高邑县外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析
- 格式:pdf
- 大小:923.95 KB
- 文档页数:18
西工区外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知直线l的参数方程为1cos sin x t y t αα=+⎧⎪⎨=⎪⎩(t 为参数,α为直线l 的倾斜角),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()3πρθ=+,直线l 与圆C 的两个交点为,A B ,当||AB 最小时,α的值为( )A .4πα=B .3πα=C .34πα=D .23πα=2. 下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .y=|x|(x ∈R ) B .y=(x ≠0) C .y=x (x ∈R ) D .y=﹣x 3(x ∈R ) 3. 若复数z=2﹣i ( i为虚数单位),则=( ) A .4+2i B .20+10i C .4﹣2i D.4. 若变量x ,y满足:,且满足(t+1)x+(t+2)y+t=0,则参数t 的取值范围为( )A .﹣2<t<﹣ B .﹣2<t ≤﹣ C .﹣2≤t ≤﹣ D .﹣2≤t<﹣5. 已知函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.若数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),则{a n }的前28项之和S 28=( )A .7B .14C .28D .566. 某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽 车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘 坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式共有( )种. A .24 B .18 C .48 D .36【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力. 7. 设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式<0的解集为( )A .(﹣1,0)∪(1,+∞)B .(﹣∞,﹣1)∪(0,1)C .(﹣∞,﹣1)∪(1,+∞)D .(﹣1,0)∪(0,1)8. 一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P ,直线PF 1(F 1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为( )A .B .C .D .9. 已知函数()2sin()f x x ωϕ=+(0)2πϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最小距离为2π,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2π D .23π10.“24x ππ-<≤”是“tan 1x ≤”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性.11.O 为坐标原点,F 为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为( )A .1B .C .D .212.设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D. {}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题.二、填空题13.【徐州市2018届高三上学期期中】已知函数(为自然对数的底数),若,则实数 的取值范围为______.14.下列命题:①集合{},,,a b c d 的子集个数有16个; ②定义在R 上的奇函数()f x 必满足(0)0f =;③2()(21)2(21)f x x x =+--既不是奇函数又不是偶函数; ④A R =,B R =,1:||f x x →,从集合A 到集合B 的对应关系f 是映射; ⑤1()f x x=在定义域上是减函数. 其中真命题的序号是 .15.在极坐标系中,O 是极点,设点A ,B 的极坐标分别是(2,),(3,),则O 点到直线AB的距离是 .16.复数z=(i 虚数单位)在复平面上对应的点到原点的距离为 .17.在下列给出的命题中,所有正确命题的序号为 . ①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称; ②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1;③若实数x ,y 满足x 2+y 2=1,则的最大值为;④若△ABC 为锐角三角形,则sinA <cosB .⑤在△ABC 中,BC=5,G ,O 分别为△ABC 的重心和外心,且•=5,则△ABC 的形状是直角三角形.18.在ABC ∆中,90C ∠=,2BC =,M 为BC 的中点,1sin 3BAM ∠=,则AC 的长为_________. 三、解答题19.如图,在四棱锥P ﹣ABCD 中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点,求证:(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面PAD .20.在ABC ∆中已知2a b c =+,2sin sin sin A B C =,试判断ABC ∆的形状.21.如图,已知椭圆C:+y2=1,点B坐标为(0,﹣1),过点B的直线与椭圆C另外一个交点为A,且线段AB的中点E在直线y=x上(Ⅰ)求直线AB的方程(Ⅱ)若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,证明:OM•ON 为定值.22.(本小题满分12分)如图四棱柱ABCD-A1B1C1D1的底面为菱形,AA1⊥底面ABCD,M为A1A的中点,AB=BD=2,且△BMC1为等腰三角形.(1)求证:BD⊥MC1;(2)求四棱柱ABCD-A1B1C1D1的体积.23.(本题满分12分)有人在路边设局,宣传牌上写有“掷骰子,赢大奖”.其游戏规则是这样的:你可以在1,2,3,4,5,6点中任选一个,并押上赌注m元,然后掷1颗骰子,连续掷3次,若你所押的点数在3次掷骰子过程中出现1次,2次,3次,那么原来的赌注仍还给你,并且庄家分别给予你所押赌注的1倍,2倍,3倍的奖励.如果3次掷骰子过程中,你所押的点数没出现,那么你的赌注就被庄家没收. (1)求掷3次骰子,至少出现1次为5点的概率;(2)如果你打算尝试一次,请计算一下你获利的期望值,并给大家一个正确的建议.24.已知f(x)=x3+3ax2+bx在x=﹣1时有极值为0.(1)求常数a,b的值;(2)求f(x)在[﹣2,﹣]的最值.西工区外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】A【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆C的方程为22((1)4x y +-=,直线l 的普通方程为tan (1)y x α=-,直线l 过定点M ,∵||2MC <,∴点M 在圆C 的内部.当||AB 最小时,直线l ⊥直线MC ,1MC k =-,∴直线l 的斜率为1,∴4πα=,选A .2. 【答案】D【解析】解:y=|x|(x ∈R )是偶函数,不满足条件,y=(x ≠0)是奇函数,在定义域上不是单调函数,不满足条件, y=x (x ∈R )是奇函数,在定义域上是增函数,不满足条件, y=﹣x 3(x ∈R )奇函数,在定义域上是减函数,满足条件, 故选:D3. 【答案】A【解析】解:∵z=2﹣i ,∴====,∴=10•=4+2i ,故选:A .【点评】本题考查复数的运算,注意解题方法的积累,属于基础题.4. 【答案】C【解析】解:作出不等式组对应的平面区域如图:(阴影部分). 由(t+1)x+(t+2)y+t=0得t (x+y+1)+x+2y=0,由,得,即(t+1)x+(t+2)y+t=0过定点M (﹣2,1),则由图象知A ,B 两点在直线两侧和在直线上即可, 即[2(t+2)+t][﹣2(t+1)+3(t+2)+t]≤0, 即(3t+4)(2t+4)≤0,解得﹣2≤t ≤﹣,即实数t 的取值范围为是[﹣2,﹣],故选:C .【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键.综合性较强,属于中档题.5. 【答案】C 【解析】解:∵函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.∴函数f (x )关于直线x=1对称, ∵数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),∴a 6+a 23=2.则{a n }的前28项之和S 28==14(a 6+a 23)=28.故选:C . 【点评】本题考查了等差数列的通项公式性质及其前n 项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题.6. 【答案】A【解析】分类讨论,有2种情形.孪生姐妹乘坐甲车,则有12121223=C C C 种. 孪生姐妹不乘坐甲车,则有12121213=C C C 种. 共有24种. 选A.7. 【答案】D【解析】解:由奇函数f (x )可知,即x 与f (x )异号,而f (1)=0,则f (﹣1)=﹣f (1)=0,又f (x )在(0,+∞)上为增函数,则奇函数f (x )在(﹣∞,0)上也为增函数,当0<x <1时,f (x )<f (1)=0,得<0,满足;当x >1时,f (x )>f (1)=0,得>0,不满足,舍去;当﹣1<x <0时,f (x )>f (﹣1)=0,得<0,满足;当x <﹣1时,f (x )<f (﹣1)=0,得>0,不满足,舍去;所以x 的取值范围是﹣1<x <0或0<x <1. 故选D .8. 【答案】D【解析】解:设F 2为椭圆的右焦点由题意可得:圆与椭圆交于P ,并且直线PF 1(F 1为椭圆的左焦点)是该圆的切线,所以点P 是切点,所以PF 2=c 并且PF 1⊥PF 2.又因为F 1F 2=2c ,所以∠PF 1F 2=30°,所以.根据椭圆的定义可得|PF 1|+|PF 2|=2a , 所以|PF 2|=2a ﹣c .所以2a ﹣c=,所以e=.故选D .【点评】解决此类问题的关键是熟练掌握直线与圆的相切问题,以即椭圆的定义.9. 【答案】A 【解析】考点:三角函数的图象性质. 10.【答案】A【解析】因为tan y x =在,22ππ⎛⎫-⎪⎝⎭上单调递增,且24x ππ-<≤,所以tan tan 4x π≤,即tan 1x ≤.反之,当tan 1x ≤时,24k x k πππ-<≤+π(k Z ∈),不能保证24x ππ-<≤,所以“24x ππ-<≤”是“tan 1x ≤”的充分不必要条件,故选A. 11.【答案】C【解析】解:由抛物线方程得准线方程为:y=﹣1,焦点F (0,1), 又P 为C 上一点,|PF|=4, 可得y P =3,代入抛物线方程得:|xP |=2,∴S △POF =|0F|•|x P |=.故选:C .12.【答案】B【解析】易知{}{}|10|1B x x x x =-≥=≥,所以()R AB =ð{}|21x x -≤<,故选B.二、填空题13.【答案】【解析】令,则所以为奇函数且单调递增,因此即点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内14.【答案】①② 【解析】试题分析:子集的个数是2n,故①正确.根据奇函数的定义知②正确.对于③()241f x x =-为偶函数,故错误.对于④0x =没有对应,故不是映射.对于⑤减区间要分成两段,故错误. 考点:子集,函数的奇偶性与单调性.【思路点晴】集合子集的个数由集合的元素个数来决定,一个个元素的集合,它的子集的个数是2n个;对于奇函数来说,如果在0x =处有定义,那么一定有()00f =,偶函数没有这个性质;函数的奇偶性判断主要根据定义()()()(),f x f x f x f x -=-=-,注意判断定义域是否关于原点对称.映射必须集合A 中任意一个元素在集合B 中都有唯一确定的数和它对应;函数的定义域和单调区间要区分清楚,不要随意写并集.115.【答案】 .【解析】解:根据点A ,B 的极坐标分别是(2,),(3,),可得A 、B 的直角坐标分别是(3,)、(﹣,),故AB 的斜率为﹣,故直线AB 的方程为 y ﹣=﹣(x ﹣3),即x+3y ﹣12=0,所以O点到直线AB的距离是=,故答案为:.【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题.16.【答案】.【解析】解:复数z==﹣i(1+i)=1﹣i,复数z=(i虚数单位)在复平面上对应的点(1,﹣1)到原点的距离为:.故答案为:.【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.17.【答案】:①②③【解析】解:对于①函数y=2x3﹣3x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上,则其关于①点(0,1)的对称点为(﹣x0,2﹣y0)也满足函数的解析式,则①正确;对于②对∀x,y∈R,若x+y≠0,对应的是直线y=﹣x以外的点,则x≠1,或y≠﹣1,②正确;对于③若实数x,y满足x2+y2=1,则=,可以看作是圆x2+y2=1上的点与点(﹣2,0)连线的斜率,其最大值为,③正确;对于④若△ABC为锐角三角形,则A,B,π﹣A﹣B都是锐角,即π﹣A﹣B<,即A+B>,B>﹣A,则cosB<cos(﹣A),即cosB<sinA,故④不正确.对于⑤在△ABC中,G,O分别为△ABC的重心和外心,取BC的中点为D,连接AD、OD、GD,如图:则OD⊥BC,GD=AD,∵=|,由则,即则又BC=5则有由余弦定理可得cosC<0,即有C为钝角.则三角形ABC为钝角三角形;⑤不正确.故答案为:①②③18.【解析】考点:1、正弦定理及勾股定理;2诱导公式及直角三角形的性质.【方法点睛】本题主要考查正弦定理及勾股定理、诱导公式及直角三角形的性质,属于难题,高考三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正弦定理、余弦定理解三角形为主,难度中等,因此只要掌握基本的解题方法与技巧即可,对于三角函数与解三角形相结合的题目,要注意通过正余弦定理以及面积公式实现边角互化,求出相关的边和角的大小,有时也要考虑特殊三角形的特殊性质(如正三角形,直角三角形等).三、解答题19.【答案】【解析】证明:(1)在△PAD中,因为E,F分别为AP,AD的中点,所以EF∥PD.又因为EF不在平面PCD中,PD⊂平面PCD所以直线EF∥平面PCD.(2)连接BD.因为AB=AD,∠BAD=60°.所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD.因为平面PAD⊥平面ABCD,BF⊂平面ABCD,平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.又因为BF⊂平面EBF,所以平面BEF⊥平面PAD.【点评】本题是中档题,考查直线与平面平行,平面与平面的垂直的证明方法,考查空间想象能力,逻辑推理能力,常考题型.∆为等边三角形.20.【答案】ABC【解析】试题分析:由2=,根据正弦定理得出2a bc=,在结合2a b cA B Csin sin sin==,=+,可推理得到a b c 即可可判定三角形的形状.考点:正弦定理;三角形形状的判定.21.【答案】【解析】(Ⅰ)解:设点E(t,t),∵B(0,﹣1),∴A(2t,2t+1),∵点A在椭圆C上,∴,整理得:6t2+4t=0,解得t=﹣或t=0(舍去),∴E(﹣,﹣),A(﹣,﹣),∴直线AB的方程为:x+2y+2=0;(Ⅱ)证明:设P(x0,y0),则,直线AP方程为:y+=(x+),联立直线AP与直线y=x的方程,解得:x M=,直线BP的方程为:y+1=,联立直线BP与直线y=x的方程,解得:x N=,∴OM•ON=|x M||x N|=2•||•||=||=||=||=.【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值等问题,考查运算求解能力,注意解题方法的积累,属于中档题.22.【答案】【解析】解:(1)证明:如图,连接AC,设AC与BD的交点为E,∵四边形ABCD 为菱形, ∴BD ⊥AC ,又AA 1⊥平面ABCD ,BD ⊂平面ABCD ,∴A 1A ⊥BD ; 又A 1A ∩AC =A ,∴BD ⊥平面A 1ACC 1, 又MC 1⊂平面A 1ACC 1,∴BD ⊥MC 1.(2)∵AB =BD =2,且四边形ABCD 是菱形, ∴AC =2AE =2AB 2-BE 2=23,又△BMC 1为等腰三角形,且M 为A 1A 的中点, ∴BM 是最短边,即C 1B =C 1M . 则有BC 2+C 1C 2=AC 2+A 1M 2,即4+C 1C 2=12+(C 1C 2)2,解得C 1C =463,所以四棱柱ABCD -A 1B 1C 1D 1的体积为V =S 菱形ABCD ×C 1C=12AC ×BD ×C 1C =12×23×2×463=8 2. 即四棱柱ABCD -A 1B 1C 1D 1的体积为8 2. 23.【答案】【解析】【命题意图】本题考查了独立重复试验中概率的求法,对立事件的基本性质;对化归能力及对实际问题的抽象能力要求较高,属于中档难度.24.【答案】【解析】解:(1)∵f(x)=x3+3ax2+bx,∴f'(x)=3x2+6ax+b,又∵f(x)在x=﹣1时有极值0,∴f'(﹣1)=0且f(﹣1)=0,即3﹣6a+b=0且﹣1+3a﹣b=0,解得:a=,b=1 经检验,合题意.(2)由(1)得f'(x)=3x2+4x+1,令f'(x)=0得x=﹣或x=﹣1,∴f(x)max=0,f(x)min=﹣2.。
