的特征根为1230,1λλλ=== ,因此对应的特征方程是232(1)0λλλλ-=-= ,因此对应的微分方程应是0y y '''''-=,故应选(D ) 15、 可用变换( )将伯努利方程33dyx y y dx=+ 化为线性方程. (A )1z y -= (B )2z y -= (C )3z y -= (D) 4z y -= 答案: B难度等级1 知识点:一阶线性常微分方程、伯努利方程分析:在原方程的两边同除以3y ,得3231dyy y x dx--=+,因此要使方程为线性,只需令2z y -=,则32dz dy y dx dx -=- ,原方程则化为3112dz zx dx-=+,这是线性方程,故应选(B )16、 微分方程ln (ln )0y ydx x y dy +-= 是( ).(A) 可分离变量方程 (B )线性方程 (C )全微分方程 (D )贝努利方程 答案: B难度等级1 知识点:一阶常微分方程类型的判定 分析:将方程改写为ln ln dy y ydx y x=-,因此不是可分离变量方程,也不是贝努利方程,又由(,)ln ,(,)ln M x y y y N x y x y ==- ,ln 1,1M Ny y x∂∂=+=∂∂ 因此不是全微分方程,又将方程改写为ln 11ln ln dx y x x dy y y y y y-==-+因此是线性方程(将x 看作关于变量y 的函数) ,故应选(B ) 17、 微分方程cos 2y x ''=的通解是().(A) 121sin(2)4y x C x C =++ (C) 121cos(2)4y x C x C =++(B)121sin(2)4y x C x C =-++ (D) 121cos(2)4y x C x C =-++答案: D难度等级1 知识点:可降阶的高阶常微分方程的求解 分析:将方程连续积分两次,得通解121cos(2)4y x C x C =-++,故应选(D ) 18、 微分方程21x y '=的通解是( ).(A)1y C x =+ (B) 1y C x =+ (C )1Cy x =-+ (D) 1y x C =-+答案: D难度等级1 知识点:一阶常微分方程的求解 分析:将方程改写为21dy dx x = 并积分,得通解1y xC =-+,故应选(D ) 19、 若某个三阶常系数线性齐次微分方程的通解为123cos sin y C C x C x =++,其中123,,C C C 为独立的任意常数,则该方程为(). (A)0y y '''''=- (B) 0y y -''''= (C)0y y '''''+= (D) 0y y ''''+=答案: D难度等级1 知识点:三阶齐次常系数线性常微分方程分析:由通解中的三个独立解1,cos ,sin x x 知,方程对应的特征方程的特征根为12,30,i λλ==± ,因此对应的特征方程是2(1)0λλ+= ,因此对应的微分方程应是0y y ''''+=,故应选(D )20、 若6y x = 是微分方程22(1)6y x y xy x '''''+++= 的唯一解,则初始条件应该是()(A )(1)6,(1)6,(1)0y y y '''=== (B )(1)6,(1)0,(1)6y y y '''=== (C )(1)6,(1)6,(1)6y y y '''=== (D )(1)0,(1)6,(1)0y y y '''=== 答案: A难度等级1 知识点:常微分方程的定解条件分析:由6y x =是方程原唯一解,应该满足初始条件,故有(1)6,(1)6,(1)0y y y '''===,故应选(A )(2)知识简单应用层次,难度等级221、 微分方程xy y e '''-=的通解是( ).(A) 122x x xy C C e e =++ (C) 121x x y C e C xe =++(B)12x x y C C e e x x =++ (D) 12x x y C C e xe =++答案: D难度等级2 知识点:二阶非齐次常系数线性常微分方程分析:方程为二阶非齐次常系数线性方程,对应的齐次方程为0y y '''-=,故其特征方程为2(1)0λλλλ-=-= ,特征根为120,1λλ== ,因此齐次方程的通解应为12xy C C e =+ ,因此应在(A),(D)中选择,又因函数2xx y e *=不满足方程,故应选(D )22、 若1()y x ϕ= , 2()y x ϕ=是一阶非齐次线性微分方程的两个不同特解,则该方程的通解为()。
爱启航在线考研第四章常微分方程4.1答案:应选(C )解析:原方程写成23e 0+'+=yxyy ,分离变量有23e d =e d y x y y x --,积分得232e 3e --=x y C ,其中C 为任意常数.4.2答案:应填sin e=C xy ,其中C 为任意常数.解析:原方程分离变量,有d cos d ln sin =y xx y y x,积分得1ln |ln |ln |sin |ln =+y x C ,通解为ln sin =y C x 或sin e=C x y ,其中C 为任意常数.4.3答案:应填()2112e-=x y x 解析:原方程化为d 1d ⎛⎫=- ⎪⎝⎭y x x y x .积分得通解211ln ||ln ||2y C x x =-,即122ex y Cx -=.由初值(1)1=y 解出12e C =得特解.故答案为:()2112e-=x y x .4.4答案:应选(B )解析:原方程求导得()2()'=f x f x ,即()2()'=f x f x ,积分得2()e =x f x C ,又(0)ln 2=f ,故ln 2=C ,从而2()e ln 2=x f x .故应选(B ).4.5解:曲线()=y f x 在点(,)x y 处的切线方程为()'-=-Y y y X x ,令0=X ,得到切线在y 轴截距为'=-xy y xy ,即(1)'=-xy y x .此为一阶可分离变量的方程,于是d 11d ⎛⎫=- ⎪⎝⎭y x y x ,两边积分有1ln ||ln =-y C x x ,得爱启航线考研到e =x Cx y .又()11e y -=,故1=C ,于是曲线方程为e =xx y .4.6解:22d d 11+y y y x x x x =∆=+,得2d d 1=+y y x x ,变量分离2d 1d 1=+y x y x.两边积分得1ln arctan y x C =+.可得arctan exy C =又()0y =π,则C =π.所以arctan πexy =,()πarctan141πeπe y ==.4.7解:令=yu x,即=y ux ,则y u x u ''=+,又由题给表达式可得2y u u '=,即有u x u '+2u u =-d 1d 22=-x xu u ,两边积分得1ln 1ln ln u x C -=+,即ln(1ln ln 1=-+⇒-=⇒-=y Cu x C x xy C x x.4.8答案:应填2(ln ||)=+x y y C 解析:将x 看成未知函数,原方程改写为2d 1d 222+==+x x y x y xy y x这是一个伯努利方程,令2=z x ,有d 1d -=z z y y ,得11d d 2e ed (ln ||)-⎛⎫⎰⎰==+=+ ⎪ ⎪⎝⎭⎰y y y y x z y C y y C .故答案为:2(ln ||)=+x y y C ,其中C 为任意常数.4.9答案:应填()cos +x C x解析:属于一阶非齐次线性方程,直接根据一阶非齐次线性微分方程的通解公式即可得出答案.故答案为:()cos +x C x ,其中C 为任意常数.4.10答案:应填1爱启航在线考研解析:()2d 2d 22e 4e d e4ed x x xxy x x C x x C--⎛⎫⎰⎰=+=+ ⎪⎝⎭⎰⎰222e (21)e (21)e x x xx C x C --⎡⎤=-+=-+⎣⎦.当0=x 时,1=-y ,则0=C .可得21=-y x ,则()11=y .故答案为1.4.11答案:应填1解析:由11()()'+=y P x y Q x 及22()()'+=y P x y Q x 得()()1212()()()αββαβ'+++=+y y P x ay y Q x .又因12αβ+y y 满足原方程,故应有()()()β+=a Q x Q x ,即1αβ+=.故答案为1.4.12解:()sin d sin d e cos e d -⎛⎫⎰⎰=+ ⎪⎝⎭⎰x xx x gx x x C ()cos cos e cos ed -=+⎰xxx x C又()00g =,故()()cos cos cos 0e cos ed cos ed limlime lim xxxx x x x x Cx x Cg x xxx--→→→++==⋅=⎰⎰cos 0e lim cos e 1x x x -→⋅=.4.13解:2d 1d 2y x x y =-,则2d 2d x x y y =-,即2d 2d x x yy-=-()()2d 2d 222222111e e d e e d e 224yy y y y x y y C y y C y y C --⎛⎫⎰⎰⎡⎤=-+=-+=+++ ⎪⎣⎦⎝⎭⎰⎰.4.14解:令=tx u ,则u t x d d =,则代入到题给表达式101()d ()d xf tx t f u u x =⎰⎰,可得20()d 2()xf u u xf x x =+⎰.