高坪区外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 如图所示,在三棱锥的六条棱所在的直线中,异面直线共有( )111]P ABC -A .2对B .3对C .4对D .6对2. 已知函数与轴的交点为,且图像上两对称轴之间的最()2sin()f x x ωϕ=+(0)2πϕ<<y (0,1)小距离为,则使成立的的最小值为()1111]2π()()0f x t f x t +--+=t A .B .C .D .6π3π2π23π3. 已知向量与的夹角为60°,||=2,||=6,则2﹣在方向上的投影为( )A .1B .2C .3D .44. 如图,四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,D 为四面体OABC 外一点.给出下列命题.①不存在点D ,使四面体ABCD 有三个面是直角三角形②不存在点D ,使四面体ABCD 是正三棱锥③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上其中真命题的序号是( )A .①②B .②③C .③D .③④5. 设F 1,F 2是双曲线的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .B .C .24D .486. 阅读如图所示的程序框图,运行相应的程序,若输出的的值等于126,则判断框中的①可以是( )A .i >4?B .i >5?C .i >6?D .i >7?7. 函数(,)的部分图象如图所示,则 f (0)的值为( )()2cos()f x x ωϕ=+0ω>0ϕ-π<<A. B. C. D. 32-1-【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用.8. 已知等差数列的前项和为,且,在区间内任取一个实数作为数列{}n a n S 120a =-()3,5{}n a 的公差,则的最小值仅为的概率为( )n S 6S A .B .C .D .1516314139. 在ABC ∆中,若60A ∠= ,45B ∠=,BC =,则AC =( )A .B .C.D 10.“”是“”的( )24x ππ-<≤tan 1x ≤A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性.11.下列命题中正确的是()A.若命题p为真命题,命题q为假命题,则命题“p∧q”为真命题B.命题“若xy=0,则x=0”的否命题为:“若xy=0,则x≠0”C.“”是“”的充分不必要条件D.命题“∀x∈R,2x>0”的否定是“”12.数列{a n}的首项a1=1,a n+1=a n+2n,则a5=()A.B.20C.21D.31二、填空题13.若正方形P1P2P3P4的边长为1,集合M={x|x=且i,j∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2;②当i=3,j=1时,x=0;③当x=1时,(i,j)有4种不同取值;④当x=﹣1时,(i,j)有2种不同取值;⑤M中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号)14.log3+lg25+lg4﹣7﹣(﹣9.8)0= .15.设MP和OM分别是角的正弦线和余弦线,则给出的以下不等式:①MP<OM<0;②OM<0<MP;③OM<MP<0;④MP<0<OM,其中正确的是 (把所有正确的序号都填上).16.已知随机变量ξ﹣N(2,σ2),若P(ξ>4)=0.4,则P(ξ>0)= .17.设函数f(x)=,则f(f(﹣2))的值为 .18.已知点A(2,0),点B(0,3),点C在圆x2+y2=1上,当△ABC的面积最小时,点C的坐标为 . 三、解答题19.已知命题p:“存在实数a,使直线x+ay﹣2=0与圆x2+y2=1有公共点”,命题q:“存在实数a,使点(a,1)在椭圆内部”,若命题“p且¬q”是真命题,求实数a的取值范围.20.(本小题满分10分)直线l 的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中α∈[0,π),曲线C 1的参数方程为(t 为参数),圆C 2的普通方程为x 2+y 2+2x =0.{x =cos t y =1+sin t)3(1)求C 1,C 2的极坐标方程;(2)若l 与C 1交于点A ,l 与C 2交于点B ,当|AB |=2时,求△ABC 2的面积.21.已知函数.()21ln ,2f x x ax x a R =-+∈(1)令,讨论的单调区间;()()()1g x f x ax =--()g x(2)若,正实数满足,证明.2a =-12,x x ()()12120f x f x x x ++=12x x +≥22.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知二次函数为偶函数且图象经过原点,()f x 其导函数的图象过点.()'f x ()12,(1)求函数的解析式;()f x (2)设函数,其中m 为常数,求函数的最小值.()()()'g x f x f x m =+-()g x23.已知集合A={x|a﹣1<x<2a+1},B={x|0<x<1}(1)若a=,求A∩B.(2)若A∩B=∅,求实数a的取值范围.24.已知a,b,c分别为△ABC三个内角A,B,C的对边,且满足2bcosC=2a﹣c.(Ⅰ)求B;(Ⅱ)若△ABC的面积为,b=2求a,c的值.高坪区外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】B 【解析】试题分析:三棱锥中,则与、与、与都是异面直线,所以共有三对,故选P ABC PA BC PC AB PB AC B .考点:异面直线的判定.2. 【答案】A 【解析】考点:三角函数的图象性质.3. 【答案】A【解析】解:∵向量与的夹角为60°,||=2,||=6,∴(2﹣)•=2﹣=2×22﹣6×2×cos60°=2,∴2﹣在方向上的投影为=.故选:A .【点评】本题考查了平面向量数量积的定义与投影的计算问题,是基础题目. 4. 【答案】D【解析】【分析】对于①可构造四棱锥CABD 与四面体OABC 一样进行判定;对于②,使AB=AD=BD ,此时存在点D ,使四面体ABCD 是正三棱锥;对于③取CD=AB ,AD=BD ,此时CD 垂直面ABD ,即存在点D ,使CD 与AB 垂直并且相等,对于④先找到四面体OABC 的内接球的球心P ,使半径为r ,只需PD=r ,可判定④的真假.【解答】解:∵四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,∴AC=BC=,AB=当四棱锥CABD 与四面体OABC 一样时,即取CD=3,AD=BD=2此时点D ,使四面体ABCD 有三个面是直角三角形,故①不正确使AB=AD=BD ,此时存在点D ,使四面体ABCD 是正三棱锥,故②不正确;取CD=AB ,AD=BD ,此时CD 垂直面ABD ,即存在点D ,使CD 与AB 垂直并且相等,故③正确;先找到四面体OABC 的内接球的球心P ,使半径为r ,只需PD=r 即可∴存在无数个点D ,使点O 在四面体ABCD 的外接球面上,故④正确故选D5. 【答案】C【解析】解:F 1(﹣5,0),F 2(5,0),|F 1F 2|=10,∵3|PF 1|=4|PF 2|,∴设|PF 2|=x ,则,由双曲线的性质知,解得x=6.∴|PF 1|=8,|PF 2|=6,∴∠F 1PF 2=90°,∴△PF 1F 2的面积=.故选C .【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用. 6. 【答案】 C【解析】解:模拟执行程序框图,可得S=0,i=1S=2,i=2不满足条件,S=2+4=6,i=3不满足条件,S=6+8=14,i=4不满足条件,S=14+16=30,i=5不满足条件,S=30+32=62,i=6不满足条件,S=62+64=126,i=7由题意,此时应该满足条件,退出循环,输出S 的值为126,故判断框中的①可以是i >6?故选:C .【点评】本小题主要考查循环结构、数列等基础知识.根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,属于基本知识的考查. 7. 【答案】D【解析】易知周期,∴.由(),得112(1212T π5π=-=π22T ωπ==52212k ϕπ⨯+=πk ∈Z 526k ϕπ=-+π(),可得,所以,则,故选D.k Z ∈56ϕπ=-5()2cos(2)6f x x π=-5(0)2cos(6f π=-=【解析】考点:等差数列.9. 【答案】B 【解析】考点:正弦定理的应用.10.【答案】A【解析】因为在上单调递增,且,所以,即.反之,当tan y x =,22ππ⎛⎫-⎪⎝⎭24x ππ-<≤tan tan 4x π≤tan 1x ≤时,(),不能保证,所以“”是“”tan 1x ≤24k x k πππ-<≤+πk Z ∈24x ππ-<≤24x ππ-<≤tan 1x ≤的充分不必要条件,故选A.11.【答案】 D【解析】解:若命题p 为真命题,命题q 为假命题,则命题“p ∧q ”为假命题,故A 不正确;命题“若xy=0,则x=0”的否命题为:“若xy ≠0,则x ≠0”,故B 不正确;“”⇒“+2k π,或,k ∈Z ”,“”⇒“”,故“”是“”的必要不充分条件,故C 不正确;命题“∀x ∈R ,2x >0”的否定是“”,故D 正确.故选D .【点评】本题考查命题的真假判断,是基础题,解题时要认真审题,仔细解答.【解析】解:由a n+1=a n+2n,得a n+1﹣a n=2n,又a1=1,∴a5=(a5﹣a4)+(a4﹣a3)+(a3﹣a2)+(a2﹣a1)+a1=2(4+3+2+1)+1=21.故选:C.【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题.二、填空题13.【答案】 ①③⑤ 【解析】解:建立直角坐标系如图:则P1(0,1),P2(0,0),P3(1,0),P4(1,1).∵集合M={x|x=且i,j∈{1,2,3,4}},对于①,当i=1,j=3时,x==(1,﹣1)•(1,﹣1)=1+1=2,故①正确;对于②,当i=3,j=1时,x==(1,﹣1)•(﹣1,1)=﹣2,故②错误;对于③,∵集合M={x|x=且i,j∈{1,2,3,4}},∴=(1,﹣1),==(0,﹣1),==(1,0),∴•=1;•=1;•=1;•=1;∴当x=1时,(i,j)有4种不同取值,故③正确;④同理可得,当x=﹣1时,(i,j)有4种不同取值,故④错误;⑤由以上分析,可知,当x=1时,(i,j)有4种不同取值;当x=﹣1时,(i,j)有4种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=﹣2;当i=2,j=4,或i=4,j=2时,x=0,∴M中的元素之和为0,故⑤正确.综上所述,正确的序号为:①③⑤,故答案为:①③⑤.【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标系,求得=(1,﹣1),==(0,﹣1),==(1,0)是关键,考查分析、化归与运算求解能力,属于难题.14.【答案】 .【解析】解:原式=+lg100﹣2﹣1=+2﹣2﹣1=,故选:【点评】本题考查了对数的运算性质,属于基础题.15.【答案】②【解析】解:由MP,OM分别为角的正弦线、余弦线,如图,∵,∴OM<0<MP.故答案为:②.【点评】本题的考点是三角函数线,考查用作图的方法比较三角函数的大小,本题是直接比较三角函数线的大小,在大多数此种类型的题中都是用三角函数线比较三个函数值的大小.16.【答案】 0.6 .【解析】解:随机变量ξ服从正态分布N(2,σ2),∴曲线关于x=2对称,∴P(ξ>0)=P(ξ<4)=1﹣P(ξ>4)=0.6,故答案为:0.6.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题. 17.【答案】 ﹣4 .【解析】解:∵函数f(x)=,∴f(﹣2)=4﹣2=,f(f(﹣2))=f()==﹣4.故答案为:﹣4.18.【答案】 (,) .【解析】解:设C(a,b).则a2+b2=1,①∵点A(2,0),点B(0,3),∴直线AB的解析式为:3x+2y﹣6=0.如图,过点C作CF⊥AB于点F,欲使△ABC的面积最小,只需线段CF最短.则CF=≥,当且仅当2a=3b时,取“=”,∴a=,②联立①②求得:a=,b=,故点C的坐标为(,).故答案是:(,).【点评】本题考查了圆的标准方程、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.三、解答题19.【答案】【解析】解:∵直线x+ay ﹣2=0与圆x 2+y 2=1有公共点∴≤1⇒a 2≥1,即a ≥1或a ≤﹣1,命题p 为真命题时,a ≥1或a ≤﹣1;∵点(a ,1)在椭圆内部,∴,命题q 为真命题时,﹣2<a <2,由复合命题真值表知:若命题“p 且¬q ”是真命题,则命题p ,¬q 都是真命题即p 真q 假,则⇒a ≥2或a ≤﹣2.故所求a 的取值范围为(﹣∞,﹣2]∪[2,+∞).20.【答案】【解析】解:(1)由C 1:(t 为参数)得{x =cos t y =1+sin t )x 2+(y -1)2=1,即x 2+y 2-2y =0,∴ρ2-2ρsin θ=0,即ρ=2sin θ为C 1的极坐标方程,由圆C 2:x 2+y 2+2x =0得3ρ2+2ρcos θ=0,即ρ=-2cos θ为C 2的极坐标方程.33(2)由题意得A ,B 的极坐标分别为A (2sin α,α),B (-2cos α,α).3∴|AB |=|2sin α+2cos α|3=4|sin (α+)|,α∈[0,π),π3由|AB |=2得|sin (α+)|=,π312∴α=或α=.π25π6当α=时,B 点极坐标(0,)与ρ≠0矛盾,∴α=,π2π25π6此时l 的方程为y =x ·tan (x <0),5π6即x +3y =0,由圆C 2:x 2+y 2+2x =0知圆心C 2的直角坐标为(-,0),333∴C 2到l 的距离d ==,|3×(-3)|(3)2+3232∴△ABC 2的面积为S =|AB |·d 12=×2×=.123232即△ABC 2的面积为.3221.【答案】(1)当时,函数单调递增区间为,无递减区间,当时,函数单调递增区间0a ≤()0,+∞0a >为,单调递减区间为;(2)证明见解析.10,a ⎛⎫ ⎪⎝⎭1,a ⎛⎫+∞ ⎪⎝⎭【解析】试题解析:(2)当时,,2a =-()2ln ,0f x x x x x =++>由可得,()()12120f x f x x x ++=22121122ln 0x x x x x x ++++=即,()()212121212ln x x x x x x x x +++=-令,则,()12,ln t x x t t t ϕ==-()111t t t tϕ-'=-=则在区间上单调递减,在区间上单调递增,()t ϕ()0,1()1,+∞所以,所以,()()11t ϕϕ≥=()()212121x x x x +++≥又,故,120x x +>12x x +≥由可知.1120,0x x >>120x x +>考点:函数导数与不等式.【方法点晴】解答此类求单调区间问题,应该首先确定函数的定义域,否则,写出的单调区间易出错. 解决含参数问题及不等式问题注意两个转化:(1)利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.(2)将不等式的证明、方程根的个数的判定转化为函数的单调性问题处理.请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.22.【答案】(1);(2)()2f x x =1m -【解析】(2)据题意,,即()()()2'2g x f x f x m x x m =+-=+-()2222{ 22m x x m x g x m x x m x -+<=+-≥,,,,①若,即,当时,,故在上12m <-2m <-2m x <()()22211g x x x m x m =-+=-+-()g x 2m ⎛⎫-∞ ⎪⎝⎭,单调递减;当时,,故在上单调递减,在2m x ≥()()22211g x x x m x m =+-=+--()g x 12m ⎛⎫- ⎪⎝⎭,上单调递增,故的最小值为.()1-+∞,()g x ()11g m -=--②若,即,当时,,故在上单调递减;112m -≤≤22m -≤≤2m x <()()211g x x m =-+-()g x 2m ⎛⎫-∞ ⎪⎝⎭,当时,,故在上单调递增,故的最小值为2m x ≥()()211g x x m =+--()g x 2m ⎛⎫+∞ ⎪⎝⎭,()g x .224m m g ⎛⎫= ⎪⎝⎭③若,即,当时,,故在上单调递12m >2m >2m x <()()22211g x x x m x m =-+=-+-()g x ()1-∞,减,在上单调递增;当时,,故在上12m ⎛⎫ ⎪⎝⎭,2m x ≥()()22211g x x x m x m =+-=+--()g x 2m ⎛⎫+∞ ⎪⎝⎭单调递增,故的最小值为.()g x ()11g m =-综上所述,当时,的最小值为;当时,的最小值为;当时,2m <-()g x 1m --22m -≤≤()g x 24m 2m >的最小值为.()g x 1m -23.【答案】【解析】解:(1)当a=时,A={x|},B={x|0<x <1}∴A ∩B={x|0<x <1}(2)若A ∩B=∅当A=∅时,有a ﹣1≥2a+1∴a ≤﹣2当A ≠∅时,有∴﹣2<a ≤或a ≥2综上可得,或a ≥2【点评】本题主要考查了集合交集的求解,解题时要注意由A ∩B=∅时,要考虑集合A=∅的情况,体现了分类讨论思想的应用.24.【答案】【解析】解:(Ⅰ)已知等式2bcosC=2a ﹣c ,利用正弦定理化简得:2sinBcosC=2sinA ﹣sinC=2sin (B+C )﹣sinC=2sinBcosC+2cosBsinC ﹣sinC ,整理得:2cosBsinC ﹣sinC=0,∵sinC ≠0,∴cosB=,则B=60°;(Ⅱ)∵△ABC的面积为=acsinB=ac,解得:ac=4,①又∵b=2,由余弦定理可得:22=a2+c2﹣ac=(a+c)2﹣3ac=(a+c)2﹣12,∴解得:a+c=4,②∴联立①②解得:a=c=2.。