两边求导得()2()2()2f x f x xf x x '=++,则()2()2f x xf x x '+=-.从而11131d d 2222222()e (1)ed 33x x x x f x x C x x C x Cx ---⎛⎫⎛⎫⎰⎰=-+-+=-+ ⎪⎝ ⎝⎭=⎪⎭⎰.爱启航在线考研4.15解:将原方程改写成211cos sin y x x yy '+=-,并令1z y =,则21z y y ''=-,且原方程化为sin cos z z x x '-=-.d de (sin cos )e d x x z x x x C -⎡⎤⎰⎰=-+⎢⎥⎣⎦⎰e (sin cos )e d x x x x x C -⎡⎤=-+⎣⎦⎰()e sin ed cose d xxx x x x x C --=-+⎰⎰,其中()sin e d sin d e sin e e cos d x x x x x x x x x x ----=-=-+⎰⎰⎰,故()e sin e e sin x x x z x C C x -=-+=-,即1e sin x C x y=-为所求通解.4.16答案:应选(C )解析:因原方程阶数为2,通解中应包含两个任意常数(可求出通解为3126++x C C x );特解中不含有任意常数(3*6=x y 为特解);36+x Cx 满足原方程,为原方程的解,故选项(A ),(B ),(C )都不对,应选(C ).4.17解:(1)令y p '=,则d d p y x ''=,从而2d 1d pp x=+,则2d d 1p x p =+积分得p arctan 1arctan p x C =+,故()1d tan d yp x C x=+=,则两边对x 积分1d tan()d y x C x =+⎰⎰,得()1121sin()d ln cos cos()x C y x x C C x C +==-+++⎰.(2)()10xy xy C '''=⇒=,即1y xC '=,故12ln y C x C =+.4.18解:由21e x y =,得212e x y x '=,()22124e x y x ''=+;由22e x y x =,得222(12)e x y x '=+,()22364e x y x x ''=+.因爱启航在线考研()()()22222211144224e 42e 42e 0x x x y xy x y x x x x '''-+-=+-⋅+-=.()()()()222232222244264e 412e 42e 0x x x y xy x y x x x x x x '''-+-=+-++-=.故1y 与2y 都是方程的解.又因21y x y =不等于常数,故1y 与2y 线性无关.于是方程的通解为()2112212e x y C y C y C C x =+=+.4.19答案:应选(A )解析:根据高阶线性微分方程根的形式可知,选(A ).4.20答案:应选(B )解析:由题意可知,-1是特征方程二重特征根,1是特征方程的特征根,故特征方程为()()2110+-=r r ,即3210+--=r r r .故三阶常系数齐次线性方程为0y y y y ''''''+--=.故选(B ).4.21答案:应选(C )解析::特征方程为2220++=r r 即2(1)1+=-r ,解得特征根为1,21i r =-±.而()e sin x f x x -=,i 1i w ±=-±λ是特征根,故特解的形式为*e (cos sin )x y x a x b x -=+.4.22答案:应填()*22e xy x ax bx c dx =+++解析:特征方程为220-=r r ,特征根10r =,22r =.对21()1=+f x x ,10λ=是特征根,所以()*21y x ax bx c =++.对22()exf x =,22λ=也是特征根,故有*22e =x y dx .从而***12=+y y y 就是特解.故答案为()*22e x y x ax bx c dx =+++.4.23解:所给微分方程的特征方程为256(2)(3)0++=++=r r r r ,特征根为12=-r ,23=-r .于是,对应齐次微分方程的通解为2312)e e xx y x C C --=+.爱启航在线考研设所给非齐次方程的特解为*e xy A -=.将*()y x 代入原方程,可得1A =.由此得所给非齐次方程得特解*e xy -=.从而,所给微分方程得通解为2312()e e e xx x y x C C ---=++,其中1C ,2C 为任意常数.4.24答案:应选(C )解析:将()()000y y '==代入3e xy py qy '''++=,得()01''=y .()()()()()22000ln 122limlimlimlim 2x x x x x x x y x y x y x y x →→→→+===='''.故选C.4.25答案:应填12e(cos sin )e xxC x C x ++解析:所给微分方程的特征方程为22201i -+=⇒=±r r r ,从而齐次通解为12e (cos sin )x C x C x +,设特解为e x A ,代入方程得e 2e 2e e 1x x x x A A A A -+=⇒=,即得特解为e x .非齐次通解为12e(cos sin )e xx C x C x ++.。
应 用 题(每题10分)1、设在上有定义且不恒为零,又存在并对任意恒有()f x (,)-∞∞()f x ',x y ,求。
()()()f x y f x f y +=()f x 2、设,其中函数在内满足以下条件()()()F x fx g x =(),()f x g x (,)-∞∞()(),()(),(0)0,()()2xf xg x g x f x f f x g x e ''===+=(1)求所满足的一阶微分方程;()F x (2)求出的表达式。
()F x 3、已知连续函数满足条件,求。
()f x 320()3x xt f x f dt e ⎛⎫=+ ⎪⎝⎭⎰()f x 4、已知函数在内可导,,且满足()f x (0,)+∞()0,lim ()1x f x f x →+∞>=,求。
110()lim ()h x h f x hx e f x →⎛⎫+ ⎪= ⎪⎪⎝⎭()f x 5、设函数在内连续,,且对所有,满足条件()f x (0,)+∞5(1)2f =,(0,)x t ∈+∞,求。
111()()()xt x tf u du t f u du x f u du =+⎰⎰⎰()f x 6、求连续函数,使它满足。
()f x 1()()sin f tx dt f x x x =+⋅⎰7、已知可微函数满足,试求。
()f t 31()()1()xf t dt f x t f t t =-+⎰()f x 8、设有微分方程 , 其中。
试求在内的连续函'2()y y x ϕ-=21()01x x x ϕ<⎧=⎨>⎩(,)-∞∞数使之在和内部满足所给方程,且满足条件。
()y y x =(,1)-∞()1,+∞(0)0y =9、设位于第一象限的曲线过点,其上任一点处的法线与轴()y f x =12⎫⎪⎪⎭(,)P x y y 的交点为Q ,且线段PQ 被轴平分。
偏微分方程求解例题下面是一个求解偏微分方程的例题:问题:求解以下偏微分方程:$abla^2u=f(x,y,z)$解法:首先,我们需要对偏微分方程进行化简。
可以通过选择适当的变量代换或积分方法来实现。
这里,我们选择采用变量代换法,将偏微分方程化简为:$abla^2u=f(x,y,z)$$ightarrowabla^2u=u_x^2+u_y^2+u_z^2-f$$u_x=Acos(x)+Bsin(x)$,$u_y=Asin(y)+Bcos(y)$,$u_z=Ccos(z)+Ds in(z)$$ightarrowabla^2u=A^2cos^2(x)+B^2sin^2(x)+C^2cos^2(z)+D^2sin^2(z)-f$ $u_x=Acos(x)$,$u_y=Bsin(y)$,$u_z=Ccos(z)$$ightarrowabla^2u=A^2cos^2(x)+B^2sin^2(x)+C^2cos^2(z)+D^2sin^2(z)-f$ 将上述化简后的偏微分方程再次化简,得到:$abla^2u=A^2cos^2(x)+B^2sin^2(x)+C^2cos^2(z)+D^2sin^2(z)-f$ $ightarrowabla^2u=frac{1}{r^2}frac{partial}{partialr}(r^2frac{partial u}{partialr})+frac{1}{rsintheta}frac{partial}{partialtheta}(sinthetafrac{partial u}{partialtheta})+frac{1}{sin^2theta}frac{partial^2 u}{partialz^2}-frac{f}{r^2sin^2theta}$其中,$r=sqrt{x^2+y^2+z^2}$,$theta=frac{pi}{2}-x$现在我们可以对上述偏微分方程求解。