新会区外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 在区间上恒正,则的取值范围为()()()22f x ax a =-+[]0,1A .B .C .D .以上都不对0a >0a <<02a <<2. 数列1,﹣4,7,﹣10,13,…,的通项公式a n 为( )A .2n ﹣1B .﹣3n+2C .(﹣1)n+1(3n ﹣2)D .(﹣1)n+13n ﹣23. 已知数列{}满足().若数列{}的最大项和最小项分别为n a nn n a 2728-+=*∈N n n a M 和,则( )m =+m M A .B .C .D .21122732259324354. 下列判断正确的是()A .①不是棱柱B .②是圆台C .③是棱锥D .④是棱台5. 设向量,满足:||=3,||=4, =0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )A .3B .4C .5D .66. 已知函数f (x )=3cos (2x ﹣),则下列结论正确的是()A .导函数为B .函数f (x )的图象关于直线对称C .函数f (x )在区间(﹣,)上是增函数D .函数f (x )的图象可由函数y=3co s2x 的图象向右平移个单位长度得到7. 若,,则不等式成立的概率为()[]0,1b ∈221a b +≤A .B .C .D .16π12π8π4π8. 如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是( )A .B .C .D .9. 函数f (x )=sin ωx (ω>0)在恰有11个零点,则ω的取值范围( )A .C .D .时,函数f (x )的最大值与最小值的和为( )A .a+3B .6C .2D .3﹣a 10.函数f (x )=tan (2x+),则()A .函数最小正周期为π,且在(﹣,)是增函数B .函数最小正周期为,且在(﹣,)是减函数C .函数最小正周期为π,且在(,)是减函数D .函数最小正周期为,且在(,)是增函数11.在ABC ∆中,若60A ∠=,45B ∠=,BC =,则AC =( )A .B .C.D 12.设集合M={x|x >1},P={x|x 2﹣6x+9=0},则下列关系中正确的是( )A .M=PB .P ⊊MC .M ⊊PD .M ∪P=R二、填空题13.如图,△ABC 是直角三角形,∠ACB=90°,PA ⊥平面ABC ,此图形中有 个直角三角形.14.图中的三个直角三角形是一个体积为20的几何体的三视图,则__________.h =15.已知角α终边上一点为P (﹣1,2),则值等于 .16.定义:[x](x ∈R )表示不超过x 的最大整数.例如[1.5]=1,[﹣0.5]=﹣1.给出下列结论:①函数y=[sinx]是奇函数;②函数y=[sinx]是周期为2π的周期函数;③函数y=[sinx]﹣cosx 不存在零点;④函数y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}.其中正确的是 .(填上所有正确命题的编号) 17.已知函数,则的值是_______,的最小正周期是______.22tan ()1tan x f x x =-()3f π()f x 【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力.18.如图,在平行四边形ABCD 中,点E 在边CD 上,若在平行四边形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率是 .三、解答题19.(本小题满分12分)已知向量,,(cos sin ,sin )m x m x x w w w =-a (cos sin ,2cos )x x n x w w w =--b 设函数的图象关于点对称,且.()()2n f x x R =×+Îa b (,1)12p(1,2)w Î(I )若,求函数的最小值;1m =)(x f (II )若对一切实数恒成立,求的单调递增区间.()(4f x f p£)(x f y =【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.20.已知集合A={x|x2+2x<0},B={x|y=}(1)求(∁R A)∩B;(2)若集合C={x|a<x<2a+1}且C⊆A,求a的取值范围.21.在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点.(Ⅰ)证明:AC⊥D1E;(Ⅱ)求DE与平面AD1E所成角的正弦值;(Ⅲ)在棱AD上是否存在一点P,使得BP∥平面AD1E?若存在,求DP的长;若不存在,说明理由.22..已知定义域为R的函数f(x)=是奇函数.(1)求a的值;(2)判断f(x)在(﹣∞,+∞)上的单调性.(直接写出答案,不用证明);(3)若对于任意t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.23.已知f(x)=|﹣x|﹣|+x|(Ⅰ)关于x的不等式f(x)≥a2﹣3a恒成立,求实数a的取值范围;(Ⅱ)若f (m )+f (n )=4,且m <n ,求m+n 的取值范围. 24.已知曲线(,)在处的切线与直线21()f x e x ax=+0x ≠0a ≠1x =2(1)20160e x y --+=平行.(1)讨论的单调性;()y f x =(2)若在,上恒成立,求实数的取值范围.()ln kf s t t ≥(0,)s ∈+∞(1,]t e ∈新会区外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】C 【解析】试题分析:由题意得,根据一次函数的单调性可知,函数在区间上恒正,则()()22f x ax a =-+[]0,1,即,解得,故选C.(0)0(1)0f f >⎧⎨>⎩2020a a a >⎧⎨-+>⎩02a <<考点:函数的单调性的应用.2. 【答案】C【解析】解:通过观察前几项可以发现:数列中符号是正负交替,每一项的符号为(﹣1)n+1,绝对值为3n ﹣2,故通项公式a n =(﹣1)n+1(3n ﹣2).故选:C . 3. 【答案】D 【解析】试题分析:数列,, n n n a 2728-+=112528++-+=∴n n n a 11252722n n n nn n a a ++--∴-=-,当时,,即;当时,,()11252272922n n n n n ++----+==41≤≤n n n a a >+112345a a a a a >>>>5≥n n n a a <+1即.因此数列先增后减,为最大项,,,最...765>>>a a a {}n a 32259,55==∴a n 8,→∞→n a n 2111=a ∴小项为,的值为.故选D.211M m +∴3243532259211=+考点:数列的函数特性.4. 【答案】C【解析】解:①是底面为梯形的棱柱;②的两个底面不平行,不是圆台;③是四棱锥;④不是由棱锥截来的,故选:C .5. 【答案】B【解析】解:∵向量ab=0,∴此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,∵对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.故选B【点评】本题主要考查了直线与圆的位置关系.可采用数形结合结合的方法较为直观.6.【答案】B【解析】解:对于A,函数f′(x)=﹣3sin(2x﹣)•2=﹣6sin(2x﹣),A错误;对于B,当x=时,f()=3cos(2×﹣)=﹣3取得最小值,所以函数f(x)的图象关于直线对称,B正确;对于C,当x∈(﹣,)时,2x﹣∈(﹣,),函数f(x)=3cos(2x﹣)不是单调函数,C错误;对于D,函数y=3co s2x的图象向右平移个单位长度,得到函数y=3co s2(x﹣)=3co s(2x﹣)的图象,这不是函数f(x)的图象,D错误.故选:B.【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目.7.【答案】D【解析】考点:几何概型.8.【答案】B【解析】【知识点】函数的奇偶性【试题解析】因为奇函数乘以奇函数为偶函数,y=x是奇函数,故是偶函数。
通城县外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 如果对定义在R 上的函数)(x f ,对任意n m ≠,均有0)()()()(>--+m nf n mf n nf m mf 成立,则称 函数)(x f 为“H 函数”.给出下列函数: ①()ln25x f x =-;②34)(3++-=x x x f ;③)cos (sin 222)(x x x x f --=;④⎩⎨⎧=≠=0,00|,|ln )(x x x x f .其中函数是“H 函数”的个数为( ) A .1 B .2 C .3 D . 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大.2. 若偶函数y=f (x ),x ∈R ,满足f (x+2)=﹣f (x ),且x ∈[0,2]时,f (x )=1﹣x ,则方程f (x )=log 8|x|在[﹣10,10]内的根的个数为( ) A .12B .10C .9D .83. 四面体ABCD 中,截面 PQMN 是正方形, 则在下列结论中,下列说法错误的是( )A .AC BD ⊥B .AC BD =C.AC PQMN D .异面直线PM 与BD 所成的角为454. 从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是( )A .B .C .D .5. 设函数y=的定义域为M ,集合N={y|y=x 2,x ∈R},则M ∩N=( ) A .∅B .NC .[1,+∞)D .M6. 一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )A .3B .C .2D .67. 设m 是实数,若函数f (x )=|x ﹣m|﹣|x ﹣1|是定义在R 上的奇函数,但不是偶函数,则下列关于函数f (x )的性质叙述正确的是( )A .只有减区间没有增区间B .是f (x )的增区间C .m=±1D .最小值为﹣38.已知向量=(1,2),=(m,1),如果向量与平行,则m的值为()A.B. C.2 D.﹣29.已知点F1,F2为椭圆的左右焦点,若椭圆上存在点P使得,则此椭圆的离心率的取值范围是()A.(0,)B.(0,] C.(,] D.[,1)10.若某程序框图如图所示,则该程序运行后输出的值是()A.7B.8C. 9D. 10【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是循环语句循环终止的条件.11.已知双曲线2222:1(0,0)x yC a ba b-=>>,12,F F分别在其左、右焦点,点P为双曲线的右支上的一点,圆M为三角形12PF F的内切圆,PM所在直线与轴的交点坐标为(1,0),与双曲线的一条渐,则双曲线C的离心率是()A B .2 C D .212.已知一个算法的程序框图如图所示,当输出的结果为21时,则输入的值为( )A .2B .1-C .1-或2D .1-或10二、填空题13.函数f (x )=(x >3)的最小值为 .14.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元. 15.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>xxe xf e (其 中为自然对数的底数)的解集为 . 16.的展开式中的系数为 (用数字作答).17.直线20x y t +-=与抛物线216y x =交于A ,B 两点,且与x 轴负半轴相交,若O 为坐标原点,则OAB ∆面积的最大值为 .【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.18.(﹣2)7的展开式中,x 2的系数是 .三、解答题19.已知椭圆+=1(a >b >0)的离心率为,且a 2=2b .(1)求椭圆的方程;(2)直线l :x ﹣y+m=0与椭圆交于A ,B 两点,是否存在实数m ,使线段AB 的中点在圆x 2+y 2=5上,若存在,求出m 的值;若不存在,说明理由.20.求下列函数的定义域,并用区间表示其结果.(1)y=+;(2)y=.21.(本小题满分12分)1111]已知函数()()1ln 0f x a x a a x=+≠∈R ,.(1)若1a =,求函数()f x 的极值和单调区间;(2)若在区间(0]e ,上至少存在一点0x ,使得()00f x <成立,求实数的取值范围.22.【2017-2018第一学期东台安丰中学高三第一次月考】已知函数()2ln f x ax x =+,()21145ln 639f x x x x =++,()22122f x x ax =+,a R ∈(1)求证:函数()f x 在点()(),e f e 处的切线恒过定点,并求出定点的坐标; (2)若()()2f x f x <在区间()1,+∞上恒成立,求a 的取值范围; (3)当23a =时,求证:在区间()0,+∞上,满足()()()12f x g x f x <<恒成立的函数()g x 有无穷多个.(记ln5 1.61,6 1.79ln ==)23.(文科)(本小题满分12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟 确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超过的部分 按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨), 将数据按照[)[)[)0,0.5,0.5,1,,4,4.5分成9组,制成了如图所示的频率分布直方图.(1)求直方图中的值;(2)设该市有30万居民,估计全市居民中月均用量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.24.设集合A={x|0<x﹣m<3},B={x|x≤0或x≥3},分别求满足下列条件的实数m的取值范围.(1)A∩B=∅;(2)A∪B=B.通城县外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B第2.【答案】D【解析】解:∵函数y=f(x)为偶函数,且满足f(x+2)=﹣f(x),∴f(x+4)=f(x+2+2)=﹣f(x+2)=f(x),∴偶函数y=f(x)为周期为4的函数,由x∈[0,2]时,f(x)=1﹣x,可作出函数f(x)在[﹣10,10]的图象,同时作出函数f(x)=log8|x|在[﹣10,10]的图象,交点个数即为所求.数形结合可得交点个为8,故选:D.3. 【答案】B 【解析】试题分析:因为截面PQMN 是正方形,所以//,//PQ MN QM PN ,则//PQ 平面,//ACD QM 平面BDA ,所以//,//PQ AC QM BD ,由PQ QM ⊥可得AC BD ⊥,所以A 正确;由于//PQ AC 可得//AC 截面PQMN ,所以C 正确;因为PN PQ ⊥,所以AC BD ⊥,由//BD PN ,所以MPN ∠是异面直线PM 与BD 所成的角,且为045,所以D 正确;由上面可知//,//BD PN PQ AC ,所以,PN AN MN DN BD AD AC AD==,而,AN DN PN MN ≠=,所以BD AC ≠,所以B 是错误的,故选B. 1 考点:空间直线与平面的位置关系的判定与证明.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与平面平行的判定定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的位置关系的判定定理和性质定理是解答的关键. 4. 【答案】B【解析】解:由题意知,女生第一次、第二次均未被抽到,她第三次被抽到, 这三个事件是相互独立的,第一次不被抽到的概率为,第二次不被抽到的概率为,第三次被抽到的概率是,∴女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是=,故选B .5.【答案】B【解析】解:根据题意得:x+1≥0,解得x≥﹣1,∴函数的定义域M={x|x≥﹣1};∵集合N中的函数y=x2≥0,∴集合N={y|y≥0},则M∩N={y|y≥0}=N.故选B6.【答案】C【解析】解:∵椭圆的半焦距为2,离心率e=,∴c=2,a=3,∴b=∴2b=2.故选:C.【点评】本题主要考查了椭圆的简单性质.属基础题.7.【答案】B【解析】解:若f(x)=|x﹣m|﹣|x﹣1|是定义在R上的奇函数,则f(0)=|m|﹣1=0,则m=1或m=﹣1,当m=1时,f(x)=|x﹣1|﹣|x﹣1|=0,此时为偶函数,不满足条件,当m=﹣1时,f(x)=|x+1|﹣|x﹣1|,此时为奇函数,满足条件,作出函数f(x)的图象如图:则函数在上为增函数,最小值为﹣2,故正确的是B,故选:B【点评】本题主要考查函数的奇偶性的应用,根据条件求出m 的值是解决本题的关键.注意使用数形结合进行求解.8. 