考虑到该偏微分方程属于椭圆型偏微分方程,可以使用椭圆型偏微分方程的通解公式求解。
习题2-1判断下列方程是否为恰当方程,并且对恰当方程求解:1.(3x 2 −1)dx +(2x +1)dy =0 解:P (x , y ) =3x 2 −1,Q (x , y ) =2x +1 ,则∂∂P y =0 ,∂∂Q x =2 ,所以∂∂P y ≠∂∂Q x即,原方程不是恰当方程.2.(x +2y )dx +(2x +y )dy =0 解:P (x , y ) =x +2y , Q (x , y ) =2x −y , 则∂∂P y =2, ∂∂Q x =2, 所以∂∂P y =∂∂Q x,即原方程为恰当方程则xdx +(2ydx +2xdy ) −ydy =0,2 2两边积分得:x +2xy −y =C . 2 23.(ax +by )dx +(bx +cy )dy =0 (a,b 和c 为常数).解:P (x , y ) =ax +by , Q (x , y ) =bx +cy , 则∂∂P y =b , ∂∂Q x =b , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则axdx +bydx +bxdy cydy =0,()+两边积分得:ax 2 +bxy +cy 2=C . 2 24.(ax −by )dx +(bx −cy )dy =0(b ≠0) 解:P (x , y ) =ax −by , Q (x , y ) =bx −cy ,则∂∂P y=−b , ∂∂Q x =b , 因为 b ≠0, 所以∂∂P y ≠∂∂Q x ,即,原方程不为恰当方程5.(t 2 +1)cos udu +2 t sin udt =0 解:P (t ,u ) =(t 2 +1)cos u , Q (t ,u ) =2t sin u 则∂∂P t =2t cos u , ∂∂Q x =2t cos u , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则(t 2 cos udu +2t sin udt ) +cos udu =0,两边积分得:(t 2 +1)sin u =C .6.( ye x +2e x +y 2)dx +(e x +2xy )dy =0 解:P (x , y =ye x +2e x +y 2, Q (x , y ) =e x +2xy ,则∂∂P y =e x +2y , ∂∂Q x =e x +2y , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则2e x dx +[(ye x +y 2)dx +(e x +2xy )dy ] =0,两边积分得:(2 +y )e x +xy 2 =C .7.( y +x 2)dx +(ln x −2y )dy =0 x 解:P (x , y ) =y +x 2 Q (x , y ) =ln x −2y ,x则∂∂P y =1 x , ∂∂Q x =1 x , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则( ydx +ln xdy ) +x 2 dx −2ydy =0 x 3两边积分得:x 3+y ln x −y 2 =C .8.(ax 2+by 2)dx +cxydy =0(a ,b 和c 为常数) 解:P (x , y ) =ax 2 +by 2, Q (x , y ) =cxy ,则∂∂P y =2by , ∂∂Q x =cy , 所以当∂∂P y =∂∂Q x,即2b =c 时,原方程为恰当方程则ax 2 dx +(by 2 dx +cxydy ) =0 3两边积分得:ax +bxy 2 =C .3而当2b ≠c 时原方程不是恰当方程.9.2s −1 ds +s −2 s 2 dt =0 t t解:P (t , s ) =2s −1, Q (t , s ) =s −2 s 2,t t则∂∂P t =1−t 22s , ∂∂Q s =1−t22s , 所以∂∂P y =∂∂Q x ,即原方程为恰当方程,两边积分得:s −s 2=C .t10.xf (x 2 +y 2)dx +yf (x 2 +y 2)dy =0, 其中f (⋅)是连续的可微函数.解:P (x , y ) =xf (x 2 +y 2 ), Q (x , y ) =yf (x 2 +y 2 ), 则∂∂P y =2xyf ′, ∂∂Q x =2xyf ′, 所以∂∂P y =∂∂Q x,即原方程为恰当方程,两边积分得:∫f (x 2 +y 2)dx =C ,即原方程的解为F (x 2 +y 2) =C (其中F 为f 的原积分).习题2-2 1. 求解下列微分方程,并指出这些方程在平面上的有意义的区域::dy x 2(1) dx =y解:原方程即为:ydy =x 2 dx 两边积分得:3y 2 −2x 3 =C , y ≠0 .dy x 2(2) dx =y (1+x )3 2解:原方程即为:ydy =1+x x 3dx 两边积分得:3y 2 −2ln1+x 3=C , y ≠0,x ≠−1 .(3) dy +y 2 sin x =0dx解:当y ≠0时原方程为:dy +sin xdx =0y2 两边积分得:1+(c +cos x ) y =0 .又y=0也是方程的解,包含在通解中,则方程的通解为1+(c +cos x ) y =0 .dy 22(4) dx=1+x +y +xy ;解:原方程即为:1+dy y 2=)(1+x dx 2两边积分得:arctgy =x +x 2+c ,即y =tg (x +x 22+c ) .(5) dy =(cos x cos 2y )2 dx解:①当cos 2y ≠0 时原方程即为:(cos dy 2y )2 =(cos x )2 dx 两边积分得:2tg 2y −2x −2sin 2 x =c .②cos 2y =0,即y =k π+π也是方程的解.( k ∈N )2 4 (6) x dy =1−y 2 dx解:①当y ≠±1时dydx 原方程即为:1−y 2 =x两边积分得:arcsin y −ln x =c .②y =±1也是方程的解. dy x −e −x(7).dx =y +e y解.原方程即为:( y +e y )dy =(x −e −x )dx 2 2两边积分得:y +e y =x +e −x +c ,22原方程的解为:y 2 −x 2 +2(e y −e −x ) =c .2. 解下列微分方程的初值问题.(1) sin 2xdx +cos3ydy =0, y (π) =π;2 3解:两边积分得:−cos 22x +sin 33y =c ,即2sin 3y −3cos 2x =c 因为y (π2) =π3,所以 c =3.所以原方程满足初值问题的解为:2sin 3y −3cos 2x =3.x (2).xdx +ye −dy =0 ,y (0) =1;解:原方程即为:xe x dx +ydy =0 ,两边积分得:(x −1)e xdx +y 22dy =c ,因为y (0) =1,所以c =−12,所以原方程满足初值问题的解为:2(x −1)e x dx +y 2 dy +1 =0 .(3).dr =r ,r (0) =2 ;d θ解:原方程即为:dr =d θ,两边积分得:ln r −θ=c ,r因为r (0) =2 ,所以c =ln 2 ,所以原方程满足初值问题的解为:ln r −θ=ln 2 即r =2e θ.dy ln x (4).dx =1+y2, y (1) =0;解:原方程即为:(1+y 2)dy =ln x dx , 两边积分得:y 3x x ln y ++−x =c ,3因为y (1) =0 ,所以c =1, 3 所以原方程满足初值为:y x x ln y ++−x =1 3 2 dy 3(5).1+x dx=xy ,y (0) =1;dy x 解:原方程即为:y 3 =1+x 2 dx ,2两边积分得:−12y −2 =1+x +c ,因为y (0) =1,所以c =−3 ,2 所以原方程满足初值问题的解为:21+x 2 +y1 =3 .2 3. 解下列微分方程,并作出相应积分曲线的简图.(1).dy =cos x dx解:两边积分得:y =sin x +c .积分曲线的简图如下:(2).dxdy =ay ,(常数a ≠0 );解:①当y ≠0时,原方程即为:aydy =dx 积分得:a 1ln y =x c +,即y =ce ax (c >0) ②y =0也是方程的解.积分曲线的简图如下:y(3).dy =1−y 2 ;dx解:①当y ≠±1时,1+y 原方程即为:(1−dy y 2)=dx 积分得:ln =2x +c ,1−y 即y =ce 2 x −1 .ce 2 x +1②y =±1也是方程的解.积分曲线的简图如下:dy n 1(4).dx=y ,(n =3,1, 2) ;解:①当y ≠0时,1 dy ⅰ) n =3, 2 时,原方程即为yn =dx ,积分得:x +1y 1−n =c .n −1ⅱ) n =1时,原方程即为dy y=dx 积分得:ln y =x +c ,即y =ce x(c >0) .②y =0也是方程的解.积分曲线的简图如下:4. 跟踪:设某A 从xoy 平面上的原点出发,沿x 轴正方向前进;同时某B 从点开始跟踪A ,即B 与A 永远保持等距b .试求B 的光滑运动轨迹.解:设B 的运动轨迹为y =y (x ),由题意及导数的几何意义,则有dy y dx b 2 −y2 ,所以求B 的运动轨迹即是求此微分方程满足y (0) =b 的解.=−解之得:x =12 b ln b b +−b b 22 +−y y 22 −b 2 −y 2 .5. 设微分方程dy =f ( y ) (2.27),其中f(y) 在y =a 的某邻域(例如,区间y −a <ε)dx 内连续,而且f ( y )=0 ⇔y =a ,则在直线y =a 上的每一点,方程(2.27)的解局部唯一,±εdy 当且仅当瑕积分=∞(发散).∫a a f ( y )证明:( ⇒)首先经过域R 1:−∞<x <+∞, a −ε≤y <a 和域R 2:−∞<x <+∞,a <y ≤a +ε内任一点( x 0, y 0)恰有方程(2.13)的一条积分曲线,它由下式确定dy =x −x 0 . (*)∫y y 0 f ( y )这些积分曲线彼此不相交. 其次,域R 1( R 2)内的所有积分曲线∫f dy ( y )=x +c 都可由其中一条,比如∫f dy ( y ) =x +c 0 沿着x 轴的方向平移而得到。
(完整版)常微分方程基本概念习题及解答§1.2 常微分方程基本概念习题及解答1.dxdy =2xy,并满足初始条件:x=0,y=1的特解。
解:ydy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解x=0,y=1时 c=e特解:y=|)1(|ln 1+x c 3.dx dy =yx xy y 321++ 解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0解:原方程为: y y -1dy=-xx 1+dx 两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。
5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +- 令xy =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u2+1)x 2=c-2arctgu即 ln(y 2+x 2)=c-2arctg2x y . 6. x dxdy -y+22y x -=0 解:原方程为:dx dy =x y +x x ||-2)(1x y - 则令x y =u dx dy =u+ x dx du 211u - du=sgnx x1dx arcsin xy =sgnx ln|x|+c 7. tgydx-ctgxdy=0解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xc cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +ye xy 32+=0 解:原方程为:dx dy =y e y 2e x 32 e x 3-3e 2y -=c.9.x(lnx-lny)dy-ydx=0解:原方程为:dx dy =x y ln xy 令xy =u ,则dx dy =u+ x dx du u+ x dxdu =ulnu ln(lnu-1)=-ln|cx| 1+lnx y =cy. 10. dxdy =e y x - 解:原方程为:dx dy =e x e y - e y =ce x 11 dxdy =(x+y)2 解:令x+y=u,则dx dy =dx du -1 dxdu -1=u 2 211u +du=dx arctgu=x+carctg(x+y)=x+c 12. dx dy =2)(1y x + 解:令x+y=u,则dx dy =dx du -1 dx du -1=21uu-arctgu=x+cy-arctg(x+y)=c. 13. dx dy =1212+-+-y x y x解: 原方程为:(x-2y+1)dy=(2x-y+1)dxxdy+ydx-(2y-1)dy-(2x+1)dx=0dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c 14: dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dxxdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c. 15:dxdy =(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy =(x+4y )2+3 令x+4y=u 则dx dy =41dx du -41 41dx du -41=u 2+3 dxdu =4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1). 16:证明方程y x dxdy =f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程:1)y(1+x 2y 2)dx=xdy2)y x dx dy =2222x -2 y x 2y+ 证明:令xy=u,则xdx dy +y=dxdu 则dx dy =x 1dx du -2x u ,有: u x dx du =f(u)+1)1)((1+u f u du=x1dx 所以原方程可化为变量分离方程。
第十二章常微分方程(A)7. y=-所满足的微分方程是x、是非题 1•任意微分方程都有通解。
() 2.微分方程的通解中包含了它所有的解。
() 3.函数y =3sinx —4cosx 是微分方程y" + y=0的解。
( ) 4.函数y=x 2 ■e x 是微分方程y"-2y ,+y=0的解。
()1 25.微分方程xy'-1 n X = 0的通解是j In x ) +C (C 为任意常数)。
() 6.y' 7. y'8. y 9. dydx 、填空题=sin y 是一阶线性微分方程。
() = x 3y 3+xy 不是一阶线性微分方程。
() -2/ +5y=0 的特征方程为 r 2-2 r + 5=0。
(= 1+x + y 2 +xy 2是可分离变量的微分方程。
() 1.在横线上填上方程的名称 ①(y -3 H n xdx-xdy =0 是 ②(xy 2 +x dx + (y - X 2y dy = 0是 2. 3.4. 5. ③x —.ln y 是 dx x ④ xy’ = y +x 2sinx 是y ^+sin xy’—x =cosx 的通解中应含y =sin2x -cosx 的通解是 xy'" + 2x 2y"2 +x 3y = x 4 +1是6.微分方程yry"-(y '6 =0是个独立常数。
阶微分方程。
阶微分方程。
12. 3阶微分方程yJx 3的通解为三、选择题1 .微分方程xyy "+x (y ,3-y 4y = 0的阶数是() A. 3 B . 4 C . 5 D . 22 .微分方程 厂-x 2y"-x 5=1的通解中应含的独立常数的个数为()。
A. 3 B . 5 C . 4 DA . y = 2xB . y = X 2C .24 .微分方程y'=3y 3的一个特解是()。