【答案】B【解析】解:向量,向量与平行,可得2m=﹣1.解得m=﹣. 故选:B .9. 【答案】D【解析】解:由题意设=2x ,则2x+x=2a ,解得x=,故||=,||=,当P 与两焦点F 1,F 2能构成三角形时,由余弦定理可得4c 2=+﹣2×××cos ∠F 1PF 2,由cos ∠F 1PF 2∈(﹣1,1)可得4c 2=﹣cos ∠F 1PF 2∈(,),即<4c 2<,∴<<1,即<e 2<1,∴<e <1;当P 与两焦点F 1,F 2共线时,可得a+c=2(a ﹣c ),解得e==;综上可得此椭圆的离心率的取值范围为[,1)故选:D【点评】本题考查椭圆的简单性质,涉及余弦定理和不等式的性质以及分类讨论的思想,属中档题.10.【答案】A【解析】运行该程序,注意到循环终止的条件,有n =10,i =1;n =5,i =2;n =16,i =3;n =8,i =4;n =4,i =5;n =2,i =6;n =1,i =7,到此循环终止,故选 A. 11.【答案】C 【解析】试题分析:由题意知()1,0到直线0bx ay -=的距离为22=,得a b =,则为等轴双曲.故本题答案选C. 1 考点:双曲线的标准方程与几何性质.【方法点睛】本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造,,a b c 的关系,处理方法与椭圆相同,但需要注意双曲线中,,a b c 与椭圆中,,a b c 的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出,a c 的值,可得;(2)建立,,a b c 的齐次关系式,将用,a c 表示,令两边同除以或2a 化为的关系式,解方程或者不等式求值或取值范围.12.【答案】D 【解析】试题分析:程序是分段函数⎩⎨⎧=x y x lg 2 00>≤x x ,当0≤x 时,212=x,解得1-=x ,当0>x 时,21lg =x ,解得10=x ,所以输入的是1-或10,故选D.考点:1.分段函数;2.程序框图.11111]二、填空题13.【答案】 12 .【解析】解:因为x >3,所以f (x )>0由题意知:=﹣令t=∈(0,),h (t )==t ﹣3t 2因为 h (t )=t ﹣3t 2的对称轴x=,开口朝上知函数h (t )在(0,)上单调递增,(,)单调递减;故h (t )∈(0,]由h (t )=⇒f (x )=≥12故答案为:1214.【答案】2300 【解析】111]试题分析:根据题意设租赁甲设备,乙设备,则⎪⎪⎩⎪⎪⎨⎧≥+≥+≥≥14020y 10x 506y 5x 0y 0x ,求目标函数300y 200x Z +=的最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值2300.1111]考点:简单线性规划.【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产y 天,该公司所需租赁费为Z 元,则y x Z 300200+=,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值. 15.【答案】),0(+∞ 【解析】考点:利用导数研究函数的单调性.【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不等式进行变形,可得()()01>-'+x f x f ,结合要求的不等式可知在不等式两边同时乘以xe ,即()()0>-'+x x x e x f e x f e ,因此构造函数()()x x e x f e x g -=,求导利用函数的单调性解不等式.另外本题也可以构造满足前提的特殊函数,比如令()4=x f 也可以求解.1 16.【答案】20【解析】【知识点】二项式定理与性质【试题解析】通项公式为:令12-3r=3,r=3.所以系数为:故答案为:17.【解析】18.【答案】﹣280解:∵(﹣2)7的展开式的通项为=.由,得r=3.∴x2的系数是.故答案为:﹣280.三、解答题19.【答案】【解析】解:(1)由题意得e==,a2=2b,a2﹣b2=c2,解得a=,b=c=1故椭圆的方程为x2+=1;(2)设A(x1,y1),B(x2,y2),线段AB 的中点为M (x 0,y 0). 联立直线y=x+m 与椭圆的方程得,即3x 2+2mx+m 2﹣2=0,△=(2m )2﹣4×3×(m 2﹣2)>0,即m 2<3,x 1+x 2=﹣,所以x 0==﹣,y 0=x 0+m=,即M (﹣,).又因为M 点在圆x 2+y 2=5上,可得(﹣)2+()2=5,解得m=±3与m 2<3矛盾. 故实数m 不存在.【点评】本题考查椭圆的方程的求法,注意运用离心率公式,考查直线和椭圆方程联立,运用韦达定理和中点坐标公式,考查存在性问题的解法,属于中档题.20.【答案】【解析】解:(1)∵y=+,∴,解得x ≥﹣2且x ≠﹣2且x ≠3,∴函数y 的定义域是(﹣2,3)∪(3,+∞);(2)∵y=,∴, 解得x ≤4且x ≠1且x ≠3,∴函数y 的定义域是(﹣∞,1)∪(1,3)∪(3,4].21.【答案】(1)极小值为,单调递增区间为()1+∞,,单调递减区间为()01,;(2)()1a e e ⎛⎫∈-∞-+∞ ⎪⎝⎭,,.【解析】试题分析:(1)由1a =⇒()22111'x f x x x x -=-+=.令()'0f x =⇒1x =.再利用导数工具可得:极小值和单调区间;(2)求导并令()'0f x =⇒1x a =,再将命题转化为()f x 在区间(0]e ,上的最小值小于.当10x a =<,即0a <时,()'0f x <恒成立,即()f x 在区间(0]e ,上单调递减,再利用导数工具对的取值进行分类讨论.111]①若1e a≤,则()'0f x ≤对(0]x e ∈,成立,所以()f x 在区间(0]e ,上单调递减, 则()f x 在区间(0]e ,上的最小值为()11ln 0f e a e a e e=+=+>,显然,()f x 在区间(0]e ,的最小值小于0不成立. ②若10e <<,即1a >时,则有所以()f x 在区间(0]e ,上的最小值为ln f a a a a ⎛⎫=+ ⎪⎝⎭,由()11ln 1ln 0f a a a a a a ⎛⎫=+=-< ⎪⎝⎭,得1ln 0a -<,解得a e >,即()a e ∈+∞,,综上,由①②可知,()1a e e ⎛⎫∈-∞-+∞ ⎪⎝⎭,,符合题意.……………………………………12分考点:1、函数的极值;2、函数的单调性;3、函数与不等式.【方法点晴】本题考查导数与函数单调性的关系、不等式的证明与恒成立问题,以及逻辑思维能力、等价转化能力、运算求解能力、分类讨论的思想与转化思想. 利用导数处理不等式问题.在解答题中主要体现为不等式的证明与不等式的恒成立问题.常规的解决方法是首先等价转化不等式,然后构造新函数,利用导数研究新函数的单调性和最值来解决,当然要注意分类讨论思想的应用. 22.【答案】(1)切线恒过定点1,22e ⎛⎫⎪⎝⎭.(2) a 的范围是11,22⎡⎤-⎢⎥⎣⎦ (3) 在区间()1,+∞上,满足()()()12f x g x f x <<恒成立函数()g x 有无穷多个【解析】试题分析:(1)根据导数的几何意义求得切线方程为11222e y ae x e ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭,故过定点1,22e ⎛⎫⎪⎝⎭;试题解析:(1)因为()12f x ax x '=+,所以()f x 在点()(),e f e 处的切线的斜率为12k ae e=+, 所以()f x 在点()(),e f e 处的切线方程为()2121y ae x e ae e ⎛⎫=+-++ ⎪⎝⎭,整理得11222e y ae x e ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭,所以切线恒过定点1,22e ⎛⎫⎪⎝⎭.(2)令()()()2p x f x f x =-=212ln 02a x ax x ⎛⎫--+< ⎪⎝⎭,对()1,x ∈+∞恒成立,因为()()1212p x a x a x=--+'()22121a x ax x --+=()()()1211*x a x x ⎡⎤---⎣⎦=令()0p x '=,得极值点11x =,2121x a =-,①当112a <<时,有211x x >=,即112a <<时,在()2,x +∞上有()0p x '>,此时()p x 在区间()2,x +∞上是增函数,并且在该区间上有()()()2,p x p x ∈+∞,不合题意;②当1a ≥时,有211x x <=,同理可知,()p x 在区间()1,+∞上,有()()()1,p x p ∈+∞,也不合题意;③当12a ≤时,有210a -≤,此时在区间()1,+∞上恒有()0p x '<, 从而()p x 在区间()1,+∞上是减函数;要使()0p x <在此区间上恒成立,只须满足()111022p a a =--≤⇒≥-, 所以1122a -≤≤. 综上可知a 的范围是11,22⎡⎤-⎢⎥⎣⎦. (利用参数分离得正确答案扣2分)(3)当23a =时,()21145ln 639f x x x x =++,()221423f x x x =+ 记()()22115ln 39y f x f x x x =-=-,()1,x ∈+∞.因为22565399x x y x x='-=-,令0y '=,得x =所以()()21y f x f x =-在⎛ ⎝为减函数,在⎫+∞⎪⎪⎭上为增函数,所以当x =min 59180y = 设()()()15901180R x f x λλ=+<<,则()()()12f x R x f x <<,所以在区间()1,+∞上,满足()()()12f x g x f x <<恒成立函数()g x 有无穷多个23.【答案】(1)0.3a =;(2)3.6万;(3)2.9. 【解析】(3)由图可得月均用水量不低于2.5吨的频率为:()0.50.080.160.30.40.520.7385%⨯++++=<;月均用水量低于3吨的频率为:()0.50.080.160.30.40.520.30.8885%⨯+++++=>;则0.850.732.50.5 2.90.30.5x -=+⨯=⨯吨.1考点:频率分布直方图.24.【答案】【解析】解:∵A={x|0<x ﹣m <3},∴A={x|m <x <m+3}, (1)当A ∩B=∅时;如图:则,解得m=0,(2)当A ∪B=B 时,则A ⊆B , 由上图可得,m ≥3或m+3≤0, 解得m ≥3或m ≤﹣3.。
南部县外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知全集,集合,集合,则集合为R U ={|||1,}A x x x R =≤∈{|21,}xB x x R =≤∈U AC B ( ) A.B.C.D.]1,1[-]1,0[]1,0()0,1[-【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.2. 双曲线的焦点与椭圆的焦点重合,则m 的值等于()A .12B .20C .D .3. 圆心在直线2x +y =0上,且经过点(-1,-1)与(2,2)的圆,与x 轴交于M ,N 两点,则|MN |=()A .4B .425C .2D .2254. 已知平面向量与的夹角为,且,,则()3π32|2|=+1||==||A . B .C .D .35. 下列正方体或四面体中,、、、分别是所在棱的中点,这四个点不共面的一个图形是P Q R S ()6. 如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是( )A .i ≥7?B .i >15?C .i ≥15?D .i >31?7. 直线: (为参数)与圆:(为参数)的位置关系是( )A .相离B .相切C .相交且过圆心D .相交但不过圆心8. 某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m ),则该工程需挖掘的总土方数为()A .560m 3B .540m 3C .520m 3D .500m 39. 已知函数f (2x+1)=3x+2,且f (a )=2,则a 的值等于( )A .8B .1C .5D .﹣110.已知a ,b 都是实数,那么“a 2>b 2”是“a >b ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件11.已知为抛物线上两个不同的点,为抛物线的焦点.若线段的中点的纵坐标为,M N 、24y x =F MN 2,则直线的方程为( )||||10MF NF +=MN A . B . 240x y +-=240x y --= C .D .20x y +-=20x y --=12.定义在(0,+∞)上的函数f (x )满足:<0,且f (2)=4,则不等式f (x )﹣>0的解集为( )A .(2,+∞)B .(0,2)C .(0,4)D .(4,+∞)二、填空题13.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=,若函数y=f (f ()210{ 21(0)xxx e x x x +≥++<(x )﹣a )﹣1有三个零点,则a 的取值范围是_____.14.设a 抛掷一枚骰子得到的点数,则方程x 2+ax+a=0有两个不等实数根的概率为 . 15.将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为 . 16.已知函数f (x )=,则关于函数F (x )=f (f (x ))的零点个数,正确的结论是 .(写出你认为正确的所有结论的序号)①k=0时,F (x )恰有一个零点.②k <0时,F (x )恰有2个零点.③k >0时,F (x )恰有3个零点.④k >0时,F (x )恰有4个零点. 17.在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为 .18.如图是正方体的平面展开图,则在这个正方体中①与平行;②与是异面直线;BM ED CN BE ③与成角;④与是异面直线.CN BM 60︒DM BN 以上四个命题中,正确命题的序号是(写出所有你认为正确的命题).三、解答题19.(本小题满分10分)选修4—4:坐标系与参数方程以坐标原点为极点,以轴的非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为方程为x C r =(),直线的参数方程为(为参数).],0[πθ∈l 2t cos 2sin x y t aaì=+ïí=+ïît (I )点在曲线上,且曲线在点处的切线与直线垂直,求点的直角坐标和曲线C D C C D +2=0x y +D 的参数方程;(II )设直线与曲线有两个不同的交点,求直线的斜率的取值范围.l C l 20.某民营企业生产A ,B 两种产品,根据市场调查和预测,A 产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)(1)分别将A ,B 两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入A ,B 两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元.(精确到1万元).21.已知函数f (x )=lg (x 2﹣5x+6)和的定义域分别是集合A 、B ,(1)求集合A,B;(2)求集合A∪B,A∩B.22.已知函数.(Ⅰ)若函数f(x)在区间[1,+∞)内单调递增,求实数a的取值范围;(Ⅱ)求函数f(x)在区间[1,e]上的最小值.23.由四个不同的数字1,2,4,x组成无重复数字的三位数.(1)若x=5,其中能被5整除的共有多少个?(2)若x=9,其中能被3整除的共有多少个?(3)若x=0,其中的偶数共有多少个?(4)若所有这些三位数的各位数字之和是252,求x.24.设f(x)=x2﹣ax+2.当x∈,使得关于x的方程f(x)﹣tf(2a)=0有三个不相等的实数根,求实数t的取值范围.南部县外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】C.【解析】由题意得,,,∴,故选C.[11]A =-,(,0]B =-∞(0,1]U AC B = 2. 【答案】A 【解析】解:椭圆的焦点为(±4,0),由双曲线的焦点与椭圆的重合,可得=4,解得m=12.故选:A .3. 【答案】【解析】选D.设圆的方程为(x -a )2+(y -b )2=r 2(r >0).由题意得,{2a +b =0(-1-a )2+(-1-b )2=r 2(2-a )2+(2-b )2=r 2)解之得a =-1,b =2,r =3,∴圆的方程为(x +1)2+(y -2)2=9,令y =0得,x =-1±,5∴|MN |=|(-1+)-(-1-)|=2,选D.5554. 【答案】C考点:平面向量数量积的运算.5. 【答案】D 【解析】考点:平面的基本公理与推论.6.【答案】C【解析】解:模拟执行程序框图,可得S=2,i=0不满足条件,S=5,i=1不满足条件,S=8,i=3不满足条件,S=11,i=7不满足条件,S=14,i=15由题意,此时退出循环,输出S的值即为14,结合选项可知判断框内应填的条件是:i≥15?故选:C.【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S,i的值是解题的关键,属于基本知识的考查.7.【答案】D【解析】【知识点】直线与圆的位置关系参数和普通方程互化【试题解析】将参数方程化普通方程为:直线:圆:圆心(2,1),半径2.圆心到直线的距离为:,所以直线与圆相交。