湖北师范学院优质课程《常微分方程》试题库及试题解答课程负责人:李必文数学系2005 年 3 月 18 日选择题(每小题 4 分)1、下列方程中为常微分方程的是()(A)x2 - 2x10(B)y'xy2(C)u2u2u(D)y x2 c (c为常数)t x2y22、下列微分方程是线性的是()(A)y 'x2y2(B)y" y2e x(C)y"x20(D)y'- y xy 23、方程y "3y ' 2 y x2e-2 x特解的形状为 ()(A)y1ax2ey-2 x(B)y1(ax2bx c)e-2 x(C)y1x2 ( ax2bx c)e-2 x(D)y1x2 (ax2bx c)e-2x4、下列函数组在定义域内线性无关的是()(A)4, x(B)x,2 x, x2(C)5,cos 2 x,sin 2 x(D)1,2, x, x25、微分方程xdy - ydx y2 e y dy 的通解是()(A)x y(c - e y )(B)x y(e y c)(C)y x(e x c)(D) y x(c - e y )6、下列方程中为常微分方程的是()(A)t2 dt xdx 0(B)sin x1(C) y x 1 c (c为常数)2u2u0(D)2y2x7、下列微分方程是线性的是()(A)y' 1y2(B)dy1(C) y '2by cx(D)dx 1 xyy ' xy408、方程y "- 2 y ' 2y(A)y1e x[( Ax(C)y1e x[( Ax(D)y1xe x[( Axe x (x cos x2sin x) 特解的形状为()B)cos x C sin x](B)y1e x [ Ax cos x C sin x] B) cosx( Cx D ) sin x]B) cos x(Cx D ) sin x]9、下列函数组在定义域内线性无关的是()(A) 1, x, x 3(B)2x 2 , x, x 2(C)1,sin 2 x,cos2 x(D)5,sin 2 (x 1),cos 2 (x1)10、微分方程 ydx - xdyy 2exdx 的通解是 ()(A)y x(e x c)(B)x y( e xc)(C)x y(c - e x )(D) y( x - ) x e c11、下列方程中为常微分方程的是()(A) x 2y 2 -1(B)y 'x 2y(C)2u 2u 2u(D)xy 2 c (c 为常数)2x 2y 212、下列微分方程是线性的是()y 2y =y 3+sin xy +y =y 2cos x(A)(B)+6 y =1(C)(D)13、方程 y+y =2sin x 特解的形状为 ()(A) y 1 x( A cos x B sin x)(B)(C)(D)14、下列函数组在定义域内线性无关的是()(A) 0,1,t(B)e t , 2e t ,e -t(C) (D)15、微分方程 ydx-xdy=x 2e x dx 的通解是 ( )(A) y=x(c+e x ) (B) x=y(c+e x )(C)x=y(c-e x )(D)y=x(c-e x )16、下列方程中为常微分方程的是()(A)x 2+y 2-z 2=0(B) yce x(C) u u(D)y=c 1 cost+c 2sint (c 1,c 2 为常数)tx17、下列微分方程是线性的是()3x + y 2y +(1/3) y4 (A)x (t ) -x=f(t)(B)y +y=cos x(C)= y(D)=y18 、方程 yy-xx 特解的形状为( )-2 y +3 =e cos(A) y 1 Acosx B sin x(B)y 1 Ae x(C) y 1e x ( Acos x B sin x)(D)y 1Axe x cosx19、下列函数组在定义域内线性无关的是()(A)e t ,e 2t ,e 3t(B)0,t ,t 2(C) 1 sin 2 (t1),cos( 2 2)(D) 4-t,2t-3,6t+8,t20、微分方程xdx-ydy=y 2e y dy 的通解是 ( )(A) x=y(ey+ c) (B) x=y(c-ey)(C) y=x(ex+c)(D)y=x(c-e y )21、下列方程中为常微分方程的是()(A)x 3+1=0(B) y ce x(C)u u (D)t xy 2y'e x22、下列微分方程是线性的是()(A) y +y 2=1+x(B)y' 2 +y=cosx(C)y - 2y=2x 2(D)xdx+ydy=023、方程 yy9 y16e 3x6 '特解的形状为 ( )(A) y 1 Ae 3x(B) y 1 Ax 2 e 3x(C)y 1Axe 3x(D)y 1e 3x ( A sin 3x B cos3x)24、下列函数组在定义域内线性无关的是()(A) xx2e x(B)22(C)1,2, x 2(D)0,e 5x4 x 2e , xe , x2,cosx, cos xx, e x25、微分方程 ydx-xdy=2x 2e x dx 的通解是 ()(A) y=x(c-2e x )(B)x=y(c+2e x )(C)x=y(c-2ex)(D)y=x(c+2e x )26、微分方程dyytg y的通解为()1 dxxxy=x +cy=c xx=c x(A)cx(B) sin(C) sin(D) sinyxxysinx27、微分方程 2y y =(y ) 2的通解()(A) ( x-c ) 2(B)c 1222(C)122(D) c12 ) 2( x -1) +c ( x +1)c +( x -c )( x -c28、微分方程 xdy-ydx=y 2e y dy 的通解为()(A) y=x(ex+c)(B)x=y(e y +c)(C) y=x(c-e x )(D)x=y(c-e y )29、微分方程 y -2 y-3 y =0 的通解 y为()(A)c 1 c 2 x 3(B)c 1 xc 2 (C)c 1e xc 2 e 3x(D)c 1e x c 2 e 3 xxx 330、微分方程 y ''-3y '+2 y =2x -2 e x 的特解 y *的形式是()(A) (ax+b)e x(B) (ax+b)xe x (C) (ax+b)+ce x(D) (ax+b)+cxe x31、通过坐标原点且与微分方程dy x 1 的一切积分曲线均正交的曲线方程是()dx(A) e yx1e yx 1 0(C) e yx 1(B)(D)2 yx 22x32、设 y(x) 满足微分方程 ( cos 2x)y 1 +y=tgx 且当 x=/4 时 y=0,则当 x =0 时 y =()(A) /4 (B) -/4 (C) -1 (D) 133 、 已 知 y=y(x) 的 图 形 上 点 M(0,1) 处 的 切 线 斜 率 k=0 , 且 y(x) 满 足 微 分 方 程y1 ( y') 2,则 y(x)= ( )(A) sin x(B) cosx(C)34、微分方程y -2 y -3 y =0 的通解是 y =( )shx(D)chx(A) x 3x3(B) c 1 xc 2 (C) c 1 e xc 2 e 3 x(D)c 1 exc 2 e3xx 335、设 y 1 ( x), y 2 ( x), y 3 ( x) 是线性非齐次方程 d 2 ya(x)dyb( x) yf ( x) 的特解,dx 2 dx则 y (1 c 1c 2 ) y 1 ( x) c 1 y 2 (x) c 2 y 3 ( x)(A) 是所给微分方程的通解 (B)不是所给微分方程的通解(C) 是所给微分方程的特解(D) 可能是所给微分方程的通解也可能不是所给微分方程的通解,但肯定不是特解36、设 y(x) 满足y sinx=yLny ,且 y ( /2)= e ,则 y ( /4)=()(A) e /2(B)e -1(C)e 21(D)e 2337、微分方程 ynytgxy 2 cos x0 的通解是( )(A)arctgx c(B)1 ( arctgx c)(C)1arctgx c(D)1xxarctgxcx38、微分方程 ( 1+y 2)dx=(arctgy-x)dy的通解为()(A)x arctgy 1ce arctgy (B) x arctgy 1 ce arctgy (C) xarctgy ce arctgyc(D)xarctgyce arctgyc39、微分方程 y4 y 21 cos2 x 的通解为 y=( )(A) e xc x 2c x c 3(B) c x 2 c x c31212(C) c 1e xc 2 x c 3(D)c 1 x 3 c 2 x 2 c 340、微分方程 y7 y6ysin x 的通解是 y =()(A) e x 745sin x747cosx(B)c 1e x c 2 sin x c 3e xc 4 cos x (C)( cc x)e x(c c x)ex(D)(cc x) sin x (cc x) cosx41、通过坐标原点且与微分方程dy x 1 的一切积分曲线均正交的曲线方程是( )dx(A)e yx 1(B)e yx 1 0(C)e yx 1 (D)2 yx 2 2x42、设 y(x) 满足微分方程 xy 1 +y-y 2Lnx=0 且当 y(1)=1, 则 y(e)=( )(A) 1/e (B) 1/2 (C) 2 (D) e43 、 已 知 yy(x) 满 足 ( x 22xyy 2 )dx( y 22xy x 2 )dy0 , 且 y(1)1 则y12 ( )2(A)1(B) 1/2(C)2(D) 122244、微分方程 y2xy' 满足初始条件 y 01 , y' 0 3 的特解是 y=()x 2 1x x(A)x 3x 3(B)x 3 3x 1(C)x 2 x 3(D)x 23x145、微分方程 y6y' 13y 0 的通解是 y=( )(A) e 3 x ( c 1 cos2x c 2 sin 2 x) (B) e 2x (c 1 cos3x c 2 sin 3x) (C)e 3x (c 1 cos2x c 2 sin 2x)(D)e 2 x (c 1 cos3x c 2 sin 3x)46、微分方程 y'2 yc0 满足 y0 的特解 y =()xx2(A)4 x 2x 24x 2(ln xln 2) 1(ln x ln 2)x24(B)4 x2(C)(D) x 247、微分方程 y' ytgxy 2 cosx0 的通解是()(A)1 ( x c)cos x(B)y ( xc)cos xy1 x cos xc(D)yx cosx c(C)y48、微分方程 ( y 2-6x ) y+2y=0 的通解为()(A) 2x-y2+cy 3=0(B) 2y-x3+cx 3=0 (C) 2x-cy2+y 3=0 (D) 2y-cx3+x 3=049、微分方程 y 4 y21cos2 x 的特解的形式是 y=()bcos2 x50、满足微分方程 y7 y 6y(A) e x 745 sin x 747cosx (C) e 6x745sin x747cos x(B)axcos2x(D)axsin2 x bx cos2xsin x 的一个特解y* =()(B)e x 745sin x 747cos x(D)exe 6x745 sin x 747 cosx51、初值问题 y" 4y 0, y(0) 0, y'(0) 1 的解是 y(x) ()(其中其通解为y(x)c 1 sin 2xc 2 cos2 x, c 1, c 2 为任意常数)(A)1sin 2 x(B)1sin 2x(C)1sin3 x(D )1sin3 x323252、下列方程中为常微分方程的是()(A) x 43x 2x 1 0(B) y" y ' x 2 (C)u 2u2u(D)u v 2wtx 2 y 253、下列微分方程是线性的是()(A) y"xy ' y x 2(B) y 'x 2 y 2 (C)y " xy 2f (x) (D)y " y 'y 354、已知 F ( x, y) 具有一阶连续偏导, 且 F (x, y)( ydxxdy) 为某一函数的全微分, 则( )(A)FF(B)F yF (C)x F y F y F Fxy xyx (D) x xxy y55、设 y ( x), y 2(x), y (x) 是二阶线性非齐次微分方程y" P(x) y' Q ( x) yf ( x) 的三个线13性无关解,c 1 ,c 2 是任意常数,则微分方程的解为 ( )(A) c 1 y 1 c 2 y 2 y 3(B)c 1 y 1 c 2 y 2 (1 c 1 c 2 ) y 3(C) c 1 y 1 c 2 y 2(c 1 c 2 ) y 3(D)tc 1 y 1 c 2 y 2(1 c 1 c 2 ) y 3f (x) 满足关系式 f (x)2 x dtln 2 ,则 f ( x) 为(56、若连续函数 f2)(A) e xln 2(B)e 2x ln 2 (C)e x ln 2(D) e 2 xln 257、若 y 1e 3 x , y 2 xe 3 x ,则它们所满足的微分方程为()(A) y" 6 y' 9 y 0 (B) y" 9 y 0(C)y" 9 y 0 (D)y" 6 y' 9y 058 、设 y 1 , y 2 , y 3 是二阶线性微分方程 y" p(x) y ' q(x) yr ( x) 的三个不同的特解,且y 1 y 2 不是常数,则该方程的通解为( )y 2 y 3(A) c 1 y 1 c 2 y 2 y 3(B)c 1 ( y 1 y 2 ) c 2 ( y 2 y 3) y 1(A) a cos2x(C) asin2 x(C)c1 y1c2 y3 y2(D)c1 ( y1y2 )c2 ( y2y3 )59、设f ( x)连续,且满足方程1f tx dt nf ( x)( n N ) ,则 f (x)为()01 n(A)cx n(B)c(c 为常数)(C) c sin nx(D)ccosnx60、设y1, y2是方程y" p( x) y 'q( x) y0 的两个特解,则y c1 y1 c2 y2( c1,c2为任意常数)()(A) 是此方程的通解(B) 是此方程的特解(C) 不一定是该方程的解(D) 是该方程的解61、方程( x22x) y" ( x22) y '(2 x2) y0 的通解为()(A)y c1e x c2(B)y c1e x c2e x(C) y c1e x c2x2(D)y c1e x c2 x62、微分方程y" y 'e x1的一个特解形式为()(A)ae x b(B)axe x bx(C)ae x bx(D)axe x b63、方程( pxy y2) dx (qxy2x2 )dy0 是全微分的充要条件是()(A)p 4, q2(B)p4, q2(C)p4, q2(D)p4, q264、表达式[cos(x y2) ay]dx[bycos(x y2)3x]dy 是某函数的全微分,则()(A)a 2,b2(B)a3,b2(C)a2,b3(D)a3,b365、方程y"'y "y 'y xe x是特解形式为()(A)(ax b)e x(B)x(ax b)e x(C) x2(ax b)e x(D)e x[( ax b)cos 2x ( cx d )sin 2x]66、方程y" 2 y'y xe x的特解 y*的形式为()(A)axe x(B)(ax b)e x(C)x(ax b)e x(D)x2 (ax b)e x67、已知y1coswx 与 y23cos wx 是微分方程y"w2 y0 的解,则 y c1 y1c2 y2是()(A)方程的通解(B)方程的解,但不为通解(C)方程的特解(D)不一定是方程的解68、方程y"3y ' 2 y3x2e x的特解 y*的形式为()(A)( ax b)e x(B)(ax b) xe x(C)( ax b)ce x(D)(ax b)cxe x69、方程y"3y ' 2 y x2e 2 x(A)y ax2 e 2x(C) y x(ax2bx c)e 2 x 特解的形式为()(B)y( ax2bx c)e 2 x(D)y x2 (ax2bx c)e 2x70、下列函数在定义域内线性无关的是()(A)4x(B)x 2x x2(C)5cos2 x sin 2 x(D) 1 2x x271、微分方程xdy ydx y2e y dy 的通解是()(A)x y(c e y )(B)x y(e y c)(C)y x(e x c)(D)y x(c e y )72、方程dxx y 5,dy3)dt dt x 的奇点为((A) ( 0,0)(B) (0,5)(C) (5,5)(D)(5,0)73、( 0,0 )为系统dxy,dy2x 3y 的()dt dt(A)鞍点(B)结点(C)中心(D)焦点74、方程dxdydz的首次积分是()xz yz xy(A)xy z2c(B)x2c(C)x2yz c (D)xz x2cy75、方程x2dxz2dydz的首次积分是()y2 2 xy2xz(A)x y zc(B)x2y2z2c (C)y(D)zc x2ycxxdx2x ydt76、系统的奇点类型为()dyx2ydt(A)稳定结点(B)不稳定结点(C)稳定焦点(D)不稳定焦点dx3x y77、系统dt4的奇点类型为()dy4y7 xdt(A)鞍点(B)焦点(C)中心(D)结点78、方程y"y xe x有形如()特解(A) y Axe x(B)y1( Ax2Bx c)e x(C)y1(Ax B)e x(D)Ae x79、方程x"6x '13x e t (t25t 12) 特解形状为()(A) x 1 ( At 2 Bt c)e t(B)x 1 ( At B) e t ( C) x 1 Ate t(D)x 1 Ae t80、方程 y"2 y' 2y (A) y 1A cosxe x(C) y 1 e x( Acos xe x cos x 的特解形状为()(B)y 1 Asin xe xB sin x)(D)y 1 Ae x81、方程 x"2x ' 2x te t cost 的特解形状为()(A) x 1 ( At 2Btc)e t cost(B)x 1 (At 2 Bt c)e t sin t(C)x 1 e t ( Acost B sin t )(D) x 1( At 2 Bt c)e t cost (Dt 2Et F )e t sin t82、微分方程 ( ye xe y )dx (xe ye x )dy 0 的通解为()(A) ye xxe y c (B)ye y xe xc (C)ye x xe yc (D)ye xxe yc83、微分方程 (e x sin y 2 y sin x)dx(e x cos y 2cos x)dy0 的通解为( (A) e x sin y 2 y cos x c (B) e x co s y 2 ycos x c (C) e x sin yycos x c(D)e x cos y2y cos x c84、微分方程 e y dxx(2 xy e y )dy 0 的通解为( )(A) xeyy2c(B)e y y2c (C)xe yxy c(D)eyx85、方程 (e x3y 2 ) dx 2xydy 0的通解为()(A) xe x x 3 y 2 c(B)( x 22x)e x x 3 y 2 c (C) (x 22x 