高二上学期数学人教A 版(2019)期末模拟测试卷B 卷【满分:150分】一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知圆C :,P 为直线上一点,过点P 作圆C 的两条切线,切点分别为A 和B ,当四边形PACB 的面积最小时,直线AB 的方程为( )A. B. C. D.2.如图,已知点P 在正方体的对角线上,.设,则的值为( )D.3.已知椭圆E ()的左焦点为F ,过焦点F 作圆的一条切线l 交椭圆E 的一个交点为A ,切点为Q ,且(O 为坐标原点),则椭圆E 的离心率为( )4.牛顿在《流数法》一书中,给出了高次代数方程的一种数值解法——牛顿法.设是的根,选取作为的初始近似值,过点做曲线的切线l ,l 与x 轴的交点的横坐标为,称是r 的一次近似值;过点做曲线的切线,则该切线与x 轴的交点的横坐标为,称是r 的二次近似值.则222440x y x y +---=:20l x y ++=5530x y ++=5530x y -+=5530x y +-=5530x y --=ABCD A B C D -''''BD '60PDC ∠=︒D P D B λ''=λ1-3-221y b+=0a b >>222x y b +=2OA OF OQ +=r ()2f x x =+()100x x -=>01x =r ()()00,x f x ()y f x =1x 1x ()()11,x f x ()y f x =2x 2x( )的右顶点为圆心,焦点到渐近线的距离为半径的圆交抛物线6.数列的前n 项和为,,,设,则数列的前51项之和为()A.-149B.-49C.49D.1497.已知函数的定义域为R ,其导函数为,且满足,,则不等式A. B. C. D.8.设曲线的直线l 与C 交于A ,B 两点,线段的垂直平分线分别交直线二、选择题:本题共3小题.每小题6分.共18分.在每小题给出的选项中,有多项符合题目要求全部选对的得6分.部分选对的得部分分,有选错的得0分.9.已知实数x ,y 满足圆C 的方程,则下列说法正确的是( )A.圆心,半径为1B.过点作圆C 的切线,则切线方程为2x =219y =22y px=()0p >{}n a n S 11a =-*(1)()n n na S n n n =+-∈N (1)nn n b a =-{}n b ()f x ()f x '()()e xf x f x -+'=()00f =()()2e 1e xf x -<11,e ⎛⎫- ⎪⎝⎭1e ,e ⎛⎫ ⎪⎝⎭()1,1-()1,e -:C x =)AB x =+2220x y x +-=()1,0-()2,02x =D.的最大值是410.已知等差数列的前n 项和为,,,则下列说法正确的是( )A. B.C.为递减数列 D.11.已知函数,对于任意实数a ,b ,下列结论成立的有( )A.B.函数在定义域上单调递增C.曲线在点处的切线方程是D.若,则三、填空题:本题共3小题,每小题5分,共15分.12.已知等比数列中,,,公比,则__________.13.在正方体中,点P 、Q 分别在、上,且,,则异面直线与所成角的余弦值为___________.14.已知定点,动点P满足方程为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或者演算步骤.15.已知圆心为的圆经过点,直线.(1)求圆M 的方程;(2)写出直线l 恒过定点Q 的坐标,并求直线l 被圆M 所截得的弦长最短时m 的值及最短弦长.16.如图,四棱锥中,底面为正方形,平面,E 为的中点.22x y +{}n a n S 24a =742S =54a =21522n S n n =+n a n ⎧⎫⎨⎬⎩⎭11n n a a +⎧⎨⎩e ()x x f x =-min ()1f x =e ()x x f x =-e ()x x f x =-(0,1)1y =0a b =->()()f a f b >{}n a 47512a a ⋅=-38124a a +=q ∈Z 10a =1111ABCD A B C D -11A B 11C D 112A P PB =112C Q QD =BP DQ ()()4,0,1,0M N MN MP ⋅ ()2,1M --()1,3:0l x my m ++=P ABCD -ABCD PA ⊥ABCD PD(1)证明:平面;(2)若,,求平面与平面夹角的余弦值.17.已知函数(a 为实常数).(1)若,求证:在上是增函数;(2)当时,求函数在上的最大值与最小值及相应的x 值;(3)若存在,使得成立,求实数a 的取值范围.18.已知数列的前项和为,且.(1)求的通项公式;(2)求数列的前项和.19.已知双曲线C 的中心为坐标原点,左焦点为(1)求双曲线C的方程:(2)记双曲线C 的右顶点为A ,过点A 作直线,与C 的左支分别交于M ,N 两点,且,,为垂足.(i )证明:直线恒过定点P ,并求出点P 坐标[1,e]()(2)f x a x ≤+n 24n n S a =-{}n nS n T //PB AEC 2AB AD ==4AP =ADE ACE 2()ln f x a x x =+2a =-()f x (1,)+∞4a =-()f x [1,e]x ∈{}n a n S {}n a n (-MA NA MA NA ⊥AD MN ⊥D MN答案以及解析1.答案:A解析:由,得圆C 的圆心,半径.因.故PC 的方程为,即.联立,,解得.所以直线AB 的方程为,化简,得.2.答案:C解析:以D 为原点,以,,的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.不妨设,则,,,,所以,,,所以,因为,解得,由题可知,所以.故选:C3.答案:A解析:由题意可知:圆的圆心为点O ,半径为b ,,设椭圆E 的右焦点为,连接,因为,可知点Q 为的中点,且点O 为的中点,则()()22222440129x y x y x y +---=⇒-+-=()1,2C 3r =122S AP AC =⨯⋅=l ⊥21y x -=-10x y -+=1020x y x y -+=⎧⎨++=⎩x =y =31,22P ⎛⎫-- ⎪⎝⎭()()311122922x y ⎛⎫⎛⎫---+---= ⎪ ⎪⎝⎭⎝⎭5530x y ++=DA DC DD '1AD =()0,0,0D ()1,1,0B ()0,0,1D '()0,1,0C ()0,0,1DD '=()1,1,1D B =-' ()0,1,0DC = ()()0,0,11,1,1DP DD D P DD D B λλ'''=+=+=+-='(),,1λλλ-60PDC ∠=cos 60=︒=2210λλ+-=1λ=-1=-01λ≤≤1λ=-222x y b +=c b >2F 2AF 2OA OF OQ +=AF 2FF,因为Q为切点,可知,则,解得4.答案:C解析:由题意可得,,由导数的几何意义得过点做曲线的切线的斜率,所以,整理得,所以做曲线的切线的斜率该切线为,则,整理得5.答案:A的右顶点坐标为,焦点为,渐近线方程为,即,焦点到渐近线,所以题中圆的方程为,因为圆和抛物线的图象都关于轴对称,所以A,B两点关于x轴对称,不妨设点A,在第一象限,设,则,上,所以,//OQ AF222AF OQ==2222a AF a b-=-OQ AF⊥2AF AF⊥2222AF AF F+=()()2222242244b a bc a b+-==-23a==cea====()1f x=()21f x x'=+()1,1()y f x=l()113k f='=():131l y x-=-:32l y x=-1x=()2122133f x⎛⎫=+-=⎪⎝⎭21,39⎫⎪⎭()y f x=223k f⎛⎫'==⎪⎝⎭2l2172:933l y x⎛⎫-=-⎪⎝⎭73y x=2x=219y-=()2,0()32y x=±320x y±=)32x y+=3()2229x y-+=()2229x y-+=()220y px p=>x()()1111,0,0A x y x y>>()11,B x y-12y=1y=)2229x y-+=()21289x-+=解得或3,所以或,当,则,解得,当,则,解得故选:A.6.答案:B解析:因为,当时,,即,所以是以-1为首项,1,则,当时,所以,当时也成立,所以,可得数列的前51项之和为.故选:B.7.答案:C解析:由得,即,可设,当时,因得,所以,,因为,故为偶函数,,当时,因,,故,所以在区间上单调递增,因为,所以当时,又因为11x =(1,A (3,A (1,A 82p =4p =(3,A 86p =p =*(1)()n n na S n n n =+-∈N 2n ≥1()(1)n n n n na n S S S n n -=-=+-1(1)(1)n n n S nS n n ---=-11n S n --=-11a ==-n S n ⎧⎫⎨⎬⎩⎭112n n =-+-=-(2)n S n n =-2n ≥()11(3)n S n n -=--()()121(3)23n n n a S S n n n n n -==----=--1n =23n a n =-()()()1123nnn n b a n =-=--{}n b (11)(35)...(9597)99++-+++-+-2259949=⨯-=-()()e x f x f x -+'=()()e e 1x x x f x f +'=()e 1x f x '⎡⎤=⎣⎦()e xf x x m =+0x =()00f =0m =()e xf x x -=()()2e 1e x f x -<-()2e e 1e x x x --<-e e e x x x x --<()e e x xg x x x -=-()()e e x x g x x x g x --=-+=()g x ()e e e e x x x x g x x x --'=++-0x ≥e e 0x x x x -+≥e e 0x x --≥()e e e x x xg x x x -'=++e 0x --≥()g x [)0,+∞()11e e g -=-0x ≥()e x g x x =-e e xx -<-)0,1为偶函数,故.故选:C8.答案:D解析:因为曲线,,所以C是双曲线的右支,其焦点为,渐近线为.由题意,设(故A选项可排除),联立得,,所以,,解得.故选:D.9.答案:BD解析:对选项A:,即,圆心为,半径为,A错误;对选项B:在圆上,则和圆心均在x轴上,故切线与x轴垂直,为,B正确;对选项C:表示圆上的点到点的斜率,如图所示::1C x=≥()2211x y x-=≥221x y-=)F y x=±(:l y k x=(,y k xx⎧=-⎪⎨⎪=⎩()22221210k x x k--++=()2Δ410k=+>A Bx x+=A Bx x=Bx-==()g x()eg x<)1,1-=2A BNx x+==NMN x=-==(2k=±+2220x y x+-=22(1)1x y-+=(1,0)1r=(2,0)(2,0)2x=1yx+(,)x y(1,0)A-当与圆相切时,斜率最大,此时,,故,故此时斜率最大为C 错误;对选项D :表示圆上的点到原点距离的平方,故最大值为,D 正确.故选:BD.10.答案:BC解析:等差数列中,,解得,而,因此公差,通项,对于A ,,A 错误;对于B ,,B 正确;为递减数列,C 正确;的前5项和为11.答案:ACD解析:对A ,对求导,,令,即,解得.当时,,函数单调递减;当时,,函数单调递增.所以函数在处取得最小值,即,所以,A 选项正确.AB ||2AC =||1BC =AB BC ⊥tan 30︒=22x y +(,)x y 2(1)4r +={}n a ()177477422a a S a +===46a =24a =42142a a d -==-2(2)2n a a n d n =+-=+57a =2(32)15222n n n S n n ++==+1=n a n ⎧⎫⎨⎬⎩⎭11(2)(3)2n n n ==-+++11n n a a +⎫⎬⎭1111134457-+-++ 111838-=-=e ()x x f x =-)1(e x f x =-'()0f x '=e x -1=00x =0x <()0f x '<()f x 0x >()0f x '>()f x ()f x 0x =(0)1f =()min 1f x =对B ,由上述分析可知,上函数单调递减,上函数单调递增,B 选项错误.对C ,由于切线斜率为0,在点,切线方程为,C 选项正确.对D ,因为,则.则.令,则,则在单调递增.故.即,即.D 选项正确.故选:ACD 12.答案:512解析:,,,,则得,或者,,公比q 为整数,,,,解得,即,故答案为:512.解析:设正方体中棱长为3,以D 为原点,为x 轴,为y 轴,为z 轴,建立如图所示空间直角坐标系,则,,,,,,设异面直线(,0)-∞()f x (0,)+∞()f x ()()000e 010e 10.f f '=-==-=,()0,11y =0,0a b b a =->=-<()e ,()()e a a f a a f b f a a -=-=-=+()()f a f b -=e (e )e e 2a a a a a a a ----+=--()e e 2x x g x x -=--()e e 220x x g x -=+-'≥-=()g x (0,)+∞()(0)0g x g >=()()0f a f b ->()()f a f b >47512a a ⋅=- 38124a a +=3847512a a a a ∴⋅=⋅=-38124a a +=34a =-8128a =3128a =44a =- 34a ∴=-8128a =54128q ∴-=2q =-22108128(2)1284512a a q ==⨯-=⨯=1111ABCD A B C D -DA DC 1DD ()0,0,0D ()0,1,3Q ()3,3,0B ()3,2,3P ()0,1,3BP =- ()0,1,3DQ =与所成角为,则与所成角的余解析:设动点,则.又.化简得,动点P 的轨迹E的方.15.答案:(1)(2)最小值为.解析:(1)圆M的半径,圆M 的方程为.(2)直线l 的方程为,,令解得:,定点Q 的坐标为.,点Q 在圆M 的内部,故直线l 恒与圆M 相交.又圆心M 到直线l 的距离l 被圆M 截得的弦长为当d 取得最大值2时,弦长有最小值,最小值为.16.答案:(1)证明见解析;BP DQ θcos BP DQ BP DQθ⋅===⋅ BP DQ 213y =(),P x y ()()()4,,3,0,1,MP x y MN PN x y =-=-=-- MN MP ⋅ ()34x ∴--=2234x y +=213y +=∴23y +=213y =()()222125x y +++=0= 5r ==∴()()222125x y +++= 0x my m ++=(1)0x m y ∴++=010x y =⎧⎨+=⎩01x y =⎧⎨=-⎩∴()0,1-()()220211425++-+=< ∴2d ≤∴=0=解析:(1)证明:如图所示,连接,设,连接,因为四边形为正方形,则O 为的中点,因为E 是的中点,所以.又因为平面,平面,所以平面.(2)因为平面,四边形为正方形,以A 为坐标原点,分别以、、所在直线为x 、y 、z 轴建立如图所示空间直角坐标系,因为,,则、、、、、,设平面的法向量为,,,则,取,可得,又为平面的一个法向量,则所以,平面与平面BD AC BD O = OE ABCD BD PD //EO PB EO ⊂AEC PB ⊄AEC //PB AEC PA ⊥ABCD ABCD AB AD AP 2AB AD ==4AP =()0,0,0A ()2,0,0B ()0,0,4P ()0,2,0D ()0,1,2E ()2,2,0C AEC (),,m x y z = ()0,1,2AE = ()2,2,0AC = 20220m AE y z m AC x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩ 1z =()2,2,1m =- ()1,0,0n =ADE 2cos ,31m n m n m n ⋅===⋅⨯ ADE17.答案:(1)答案见解析(2)当有最小值为,当时,函数有最大值为(3)解析:(1)由题可知函数的定义域,因为,所以,所以令解得,所以在上是增函数(2)因为,所以,所以令解得解得所以在上单调递减,在上单调递增,所以在上单调递减,在上单调递增,所以当时,函数有最小值为,因为,所以当时,函数有最大值为.(3)由得,即,因为,所以,所以,且当时,所以在恒成立,所以即存在时,令()0f x'>()0f x'<()f x)+∞⎡⎣x=22ln2f=-2(e)e41f=->()f x()(2)f x a x≤+x=()f x22ln2f=-ex=()f x2(e)e4f=-[)1,-+∞(0,)+∞2a=-2()2lnf x x x=-+2()2f x xx'=-+=()0f x'>1x>()f x(1,)+∞4a=-2()4lnf x x x=-+4()2f x xx'=-+=x>0x<()f x⎤⎦()f x(1)1f=ex=2(e)e4f=-2(ln2)a x x a x≤++()2ln2a x x x x-≤-[1,e]x∈1,ln ln e1x x≥≤=lne lnx x≥≥1x=ln0x= lnx x>[1,e]x∈a≥[1,e]x∈a≥()g x=()g x'=令,令,解得,令,解得,所以在单调递减,单调递增,所以,所以时,恒成立,所以,所以实数a 的取值范围是.18.答案:(1)(2)答案见解析解析:(1),当时,,两式相减,得,整理得,即时,,又当时,,解得,数列是以4为首项,2为公比的等比数列,.(2)由(1)知,,令,易知,,设数列的前n 项和为,则,,n K 456321222322n n K n +=⨯+⨯+⨯++⋅ ②()22ln h x x x =+-22()1x h x x x-'=-=2()0x h x x -'=>2e x <≤2()0x h x x-'=<12x ≤<()h x [)1,2(]2,e ()(2)2(2ln 2)0h x h ≥=->[1,e]x ∈()2(1)(22ln )()0ln x x x g x x x -+-'=≥-min ()(1)1g x g ==-[)1,-+∞12n +24n n S a =- ∴2n ≥1124n n S a --=-()112424n n n n S S a a ---=---12n n a a -=2n ≥12n n a a -=1n =11124S a a ==-14a =∴{}n a 11422n n n a -+∴=⨯=1222424n n n S ++=⨯-=-224n n nS n n +∴=⋅-22,4n n n b n c n +=⋅=-()()1214212n n n c c c n n ++++=-⨯=-+ {}n b 34521222322n n K n +=⨯+⨯+⨯++⋅ ①由,得,即.