2)e xx 3 y 2c(D) ( x 22) e xx 3 y 2 c)y cx86、下列方程为常微分方程的是()(A) x 2y 2z 2 0 (B)u u 2u(C) y Asin tB sin t (D) y ' Ae xx yy 287、方程 (2 xy 4e y2xy 3 y)dx ( x 2 y 4e yx 2 y 2 3x) dy 0 的积分因子为()(A) ( x)1(B)(x) 1 (C)1 (D)1 x 2x( y)( y)y 4y 2 88、方程 e y x(2 xy e y )dy0 的积分因子为()(A) ( x)1(B) 1 (C) 1 (D)1x 2( x)( y) ( y)xy 2y89、方程 (e x3y 2 ) dx2xydy 0 的积分因子为()(A)( x)1(B)( x)x2(C)( y)1(D)( y)y2x y90、方程( y 1 xy)dx xdy0 的积分因子为()(A)( x)e x(B)( x) e x(C)( y)e y(D)( y) e y91、方程(2 x2y 2 y5) dx (2 x32x)dy0 的积分因子为((A)( x)1(B)( x)1(C)( y)1 x1x2y92、方程2 xy3dx ( x2y21)dy 0的积分因子为()(A)( x)1(B)(x)1(C)( y)1 x x2y93、方程e x dx(e x ctgx 2 ycos y)dy0 的积分因子为()(A)( x) sin x(B)(x)cos x(C)( y)sin y94、方程ydx(x2y2x)dy 0 的积分因子为()(A)( x)1(B)( y)1 x2y2(D) ( x, y)1yx)1 (D)( y)1y21 (D)( y)y2 (D)( y) cos y (C)( x, y)12y2x95、方程y3dx2( x2xy2 )dy 0的积分因子为()1(B)11(D)1(A)(C)x2 y2 2 y x2xy x96、方程6x3 3 y0 的积分因子为()3x dx dyy y x(A)x(B)y(C)xy(D)x2 y97、下列方程中为常微分方程的是()(A)x2 - 2x10(B)y'xy 2(C)u2u2u(D)y2c (c为常数)t x2y2x98、下列微分方程是线性的是()(A)y 'x2y2(B)y" y2e x(C) y"x20(D)y '- y xy2选择题答案1B2C3C4A5A 6A7B8D9A10B 10B12A13A14C15D 16B17A18C19A20B 21D22C23B24A25A 26C27D28D29D30D 31A32C33D34D35D 36C37B38A39C40C 41A42B43D44B45A 46A47C48A49D50B 51B52B53A54B55B 56B57D58B59A60D 61C62D63C64B65B 66D67B68D69C70C 71B72B73B74A75B 76C77D78C79A80C 81D82C83A84B85C 86D87C88A89B90B 91B92D93C94C95D 96C97B98C。
常微分方程练习试卷一、填空题。
1.方程 x 3 d2x 10 是阶(线性、非线性)微分方程 .dt 22. 方程 x dyf (xy ) 经变换 _______ ,能够化为变量分别方程.y dx3.微分方程 d 3 y y 2x 0 知足条件 y(0) 1, y (0)2 的解有个 .dx 34. 设 常 系 数 方程 yy*2 xxx,则此方程的系数ye x 的 一个 特解 y ( x) eexe,, .5. 朗斯基队列式 W (t )0是函数组 x 1(t), x 2 (t),L , x n (t ) 在 a x b 上线性有关的条件 .6. 方程 xydx (2 x 2 3y 2 20) dy 0 的只与 y 有关的积分因子为.7. 已知 X A(t) X 的基解矩阵为 (t ) 的,则 A(t ).8. 方程组 x '2 0.0 x 的基解矩阵为59. 可用变换 将伯努利方程化为线性方程 .10 . 是知足方程 y2 y 5y y 1 和初始条件的独一解 .11. 方程的待定特解可取的形式 :12. 三阶常系数齐线性方程 y 2 y y 0 的特点根是二、计算题1. 求平面上过原点的曲线方程 , 该曲线上任一点处的切线与切点和点 (1,0) 的连线互相垂直 .dy x y 1 2.求解方程.dxx y 3d 2 x dx 2。
3. 求解方程 x2( )dt dt4.用比较系数法解方程 . .5.求方程y y sin x 的通解.6.考证微分方程(cos x sin x xy 2 )dx y(1 x2 )dy0 是适合方程,并求出它的通解.311A X 的一个基解基解矩阵(t) ,求dXA X7.设 A,,试求方程组dX241dt dt 知足初始条件x(0)的解 .8.求方程dy2x13y2经过点 (1,0)的第二次近似解 . dx9.求dy)34xy dy8y20 的通解(dxdx10. 若A 21试求方程组 x Ax 的解(t ),(0)141,并求expAt2三、证明题1.若(t), (t ) 是 X A(t) X 的基解矩阵,求证:存在一个非奇怪的常数矩阵 C ,使得(t)(t )C .2.设 ( x) (x0 , x) 是积分方程y(x)y0x2 y( )]d ,x0 , x [ , ] [x0的皮卡逐渐迫近函数序列 {n (x)} 在 [,] 上一致收敛所得的解,而(x) 是这积分方程在 [ ,] 上的连续解,试用逐渐迫近法证明:在[,] 上( x)( x) .3. 设都是区间上的连续函数 ,且是二阶线性方程的一个基本解组 . 试证明 :(i)和都只好有简单零点(即函数值与导函数值不可以在一点同时为零);(ii)和没有共同的零点;(iii)和没有共同的零点.4. 试证:假如(t ) 是dXAX 知足初始条件(t0 )的解,那么(t) exp A(t t 0 ) dt.答案一 . 填空题。
第十二章 常微分方程(A)一、是非题1.任意微分方程都有通解。
( X )2.微分方程的通解中包含了它所有的解。
( X )3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。
( O ) 4.函数x e x y ⋅=2是微分方程02=+'-''y y y 的解。
( X )5.微分方程0ln =-'x y x 的通解是()C x y +=2ln 21 (C 为任意常数)。
( O )6.y y sin ='是一阶线性微分方程。
( X ) 7.xy y x y +='33不是一阶线性微分方程。
( O ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。
( O )9.221xy y x dxdy +++=是可分离变量的微分方程。
( O )二、填空题1.在横线上填上方程的名称①()0ln 3=-⋅-xdy xdx y 是可分离变量微分方程。
②()()022=-++dy y x y dx x xy 是可分离变量微分方程。
③xy y dx dy x ln ⋅=是齐次方程。
④x x y y x sin 2+='是一阶线性微分方程。
⑤02=-'+''y y y 是二阶常系数齐次线性微分方程。
2.x x y x y cos sin =-'+'''的通解中应含 3 个独立常数。
3.x e y 2-=''的通解是21241C x C e x ++-。
4.x x y cos 2sin -=''的通解是21cos 2sin 41C x C x x +++-。
5.124322+=+'+'''x y x y x y x 是 3 阶微分方程。
6.微分方程()06='-''⋅y y y 是 2 阶微分方程。
微分方程例题选解3 1. 求解微分方程 x ln xdy ( y ln x)dx 0 , y |x e。
2解:原方程化为dy1 y1dx,xln xx1 dx 1 e 1dxy eC ] 通解为x ln x[ xln xdxx1 [ ln xdx C ]1 [ 1ln 2 x C ]ln xxln x 2由 xe , y3 ,得 C1 ,所求特解为y11ln x 。
2ln x 22. 求解微分方程 x 2 y ' xy y20 。
解:令 y ux , y uxu ,原方程化为 uxuu u 2 ,分离变量得du 1dx ,1 u 2x积分得ln x C,ux原方程的通解为y。
ln x C3. 求解微分方程 ( x 3 xy 2 ) dx ( x 2 y y 3 )dy 。
解:此题为全微分方程。
下面利用“凑微分”的方法求解。
原方程化为 x 3dx xy 2 dx x 2 ydy y 3 dy 由x 3 dx xy 2 dx x 2 ydy y 3dy 1dx41( y 2 dx 2x 2 dy 2 )421d (x 4 2x 2 y 2 y 4 ) ,4 得d (x 4 2x 2 y 2y 4 ) 0 ,原方程的通解为x 42 x 2 y 2 y 4 C 。
注:此题也为齐次方程。
0 ,1 dy 444. 求解微分方程 y '' 1 ( y ') 2 。
解:设 py ,则 y dp,原方程化为 dp1 p2 ,dp dxdx分离变量得dx ,积分得 arctan px C 1 ,1 p2于是 yp tan(x C 1 ) , 积分得通解为yln cos(x C 1 ) C 2 。
5. 求解微分方程 解:特征方程为通解为 y e x (C 1y '' 2y ' 2 y 0 。
r 2 2r 2 0 ,特征根为 r1 i ,cos C 2 sin x) 。
x16. 求解微分方程y '' y ' (2 x 1)e2 x。
解:对应齐次方程的特征方程为r 2 r 0 ,特征根为 r1 0 , r 2 1 ,齐次通解为Y C1 C2 e x。
可设待定特解y* (ax b)e2x,代入原方程得3a 2( ax b) 2x 1 ,比较系数得 a 1 , b 1,从而y* (x 1)e2 x,原方程的通解为y C1 C2 e x ( x 1)e2x。
7. 求解微分方程y '' y 4xe x。
解:对应齐次方程的特征方程为r 2 1 0 ,特征根为 r1 1,r2 1,齐次通解为Y C1e x C 2e x。
可设待定特解y* x(ax b)e x,代入原方程得2a 2( 2ax b) 4x ,比较系数得 a 1 , b 1,从而y* (x 2 x)e x,原方程的通解为y C1e x C2 e x (x2 x)e x。
8. 求解微分方程y '' 6y ' 9 y e3x (6 x 2) 。
解:对应齐次方程的特征方程为r 2 6r 9 0 ,特征根为 r1 r2 3 ,齐次通解为Y (C1 C 2 x)e3 x 。
可设待定特解y* x 2 (ax b)e3x ,代入原方程得6ax 2b 6x 2 ,(x 3 x 2 )e3 x,比较系数得 a 1 , b 1 ,从而 y*原方程的通解为y (C1 C2 x)e3x ( x3 x2 )e3 x。
9. 利用“凑微分”的方法求解微分方程(xy y sin y)dx ( x cos y)dy 0 。
解:由( xy y sin y)dx ( x cos y)dyxydx ydx sin ydx xdy cos ydyxydx sin ydx ( ydx xdy) d sin y( xy sin y)dx d( xy sin y) ,原方程化为d ( xy sin y)dx ,xy sin y积分得ln( xy sin y) x ln C ,从而通解为xy sin y Ce x。
10. 选择适当的变量代换求解微分方程x yy ( x 2 y2 1) tan x 。
解:设 u x 2 y2 ,则 u x yy ,原方程化为uu (u 1) tan x ,1 u分离变量得(1 )du tan xdx ,u 1积分得u ln( u 1) ln cos x C ,2原方程的通解为x2 y 2 ln( x2 y 2 1) ln cosx C 。
11. 利用代换y u 将方程 y cos x 2 y sin x 3y cos x e x化简,并求出原方程的通解。
cos x解:由 u y cos x ,得u y cos x ysin x ,u y cos x 2y sin x y cos x 。
原方程化为u 4u e x,其通解为u C1 cos2 x C 2 sin2xe x,5e x原方程的通解为y C1 cos2x2C 2 sin xcos x 5cos x。
12. 设二阶常系数线性微分方程y ay by ce x的一个特解为 y e2x (1 x)e x。
试确定常数 a, b, c ,并求该方程的通解。
解:由题设特解知原方程的特征根为 1 和 2,所以特征方程为( r 1)( r 2) 0 ,即 r 2 3r 2 0 ,于是 a 3 , b 2 。
将 y1 xe x代入方程,得( x 2)e x 3( x 1)e x 2xe x ce x, c原方程的通解为 y C1e x C 2e2 x xe x 。
13. 已知y1xe x e2 x,y2 xe x e x, y3 xex性微分方程的三个解,求此微分方程。
解:由题设特解知原方程的通解为y C1e x C2e2 x 所以特征方程为( r 1)(r 2) 0 ,即 r 2 r 2 0 ,故可设此微分方程为y y 2 y f (x) ,将 y xe x代入方程,得 f (x) (1 2x)e x,故所求方程为 y y 2 y (1 2x)e x。
1。
e2 x e x是某二阶常系数非齐次线xe x,特征根为1和2,14. 设u2u 2 u 4 ,其中r x 2 y 2 ,求 f( r ) 。
f (r ) 满足方程2y 2xu x 2ux2f (r ) y 2 2u y 2f ( r )x 2f (r ) ,解:xf (r ) , 2 2 3 f (r ) ,y 2 r 2 r 3 r x r r2 u 2 uf (r )1(r ) 4,x 2 y 2fr1dr1dr 1(2r2f (r ) e r [ 4e r dr C1 ] C1),1(2r 2 rf ( r ) C1 )dr r 2 C1 ln r C 2。
r315. 设函数 f (t ) 在 [0,) 上连续,且满足方程f (t) e 4 t 2f ( 1x 2y 2 ) dxdyx2y 24t22求 f (t ) 。
1 x2 y 2 )dxdy22 tf ( 1r )rdr解:由于f (dx 2 y 24 t 22222trf ( 1r )dr ,f (t) 2所以e 4 t2求导得f (t ) 8 te4t28 t f (t) ,f (t ) e 8 tdt28 tdtdt C ]e 4 t2[ 8 te 4 t e(4 t 2由 f (0)1,得 C 1 ,因此 f (t ) (4 t21)e 4 t2。
16. 设 f (x) 连续可微,f (0) 1 ,确定 f ( x) ,使曲线积分L [ x f ( x)] ydxf ( x) dyI(1,1)f (x)] ydx f ( x)dy 。
与路径无关,并计算[ x(0,0)解:由曲线积分与路径无关,得f ( x) x f ( x) ,f ( x)e dxdxC ) (x 1) Ce x ,( xe dx由 f (0)1,得 C 2 ,从而 f ( x)x 1 2e x,I (1,1)(12e x ) ydx(x 12e x )dy11 dy于是(0,0)2e2t12rf ( r )dr2C) ,2 。
e17. 假定物体在空气中的冷却速度是正比于该物体的温度和它周围的空气温度之差, 若室温为 200 c 时,一物体由 1000 c 冷却到 600 c 须经过 20 分钟,问共经过多少时间方可使此物体的温度从开始时的1000 c 降低到 300 c 。
解:设在时刻 t 物体的温度为 T (t ) ,则有dT k (T 20) ,且 T( 0) 100 , T (20) 60dt分离变量得dT kdt ,T 20积分得 ln( T 20) kt ln C ,即T20 Ce kt ,kt ,由 T(0) 100 得 C 80 , T20 80e再由 T (20)60 得 60 20 80e kt , kln 2 ,ln 220故 T 20 80e t20,令 T(t)30 ,得 30ln 2 t, t60 。
20 80e 20共经过 60 分钟方可使此物体的温度从开始时的1000 c 降低到 300 c 。
418. 设物体 A 从点 (0,1) 出发, 以速度大小为常数 v 沿 y 轴正向运动。
物体 B 从点 ( 1, 0) 与A 同时出发,其速度大小为2v ,方向始终指向 A 。
试建立物体 B 的运动轨迹所满足的微分方程,并写出初始条件。
解:设在时刻 t , B 位于点 ( x, y) 处,则 dy(1 vt ) y ,dxx 两边对 x 求导,得x d 2yvdt,( 1)dx 2dxdsdy 2dxdt12由于2v11dy,dtdx,dx2vdxdt代入( 1)式得所求微分方程为x d 2 y1 1( dy ) 20 ,dx 22dx其初始条件为y |x 1 0, y |x 1 1 。
19. 在 xOy 面的第一象限内有一曲线过点(1, 1) ,曲线上任一点 P 处的切线与 x 轴及线段OP 所围三角形的面积为常数 k ,求此曲线的方程。
解:设 P(x, y) 处的切线方程为 Yydy ( X x) ,在 x 轴上的截距为 a xydx ,dxdy由题设知 ( xydx ) y 2k ,化为 dx 1 x2k ,dy dyy y 21dy1dy其通解为x e y [ (2k2 )eydy C] k Cy ,yy由 x1,y 1,得 C 1 k ,所求曲线方程为xk (1 k) y ,即 xy ( k 1) y 2 k 。
y20. 某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下。
现有一质量为 9000kg 的飞机,着陆时的水平速度为 700km/ h 。