(2)见解析解析:(1)由题意,双曲线C 的中心为坐标原点,左焦点为可得,解得,.(2)证明:(i )由(1)知,当直线斜率存在时,设直线方程为,联立方程组,整理得,,即,3456231222222n n n K n ++-=⨯+++++-⋅ ()()413332122212812n n n n K n n -++-∴=+-⋅=-⋅+--①②()4133332122222812n n n n n K n n -+++--=+-⋅=-⋅--()()()32112218n n n T K n n n n n +∴=-+=-⋅-++2116y =(-222c c e a b c a ⎧=⎪⎪==⎨⎪=-⎪⎩2,4a b ==2116y -=()2,0A MN MN y kx m =+221416y kx m x y =+⎧⎪⎨-=⎪⎩()22242160k x kmx m ----=()()2222444160k m k m ∆=+-+>22416k m -<设,,由韦达定理可得.因为,可得,即,即,整理得,即,即,可得,解得将代入直线,此时直线过定点,不合题意;将,此时直线过定点,当直线的斜率不存在时,不妨设直线方程为,因为,所以为等腰直角三角形,此时M 点坐标为,所以(舍)或此时过定点,综上可知,直线恒过定点(ii )因为,此时存在以为斜边的直角三角形,()11,M x y ()22,N x y 122212224,164km x x k m x x k ⎧+=⎪⎪-⎨+⎪=⎪-⎩MA ⊥2212y x =--()()1212220y y x x +--=()121212240y y x x x x +-++=()()()121212240kx m kx m x x x x +++-++=()()()2212121240k x x mk x x m ++-+++=()()22222162124044m km k mk m k k +++-++=--2234200m km k --=()()23100m k m k +-=2m km =-=2m k =-()2y kx m y k x =+⇒=-MN ()2,0A m =103y kx m y k x ⎛⎫=+⇒=+ ⎪⎝⎭MN 10,03P ⎛⎫-⎪⎝⎭MN x t =MA NA ⊥AMN (,t 22342002t t t t =-⇒+-=⇒=t =MN 10,03P ⎛⎫- ⎪⎝⎭MN 10,0,3P ⎛⎫- ⎪⎝⎭AD MN ⊥AP1 2AP=2,03⎛⎫-⎪⎝⎭所以存在定点Q为.AP。
代县外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 平面α与平面β平行的条件可以是( )A .α内有无穷多条直线与β平行B .直线a ∥α,a ∥βC .直线a ⊂α,直线b ⊂β,且a ∥β,b ∥αD .α内的任何直线都与β平行2. 三个数a=0.52,b=log 20.5,c=20.5之间的大小关系是( ) A .b <a <c B .a <c <b C .a <b <c D .b <c <a3. 已知某运动物体的位移随时间变化的函数关系为,设物体第n 秒内的位移为a n ,则数列{a n }是( ) A .公差为a 的等差数列 B .公差为﹣a 的等差数列C .公比为a 的等比数列D .公比为的等比数列4. 图1是由哪个平面图形旋转得到的( )A .B .C .D . 5. 已知全集{}1,2,3,4,5,6,7U =,{}2,4,6A =,{}1,3,5,7B =,则()U AB =ð( )A .{}2,4,6B .{}1,3,5C .{}2,4,5D .{}2,56. 已知x ,y ∈R ,且,则存在θ∈R ,使得xcos θ+ysin θ+1=0成立的P (x ,y )构成的区域面积为( )A .4﹣B .4﹣C .D . +7. 在二项式的展开式中,含x 4的项的系数是( )A .﹣10B .10C .﹣5D .58. 函数f (x )=1﹣xlnx 的零点所在区间是( )A .(0,)B .(,1)C .(1,2)D .(2,3)9. 已知F 1、F 2是椭圆的两个焦点,满足=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1)B .(0,]C .(0,)D .[,1)10.若抛物线y 2=2px 的焦点与双曲线﹣=1的右焦点重合,则p 的值为( )A .﹣2B .2C .﹣4D .411.在△ABC 中,a=1,b=4,C=60°,则边长c=( )A .13B .C .D .2112.已知全集为R ,集合{}|23A x x x =<->或,{}2,0,2,4B =-,则()R A B =ð( )A .{}2,0,2-B .{}2,2,4-C .{}2,0,3-D .{}0,2,4二、填空题13.如图,E ,F 分别为正方形ABCD 的边BC ,CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是 .14.已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为_________.15.设α为锐角, =(cos α,sin α),=(1,﹣1)且•=,则sin (α+)= .16.如果定义在R 上的函数f (x ),对任意x 1≠x 2都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2(fx 1),则称函数为“H 函数”,给出下列函数①f (x )=3x+1 ②f (x )=()x+1③f (x )=x 2+1 ④f (x )=其中是“H 函数”的有 (填序号)17.设等差数列{a n }的前n 项和为S n ,若﹣1<a 3<1,0<a 6<3,则S 9的取值范围是 . 18.将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为 .三、解答题19.(本小题满分12分)已知在ABC ∆中,角C B A ,,所对的边分别为,,,c b a 且 )3(s i n ))(sin (sin c b C a b B A -=-+. (Ⅰ)求角A 的大小;(Ⅱ) 若2a =,ABC ∆c b ,.20.(本题满分15分)已知抛物线C 的方程为22(0)y px p =>,点(1,2)R 在抛物线C 上.(1)求抛物线C 的方程;(2)过点(1,1)Q 作直线交抛物线C 于不同于R 的两点A ,B ,若直线AR ,BR 分别交直线:22l y x =+于M ,N 两点,求MN 最小时直线AB 的方程.【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.21.已知函数f (x )=|2x+1|+|2x ﹣3|. (Ⅰ)求不等式f (x )≤6的解集;(Ⅱ)若关于x 的不等式f (x )﹣log 2(a 2﹣3a )>2恒成立,求实数a 的取值范围.22.【南师附中2017届高三模拟二】已知函数()()323131,02f x x a x ax a =+--+>. (1)试讨论()()0f x x ≥的单调性;(2)证明:对于正数a ,存在正数p ,使得当[]0,x p ∈时,有()11f x -≤≤; (3)设(1)中的p 的最大值为()g a ,求()g a 得最大值.23.如图,平面ABB 1A 1为圆柱OO 1的轴截面,点C 为底面圆周上异于A ,B 的任意一点. (Ⅰ)求证:BC ⊥平面A 1AC ;(Ⅱ)若D 为AC 的中点,求证:A 1D ∥平面O 1BC .24.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinA﹣sinC(cosB+sinB)=0.(1)求角C的大小;(2)若c=2,且△ABC的面积为,求a,b的值.代县外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】D【解析】解:当α内有无穷多条直线与β平行时,a与β可能平行,也可能相交,故不选A.当直线a∥α,a∥β时,a与β可能平行,也可能相交,故不选B.当直线a⊂α,直线b⊂β,且a∥β时,直线a 和直线b可能平行,也可能是异面直线,故不选C.当α内的任何直线都与β平行时,由两个平面平行的定义可得,这两个平面平行,故选D.【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况.2.【答案】A【解析】解:∵a=0.52=0.25,b=log20.5<log21=0,c=20.5>20=1,∴b<a<c.故选:A.【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用.3.【答案】A【解析】解:∵,∴a n=S(n)﹣s(n﹣1)==∴a n﹣a n﹣1==a∴数列{a n}是以a为公差的等差数列故选A【点评】本题主要考察了数列的递推公式求解数列的通项公式,等差数列的定义的应用,属于数列知识的简单应用4.【答案】A【解析】试题分析:由题意得,根据旋转体的概念,可知该几何体是由A选项的平面图形旋转一周得到的几何体故选A.考点:旋转体的概念.5.【答案】A考点:集合交集,并集和补集.【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.6.【答案】A【解析】解:作出不等式组对应的平面区域如图:对应的区域为三角形OAB,若存在θ∈R,使得xcosθ+ysinθ+1=0成立,则(cosθ+sinθ)=﹣1,令sinα=,则cosθ=,则方程等价为sin(α+θ)=﹣1,即sin(α+θ)=﹣,∵存在θ∈R,使得xcosθ+ysinθ+1=0成立,∴|﹣|≤1,即x2+y2≥1,则对应的区域为单位圆的外部,由,解得,即B(2,2),A(4,0),则三角形OAB的面积S=×=4,直线y=x的倾斜角为,则∠AOB=,即扇形的面积为,则P(x,y)构成的区域面积为S=4﹣,故选:A【点评】本题主要考查线性规划的应用,根据条件作出对应的图象,求出对应的面积是解决本题的关键.综合性较强.7.【答案】B【解析】解:对于,对于10﹣3r=4,∴r=2,则x4的项的系数是C52(﹣1)2=10故选项为B【点评】二项展开式的通项是解决二项展开式的特定项问题的工具.8.【答案】C【解析】解:∵f(1)=1>0,f(2)=1﹣2ln2=ln<0,∴函数f(x)=1﹣xlnx的零点所在区间是(1,2).故选:C.【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反.9.【答案】C【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,∵=0,∴M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴该圆内含于椭圆,即c<b,c2<b2=a2﹣c2.∴e2=<,∴0<e<.故选:C.【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.10.【答案】D【解析】解:双曲线﹣=1的右焦点为(2,0),即抛物线y2=2px的焦点为(2,0),∴=2,∴p=4.故选D.【点评】本题考查双曲线、抛物线的性质,考查学生的计算能力,属于基础题.11.【答案】B【解析】解:∵a=1,b=4,C=60°,∴由余弦定理可得:c===.故选:B.12.【答案】A【解析】考点:1、集合的表示方法;2、集合的补集及交集.二、填空题13.【答案】.【解析】解:由题意图形折叠为三棱锥,底面为△EFC,高为AC,所以三棱柱的体积:××1×1×2=,故答案为:.【点评】本题是基础题,考查几何体的体积的求法,注意折叠问题的处理方法,考查计算能力.14.【答案】20x y --=【解析】解析: 设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,而1222y y +=,∴12121y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=.15.【答案】:.【解析】解:∵•=cos α﹣sin α=,∴1﹣sin2α=,得sin2α=, ∵α为锐角,cos α﹣sin α=⇒α∈(0,),从而cos2α取正值, ∴cos2α==,∵α为锐角,sin (α+)>0,∴sin (α+)====.故答案为:.16.【答案】 ①④【解析】解:∵对于任意给定的不等实数x 1,x 2,不等式x 1f (x 1)+x 2f (x 2)≥x 1f (x 2)+x 2f (x 1)恒成立, ∴不等式等价为(x 1﹣x 2)[f (x 1)﹣f (x 2)]≥0恒成立, 即函数f (x )是定义在R 上的不减函数(即无递减区间); ①f (x )在R 递增,符合题意; ②f (x )在R 递减,不合题意;③f (x )在(﹣∞,0)递减,在(0,+∞)递增,不合题意;④f (x )在R 递增,符合题意;故答案为:①④.17.【答案】 (﹣3,21) .【解析】解:∵数列{a n }是等差数列,∴S 9=9a 1+36d=x (a 1+2d )+y (a 1+5d )=(x+y )a 1+(2x+5y )d , 由待定系数法可得,解得x=3,y=6.∵﹣3<3a 3<3,0<6a 6<18,∴两式相加即得﹣3<S 9<21.∴S 9的取值范围是(﹣3,21).故答案为:(﹣3,21).【点评】本题考查了等差数列的通项公式和前n 项和公式及其“待定系数法”等基础知识与基本技能方法,属于中档题.18.【答案】 4+ .【解析】解:作出正四棱柱的对角面如图,∵底面边长为6,∴BC=, 球O 的半径为3,球O 1 的半径为1,则,在Rt △OMO 1中,OO 1=4,,∴=,∴正四棱柱容器的高的最小值为4+.故答案为:4+.【点评】本题考查球的体积和表面积,考查空间想象能力和思维能力,是中档题.三、解答题19.【答案】解:(Ⅰ)由正弦定理及已知条件有2223c bc a b -=-, 即bc a c b 3222=-+. 3分由余弦定理得:232cos 222=-+=bc a c b A ,又),0(π∈A ,故6π=A . 6分(Ⅱ) ABC ∆3sin 21=∴A bc ,34=∴bc ①, 8分 又由(Ⅰ)2223c bc a b -=-及,2=a 得1622=+c b ,② 10分由 ①②解得32,2==c b 或2,32==c b . 12分20.【答案】(1)24y x =;(2)20x y +-=.【解析】(1)∵点(1,2)R 在抛物线C 上,22212p p =⨯⇒=,…………2分即抛物线C 的方程为24y x =;…………5分21.【答案】【解析】解:(Ⅰ)原不等式等价于或或,解得:<x≤2或﹣≤x≤或﹣1≤x<﹣,∴不等式f(x)≤6的解集为{x|﹣1≤x≤2}.(Ⅱ)不等式f(x)﹣>2恒成立⇔+2<f(x)=|2x+1|+|2x﹣3|恒成立⇔+2<f(x)min恒成立,∵|2x+1|+|2x﹣3|≥|(2x+1)﹣(2x﹣3)|=4,∴f(x)的最小值为4,∴+2<4,即,解得:﹣1<a <0或3<a <4.∴实数a 的取值范围为(﹣1,0)∪(3,4).22.【答案】(1)证明过程如解析;(2)对于正数a ,存在正数p ,使得当[]0,x p ∈时,有()11f x -≤≤;(3)()g a 【解析】【试题分析】(1)先对函数()()323131,02f x x a x ax a =+--+>进行求导,再对导函数的值的 符号进行分析,进而做出判断;(2)先求出函数值()01,f =()3213122f a a a =--+=()()211212a a -+-,进而分()1f a ≥-和()1f a <-两种情形进行 分析讨论,推断出存在()0,p a ∈使得()10f p +=,从而证得当[]0,x p ∈时,有()11f x -≤≤成立;(3) 借助(2)的结论()f x :在[)0,+∞上有最小值为()f a ,然后分011a a ≤,两种情形探求()g a 的解析表达式和最大值。
第 1 页,共 16 页新干县外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 如图,已知正方体ABCD﹣A1B1C1D1的棱长为4,点E,F分别是线段AB,C1D1上的动点,点P是上底面
A1B1C1D1内一动点,且满足点P到点F的距离等于点P到平面ABB1A1的距离,则当点P运动时,PE的最小
值是( )
A.5B.4C.4D.2
2. 函数f(x)=cos2x﹣cos4x的最大值和最小正周期分别为( )
A.,πB.,C.,πD.,
3. 已知函数f(x)=3cos(2x﹣),则下列结论正确的是( )
A.导函数为
B.函数f(x)的图象关于直线对称
C.函数f(x)在区间(﹣,)上是增函数
D.函数f(x)的图象可由函数y=3co s2x的图象向右平移个单位长度得到
4. 若实数x,y满足不等式组则2x+4y的最小值是( )
A.6B.﹣6C.4D.25. 已知为抛物线上两个不同的点,为抛物线的焦点.若线段的中点的纵坐标为,MN、24yxFMN2,则直线的方程为( )||||10MFNFMN
A. B. 240xy240xy
C. D.20xy20xy6. 函数f(x)=3x+x的零点所在的一个区间是( )第 2 页,共 16 页
A.(﹣3,﹣2)B.(﹣2,﹣1)C.(﹣1,0)D.(0,1)7. 若复数在复平面内对应的点关于轴对称,且,则复数在复平面内对应的点在12,zzy1
2iz1
2
z
z( )A.第一象限 B.第二象限 C.第三象限 D.第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力.
8. 在中,,那么一定是( )ABC22tansintansinABBAAAABCA.锐角三角形 B.直角三角形 C.等腰三角形 D.等腰三角形或直角三角形9. 连续抛掷两次骰子得到的点数分别为m和n,记向量=(m,n),向量=(1,﹣2),则⊥的概率是(
南和县外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.设函数f(x)=则不等式f(x)>f(1)的解集是()A.(﹣3,1)∪(3,+∞)B.(﹣3,1)∪(2,+∞)C.(﹣1,1)∪(3,+∞)D.(﹣∞,﹣3)∪(1,3)2.函数f(x)=有且只有一个零点时,a的取值范围是()A.a≤0 B.0<a<C.<a<1 D.a≤0或a>13.设a,b∈R且a+b=3,b>0,则当+取得最小值时,实数a的值是()A.B. C.或D.34.某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有()A.36种B.38种C.108种D.114种5.如图,圆O与x轴的正半轴的交点为A,点C、B在圆O上,且点C位于第一象限,点B的坐标为(,﹣),∠AOC=α,若|BC|=1,则cos2﹣sin cos﹣的值为()A.B.C.﹣D.﹣6.设全集U=M∪N=﹛1,2,3,4,5﹜,M∩∁U N=﹛2,4﹜,则N=()A.{1,2,3} B.{1,3,5} C.{1,4,5} D.{2,3,4}7.在△ABC中,若A=2B,则a等于()A .2bsinAB .2bcosAC .2bsinBD .2bcosB8. 用一平面去截球所得截面的面积为2π,已知球心到该截面的距离为1,则该球的体积是( )A .π B .2πC .4πD .π9. 如果对定义在R 上的函数)(x f ,对任意n m ≠,均有0)()()()(>--+m nf n mf n nf m mf 成立,则称 函数)(x f 为“H 函数”.给出下列函数: ①()ln25x f x =-;②34)(3++-=x x x f ;③)cos (sin 222)(x x x x f --=;④⎩⎨⎧=≠=0,00|,|ln )(x x x x f .其中函数是“H 函数”的个数为( ) A .1 B .2 C .3 D . 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大. 10.下列函数在其定义域内既是奇函数又是增函数的是( )A .B .C .D .11.在“唱响内江”选拔赛中,甲、乙两位歌手的5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别、,则下列判断正确的是( )A .<,乙比甲成绩稳定B .<,甲比乙成绩稳定C .>,甲比乙成绩稳定D .>,乙比甲成绩稳定12.已知双曲线C :22221x y a b-=(0a >,0b >),以双曲线C 的一个顶点为圆心,为半径的圆被双曲线C 截得劣弧长为23a π,则双曲线C 的离心率为( )A .65B .5C .5D .5二、填空题13.已知正方体ABCD ﹣A 1B 1C 1D 1的一个面A 1B 1C 1D 1在半径为的半球底面上,A 、B 、C 、D 四个顶点都在此半球面上,则正方体ABCD ﹣A 1B 1C 1D 1的体积为 .14.已知sin α+cos α=,且<α<,则sin α﹣cos α的值为 .15.由曲线y=2x 2,直线y=﹣4x ﹣2,直线x=1围成的封闭图形的面积为 .16.已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2)a n +sin2,则该数列的前16项和为 .17.【南通中学2018届高三10月月考】已知函数()32f x x x =-,若曲线()f x 在点()()1,1f 处的切线经过圆()22:2C x y a +-=的圆心,则实数a 的值为__________.18.1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆______________.【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.三、解答题19.已知函数f (x )=cos (ωx+),(ω>0,0<φ<π),其中x ∈R 且图象相邻两对称轴之间的距离为;(1)求f (x )的对称轴方程和单调递增区间;(2)求f (x )的最大值、最小值,并指出f (x )取得最大值、最小值时所对应的x 的集合.20.设函数f (x )=ax 2+bx+c (a ≠0)为奇函数,其图象在点(1,f (1))处的切线与直线x ﹣6y ﹣7=0垂直,导函数f ′(x )的最小值为﹣12. (1)求a ,b ,c 的值;(2)求函数f (x )的单调递增区间,并求函数f (x )在[﹣1,3]上的最大值和最小值.21.如图,菱形ABCD 的边长为2,现将△ACD 沿对角线AC 折起至△ACP 位置,并使平面PAC ⊥平面ABC .(Ⅰ)求证:AC ⊥PB ;(Ⅱ)在菱形ABCD 中,若∠ABC=60°,求直线AB 与平面PBC 所成角的正弦值; (Ⅲ)求四面体PABC 体积的最大值.22.(本小题满分12分)在ABC ∆中,内角C B A ,,的对边为c b a ,,,已知1cos )sin 3(cos 2cos 22=-+C B B A. (I )求角C 的值;(II )若2b =,且ABC ∆的面积取值范围为[2,求c 的取值范围. 【命题意图】本题考查三角恒等变形、余弦定理、三角形面积公式等基础知识,意在考查基本运算能力.23.在直角坐标系xOy中,过点P(2,﹣1)的直线l的倾斜角为45°.以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ,直线l和曲线C的交点为A,B.(1)求曲线C的直角坐标方程;(2)求|PA|•|PB|.24.在某班级举行的“元旦联欢会”有奖答题活动中,主持人准备了两个问题,规定:被抽签抽到的答题同学,答对问题可获得分,答对问题可获得200分,答题结果相互独立互不影响,先回答哪个问题由答题同学自主决定;但只有第一个问题答对才能答第二个问题,否则终止答题.答题终止后,获得的总分决定获奖的等次.若甲是被抽到的答题同学,且假设甲答对问题的概率分别为.(Ⅰ)记甲先回答问题再回答问题得分为随机变量,求的分布列和数学期望;(Ⅱ)你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由.南和县外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】A【解析】解:f(1)=3,当不等式f(x)>f(1)即:f(x)>3如果x<0 则x+6>3可得x>﹣3,可得﹣3<x<0.如果x≥0 有x2﹣4x+6>3可得x>3或0≤x<1综上不等式的解集:(﹣3,1)∪(3,+∞)故选A.2.【答案】D【解析】解:∵f(1)=lg1=0,∴当x≤0时,函数f(x)没有零点,故﹣2x+a>0或﹣2x+a<0在(﹣∞,0]上恒成立,即a>2x,或a<2x在(﹣∞,0]上恒成立,故a>1或a≤0;故选D.【点评】本题考查了分段函数的应用,函数零点与方程的关系应用及恒成立问题,属于基础题.3.【答案】C【解析】解:∵a+b=3,b>0,∴b=3﹣a>0,∴a<3,且a≠0.①当0<a<3时,+==+=f(a),f′(a)=+=,当时,f′(a)>0,此时函数f(a)单调递增;当时,f′(a)<0,此时函数f(a)单调递减.∴当a=时,+取得最小值.②当a<0时,+=﹣()=﹣(+)=f(a),f′(a)=﹣=﹣,当时,f′(a)>0,此时函数f(a)单调递增;当时,f′(a)<0,此时函数f(a)单调递减.∴当a=﹣时,+取得最小值.综上可得:当a=或时,+取得最小值.故选:C.【点评】本题考查了导数研究函数的单调性极值与最值、分类讨论方法,考查了推理能力与计算能力,属于难题.4.【答案】A【解析】解:由题意可得,有2种分配方案:①甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法.根据分步计数原理,共有3×2×3=18种分配方案.②甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共3×2×3=18种分配方案.由分类计数原理,可得不同的分配方案共有18+18=36种,故选A.【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法.5.【答案】A【解析】解:∵|BC|=1,点B的坐标为(,﹣),故|OB|=1,∴△BOC为等边三角形,∴∠BOC=,又∠AOC=α,∴∠AOB=﹣α,∴cos(﹣α)=,﹣sin(﹣α)=﹣,∴sin(﹣α)=.∴cosα=cos[﹣(﹣α)]=cos cos(﹣α)+sin sin(﹣α)=+=,∴sinα=sin[﹣(﹣α)]=sin cos(﹣α)﹣cos sin(﹣α)=﹣=.∴cos2﹣sin cos﹣=(2cos2﹣1)﹣sinα=cosα﹣sinα=﹣=,故选:A.【点评】本题主要考查任意角的三角函数的定义,三角恒等变换,属于中档题.6.【答案】B【解析】解:∵全集U=M∪N=﹛1,2,3,4,5﹜,M∩C u N=﹛2,4﹜,∴集合M,N对应的韦恩图为所以N={1,3,5}故选B7.【答案】D【解析】解:∵A=2B,∴sinA=sin2B,又sin2B=2sinBcosB,∴sinA=2sinBcosB,根据正弦定理==2R得:sinA=,sinB=,代入sinA=2sinBcosB得:a=2bcosB.故选D8.【答案】C【解析】解:用一平面去截球所得截面的面积为2π,所以小圆的半径为:cm;已知球心到该截面的距离为1,所以球的半径为:,所以球的体积为:=4π故选:C.9.【答案】B第10.【答案】B【解析】【知识点】函数的单调性与最值函数的奇偶性【试题解析】若函数是奇函数,则故排除A、D;对C:在(-和(上单调递增,但在定义域上不单调,故C错;故答案为:B11.【答案】A【解析】解:由茎叶图可知=(77+76+88+90+94)=,=(75+86+88+88+93)==86,则<,乙的成绩主要集中在88附近,乙比甲成绩稳定,故选:A【点评】本题主要考查茎叶图的应用,根据平均数和数据的稳定性是解决本题的关键.12.【答案】B考点:双曲线的性质.二、填空题13.【答案】2.【解析】解:如图所示,连接A1C1,B1D1,相交于点O.则点O为球心,OA=.设正方体的边长为x,则A1O=x.在Rt△OAA1中,由勾股定理可得:+x2=,解得x=.∴正方体ABCD﹣AB1C1D1的体积V==2.1故答案为:2.14.【答案】.【解析】解:∵sinα+cosα=,<α<,∴sin2α+2sinαcosα+cos2α=,∴2sinαcosα=﹣1=,且sinα>cosα,∴sinα﹣cosα===.故答案为:.15.【答案】.【解析】解:由方程组解得,x=﹣1,y=2故A(﹣1,2).如图,故所求图形的面积为S=∫﹣11(2x2)dx﹣∫﹣11(﹣4x﹣2)dx=﹣(﹣4)=故答案为:【点评】本题主要考查了定积分在求面积中的应用,以及定积分的计算,属于基础题.16.【答案】546.【解析】解:当n=2k ﹣1(k ∈N *)时,a 2k+1=a 2k ﹣1+1,数列{a 2k ﹣1}为等差数列,a 2k ﹣1=a 1+k ﹣1=k ;当n=2k (k ∈N *)时,a 2k+2=2a 2k ,数列{a 2k }为等比数列,.∴该数列的前16项和S 16=(a 1+a 3+...+a 15)+(a 2+a 4+...+a 16) =(1+2+...+8)+(2+22+ (28)=+=36+29﹣2 =546.故答案为:546.【点评】本题考查了等差数列与等比数列的通项公式及前n 项和公式、“分类讨论方法”,考查了推理能力与计算能力,属于中档题.17.【答案】2-【解析】结合函数的解析式可得:()311211f =-⨯=-,对函数求导可得:()2'32f x x =-,故切线的斜率为()2'13121k f ==⨯-=,则切线方程为:()111y x +=⨯-,即2y x =-,圆C :()222x y a +-=的圆心为()0,a ,则:022a =-=-.18.1 【解析】三、解答题19.【答案】【解析】解:(1)函数f (x )=cos (ωx+)的图象的两对称轴之间的距离为=,∴ω=2,f (x )=cos (2x+).令2x+=k π,求得x=﹣,可得对称轴方程为 x=﹣,k ∈Z .令2k π﹣π≤2x+≤2k π,求得 k π﹣≤x ≤k π﹣,可得函数的增区间为,k ∈Z .(2)当2x+=2k π,即x=k π﹣,k ∈Z 时,f (x )取得最大值为1.当2x+=2k π+π,即x=k π+,k ∈Z 时,f (x )取得最小值为﹣1.∴f (x )取最大值时相应的x 集合为{x|x=k π﹣,k ∈Z};f (x )取最小值时相应的x 集合为{x|x=k π+,k ∈Z}.20.【答案】【解析】解:(1)∵f (x )为奇函数,∴f (﹣x )=﹣f (x ),即﹣ax 3﹣bx+c=﹣ax 3﹣bx ﹣c ,∴c=0. ∵f ′(x )=3ax 2+b 的最小值为﹣12,∴b=﹣12.又直线x ﹣6y ﹣7=0的斜率为,则f ′(1)=3a+b=﹣6,得a=2, ∴a=2,b=﹣12,c=0;(2)由(1)知f (x )=2x 3﹣12x ,∴f ′(x )=6x 2﹣12=6(x+)(x ﹣),) ,∵f (﹣1)=10,f ()=﹣8,f (3)=18,∴f (x )在[﹣1,3]上的最大值是f (3)=18,最小值是f ()=﹣8.21.【答案】【解析】解:(Ⅰ)证明:取AC 中点O ,连接PO ,BO ,由于四边形ABCD 为菱形,∴PA=PC ,BA=BC ,∴PO ⊥AC ,BO ⊥AC ,又PO ∩BO=O ,∴AC ⊥平面POB ,又PB ⊂平面POB ,∴AC ⊥PB .(Ⅱ)∵平面PAC ⊥平面ABC ,平面PAC ∩平面ABC=AC ,PO ⊂平面PAC ,PO⊥AC,∴PO⊥面ABC,∴OB,OC,OP两两垂直,故以O为原点,以方向分别为x,y,z轴正方向建立空间直角坐标系,∵∠ABC=60°,菱形ABCD 的边长为2,∴,,设平面PBC的法向量,直线AB与平面PBC成角为θ,∴,取x=1,则,于是,∴,∴直线AB与平面PBC成角的正弦值为.(Ⅲ)法一:设∠ABC=∠APC=α,α∈(0,π),∴,,又PO⊥平面ABC,∴=(),∴,∴,当且仅当,即时取等号,∴四面体PABC体积的最大值为.法二:设∠ABC=∠APC=α,α∈(0,π),∴,,又PO⊥平面ABC,∴=(),设,则,且0<t<1,∴,∴当时,V'PABC>0,当时,V'PABC<0,∴当时,V PABC取得最大值,∴四面体PABC体积的最大值为.法三:设PO=x,则BO=x,,(0<x<2)又PO⊥平面ABC,∴,∵,当且仅当x2=8﹣2x2,即时取等号,∴四面体PABC体积的最大值为.【点评】本题考查直线与平面垂直的判定定理以及性质定理的应用,直线与平面所成角的求法,几何体的体积的最值的求法,考查转化思想以及空间思维能力的培养.22.【答案】【解析】(I)∵1cos)sin3(cos2cos22=-+CBBA,∴0cossin3coscoscos=-+CBCBA,∴0cossin3coscos)cos(=-++-CBCBCB,∴0cossin3coscossinsincoscos=-++-CBCBCBCB,∴0cossin3sinsin=-CBCB,因为sin0B>,所以3tan=C又∵C是三角形的内角,∴3π=C.23.【答案】【解析】(1)∵ρsin2θ=4cosθ,∴ρ2sin2θ=4ρcosθ,…∵ρcosθ=x,ρsinθ=y,∴曲线C的直角坐标方程为y2=4x …(2)∵直线l过点P(2,﹣1),且倾斜角为45°.∴l的参数方程为(t为参数).…代入y2=4x 得t2﹣6t﹣14=0…设点A,B对应的参数分别t1,t2∴t1t2=﹣14…∴|PA|•|PB|=14.…24.【答案】【解析】【知识点】随机变量的期望与方差随机变量的分布列【试题解析】(Ⅰ)的可能取值为.,,分布列为:(Ⅱ)设先回答问题,再回答问题得分为随机变量,则的可能取值为.,,,分布列为:.应先回答所得分的期望值较高.。
武宁县外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是()A.i≥7?B.i>15?C.i≥15?D.i>31?2.如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为()A.30 B.50 C.75 D.1503.已知d为常数,p:对于任意n∈N*,a n+2﹣a n+1=d;q:数列{a n}是公差为d的等差数列,则¬p是¬q的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.随机变量x1~N(2,1),x2~N(4,1),若P(x1<3)=P(x2≥a),则a=()A.1 B.2 C.3 D.45.方程(x2﹣4)2+(y2﹣4)2=0表示的图形是()A.两个点B.四个点C.两条直线 D.四条直线6. 已知三次函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则=( )A .﹣1B .2C .﹣5D .﹣37. 已知在数轴上0和3之间任取一实数,则使“2log 1x <”的概率为( ) A .14 B .18 C .23 D .1128. 下列说法中正确的是( ) A .三点确定一个平面 B .两条直线确定一个平面C .两两相交的三条直线一定在同一平面内D .过同一点的三条直线不一定在同一平面内9. 如果函数f (x )的图象关于原点对称,在区间上是减函数,且最小值为3,那么f (x )在区间上是( ) A .增函数且最小值为3B .增函数且最大值为3C .减函数且最小值为﹣3D .减函数且最大值为﹣310.命题:“∀x >0,都有x 2﹣x ≥0”的否定是( ) A .∀x ≤0,都有x 2﹣x >0 B .∀x >0,都有x 2﹣x ≤0 C .∃x >0,使得x 2﹣x <0D .∃x ≤0,使得x 2﹣x >011.已知三棱锥S ABC -外接球的表面积为32π,090ABC ∠=,三棱锥S ABC -的三视图如图 所示,则其侧视图的面积的最大值为( )A .4B .C .8D .12.已知某运动物体的位移随时间变化的函数关系为,设物体第n 秒内的位移为a n ,则数列{a n }是( ) A .公差为a 的等差数列 B .公差为﹣a 的等差数列C .公比为a 的等比数列D .公比为的等比数列二、填空题13.球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S ﹣ABC 的体积的最大值为 .14.平面内两定点M (0,一2)和N (0,2),动点P (x ,y )满足,动点P 的轨迹为曲线E ,给出以下命题: ①∃m ,使曲线E 过坐标原点; ②对∀m ,曲线E 与x 轴有三个交点;③曲线E 只关于y 轴对称,但不关于x 轴对称;④若P 、M 、N 三点不共线,则△ PMN 周长的最小值为+4;⑤曲线E 上与M,N 不共线的任意一点G 关于原点对称的另外一点为H ,则四边形GMHN 的面积不大于m 。
高邑县外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.设x,y满足线性约束条件,若z=ax﹣y(a>0)取得最大值的最优解有数多个,则实数a的值为()A.2B.C.D.32.设a=0.5,b=0.8,c=log20.5,则a、b、c的大小关系是()A.c<b<a B.c<a<b C.a<b<c D.b<a<c3.定义新运算⊕:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2,则函数f(x)=(1⊕x)x﹣(2⊕x),x∈[﹣2,2]的最大值等于()A.﹣1B.1C.6D.124.已知x,y满足约束条件,使z=ax+y取得最小值的最优解有无数个,则a的值为()A.﹣3B.3C.﹣1D.15.给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行;③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是()A.1个B.2个C.3个D.4个6.利用计算机在区间(0,1)上产生随机数a,则不等式ln(3a﹣1)<0成立的概率是()A.B.C.D.7.设0<a<1,实数x,y满足,则y关于x的函数的图象形状大致是()A.B.C.D.8.设S n为等比数列{a n}的前n项和,若a1=1,公比q=2,S k+2﹣S k=48,则k等于()A.7B.6C.5D.49. 已知函数(),若数列满足[)[)1(1)sin 2,2,212()(1)sin 22,21,222nn x n x n n f x x n x n n ππ+⎧-+∈+⎪⎪=⎨⎪-++∈++⎪⎩n N ∈{}m a ,数列的前项和为,则( )*()()m a f m m N =∈{}m a m m S 10596S S -=A. B. C. D.909910911912【命题意图】本题考查数列求和等基础知识,意在考查分类讨论的数学思想与运算求解能力.10.设有直线m 、n 和平面α、β,下列四个命题中,正确的是( )A .若m ∥α,n ∥α,则m ∥nB .若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC .若α⊥β,m ⊂α,则m ⊥βD .若α⊥β,m ⊥β,m ⊄α,则m ∥α11.已知为抛物线上两个不同的点,为抛物线的焦点.若线段的中点的纵坐标为,M N 、24y x =F MN 2,则直线的方程为( )||||10MF NF +=MN A . B . 240x y +-=240x y --= C .D .20x y +-=20x y --=12.某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为()A .2sin 2cos 2αα-+ B.sin 3αα-+C. 3sin 1αα+D .2sin cos 1αα-+二、填空题13.已知点A (2,0),点B (0,3),点C 在圆x 2+y 2=1上,当△ABC 的面积最小时,点C 的坐标为 . 14.设幂函数()f x kx α=的图象经过点()4,2,则k α+= ▲ .15.设实数x ,y 满足,向量=(2x ﹣y ,m ),=(﹣1,1).若∥,则实数m 的最大值为 . 16.已知,为实数,代数式的最小值是.x y 2222)3(9)2(1y x x y ++-++-+【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力.17.设某总体是由编号为的20个个体组成,利用下面的随机数表选取个个体,选取方01,02,…,19,206法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为________.【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想.18.已知抛物线:的焦点为,点为抛物线上一点,且,双曲线:1C x y 42=F P 3||=PF 2C 12222=-by a x (,)的渐近线恰好过点,则双曲线的离心率为 .0>a 0>b P 2C 【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.三、解答题19.由四个不同的数字1,2,4,x 组成无重复数字的三位数.(1)若x=5,其中能被5整除的共有多少个?(2)若x=9,其中能被3整除的共有多少个?(3)若x=0,其中的偶数共有多少个?(4)若所有这些三位数的各位数字之和是252,求x .20.如图,在三棱锥 中,分别是的中点,且P ABC -,,,E F G H ,,,AB AC PC BC .,PA PB AC BC ==1818 0792 4544 1716 5809 7983 86196206 7650 0310 5523 6405 0526 6238(1)证明: ;AB PC (2)证明:平面 平面 .PAB A FGH 21.已知梯形ABCD 中,AB ∥CD ,∠B=,DC=2AB=2BC=2,以直线AD 为旋转轴旋转一周的都如图所示的几何体(Ⅰ)求几何体的表面积(Ⅱ)判断在圆A 上是否存在点M ,使二面角M ﹣BC ﹣D 的大小为45°,且∠CAM 为锐角若存在,请求出CM 的弦长,若不存在,请说明理由.22.已知圆C 经过点A (﹣2,0),B (0,2),且圆心在直线y=x 上,且,又直线l :y=kx+1与圆C 相交于P 、Q 两点.(Ⅰ)求圆C 的方程;(Ⅱ)若,求实数k 的值;(Ⅲ)过点(0,1)作直线l 1与l 垂直,且直线l 1与圆C 交于M 、N 两点,求四边形PMQN 面积的最大值.23.等差数列{a n } 中,a 1=1,前n 项和S n 满足条件,(Ⅰ)求数列{a n } 的通项公式和S n ;(Ⅱ)记b n =a n 2n ﹣1,求数列{b n }的前n 项和T n .24.在中已知,,试判断的形状.ABC ∆2a b c =+2sin sin sin A B C =ABC ∆高邑县外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z=ax﹣y(a>0)得y=ax﹣z,∵a>0,∴目标函数的斜率k=a>0.平移直线y=ax﹣z,由图象可知当直线y=ax﹣z和直线2x﹣y+2=0平行时,当直线经过B时,此时目标函数取得最大值时最优解只有一个,不满足条件.当直线y=ax﹣z和直线x﹣3y+1=0平行时,此时目标函数取得最大值时最优解有无数多个,满足条件.此时a=.故选:B.2.【答案】B【解析】解:∵a=0.5,b=0.8,∴0<a<b,∵c=log20.5<0,∴c<a<b,故选B.【点评】本题主要考查了对数值、指数值大小的比较,常常与中间值进行比较,属于基础题.3.【答案】C【解析】解:由题意知当﹣2≤x≤1时,f(x)=x﹣2,当1<x≤2时,f(x)=x3﹣2,又∵f(x)=x﹣2,f(x)=x3﹣2在定义域上都为增函数,∴f(x)的最大值为f(2)=23﹣2=6.故选C.4.【答案】D【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z=ax+y,得y=﹣ax+z,若a=0,此时y=z,此时函数y=z只在B处取得最小值,不满足条件.若a>0,则目标函数的斜率k=﹣a<0.平移直线y=﹣ax+z,由图象可知当直线y=﹣ax+z和直线x+y=1平行时,此时目标函数取得最小值时最优解有无数多个,此时﹣a=﹣1,即a=1.若a<0,则目标函数的斜率k=﹣a>0.平移直线y=﹣ax+z,由图象可知当直线y=﹣ax+z,此时目标函数只在C处取得最小值,不满足条件.综上a=1.故选:D.【点评】本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用z的几何意义是解决本题的关键.注意要对a进行分类讨论.5.【答案】B【解析】考点:空间直线与平面的位置关系.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键.6.【答案】C【解析】解:由ln(3a﹣1)<0得<a<,则用计算机在区间(0,1)上产生随机数a,不等式ln(3a﹣1)<0成立的概率是P=,故选:C.7.【答案】A【解析】解:0<a<1,实数x,y满足,即y=,故函数y为偶函数,它的图象关于y轴对称,在(0,+∞)上单调递增,且函数的图象经过点(0,1),故选:A.【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题.8.【答案】D【解析】解:由题意,S k+2﹣S k=,即3×2k=48,2k=16,∴k=4.故选:D.【点评】本题考查等比数列的通项公式,考查了等比数列的前n项和,是基础题.9.【答案】A.【解析】10.【答案】D【解析】解:A 不对,由面面平行的判定定理知,m 与n 可能相交,也可能是异面直线;B 不对,由面面平行的判定定理知少相交条件;C 不对,由面面垂直的性质定理知,m 必须垂直交线;故选:D .11.【答案】D【解析】解析:本题考查抛物线的焦半径公式的应用与“中点弦”问题的解法.设,那么,,∴线段的中点坐标为1122(,)(,)M x y N x y 、12||||210MF NF x x +=++=128x x +=MN .由,两式相减得,而,∴,∴(4,2)2114y x =2224y x =121212()()4()y y y y x x +-=-1222y y +=12121y y x x -=-直线的方程为,即,选D .MN 24y x -=-20x y --=12.【答案】A 【解析】试题分析:利用余弦定理求出正方形面积()ααcos 22cos 2-11221-=+=S ;利用三角形知识得出四个等腰三角形面积ααsin 2sin 112142=⨯⨯⨯⨯=S ;故八边形面积2cos 2sin 221+-=+=ααS S S .故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式ααsin 21sin 1121=⨯⨯⨯=S 求出个三角形的面积αsin 24=S ;接下来利用余弦定理可求出正方形的边长的平方()αcos 2-1122+,进而得到正方形的面积()ααcos 22cos 2-11221-=+=S ,最后得到答案.二、填空题13.【答案】 (,) .【解析】解:设C (a ,b ).则a 2+b 2=1,①∵点A (2,0),点B (0,3),∴直线AB 的解析式为:3x+2y ﹣6=0.如图,过点C 作CF ⊥AB 于点F ,欲使△ABC 的面积最小,只需线段CF 最短.则CF=≥,当且仅当2a=3b 时,取“=”,∴a=,②联立①②求得:a=,b=,故点C 的坐标为(,).故答案是:(,).【点评】本题考查了圆的标准方程、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题. 14.【答案】32【解析】试题分析:由题意得11,422k αα==⇒=∴32k α+=考点:幂函数定义15.【答案】 6 .【解析】解:∵ =(2x ﹣y ,m ),=(﹣1,1).若∥,∴2x ﹣y+m=0,即y=2x+m ,作出不等式组对应的平面区域如图:平移直线y=2x+m ,由图象可知当直线y=2x+m 经过点C 时,y=2x+m 的截距最大,此时z 最大.由,解得,代入2x ﹣y+m=0得m=6.即m 的最大值为6.故答案为:6【点评】本题主要考查线性规划的应用,利用m 的几何意义结合数形结合,即可求出m 的最大值.根据向量平行的坐标公式是解决本题的关键.16..【解析】17.【答案】19【解析】由题意可得,选取的这6个个体分别为18,07,17,16,09,19,故选出的第6个个体编号为19.18.【答案】3三、解答题19.【答案】【专题】计算题;排列组合.【分析】(1)若x=5,根据题意,要求的三位数能被5整除,则5必须在末尾,在1、2、4三个数字中任选2个,放在前2位,由排列数公式计算可得答案;(2)若x=9,根据题意,要求的三位数能被3整除,则这三个数字为1、2、9或2、4、9,分“取出的三个数字为1、2、9”与“取出的三个数字为2、4、9”两种情况讨论,由分类计数原理计算可得答案;(3)若x=0,根据题意,要求的三位数是偶数,则这个三位数的末位数字为0或2或4,分“末位是0”与“末位是2或4”两种情况讨论,由分类计数原理计算可得答案;(4)分析易得x=0时不能满足题意,进而讨论x≠0时,先求出4个数字可以组成无重复三位数的个数,进而可以计算出每个数字用了18次,则有252=18×(1+2+4+x),解可得x的值.【解答】解:(1)若x=5,则四个数字为1,2,4,5;又由要求的三位数能被5整除,则5必须在末尾,在1、2、4三个数字中任选2个,放在前2位,有A32=6种情况,即能被5整除的三位数共有6个;(2)若x=9,则四个数字为1,2,4,9;又由要求的三位数能被3整除,则这三个数字为1、2、9或2、4、9,取出的三个数字为1、2、9时,有A33=6种情况,取出的三个数字为2、4、9时,有A33=6种情况,则此时一共有6+6=12个能被3整除的三位数;(3)若x=0,则四个数字为1,2,4,0;又由要求的三位数是偶数,则这个三位数的末位数字为0或2或4,当末位是0时,在1、2、4三个数字中任选2个,放在前2位,有A32=6种情况,当末位是2或4时,有A21×A21×A21=8种情况,此时三位偶数一共有6+8=14个,(4)若x=0,可以组成C31×C31×C21=3×3×2=18个三位数,即1、2、4、0四个数字最多出现18次,则所有这些三位数的各位数字之和最大为(1+2+4)×18=126,不合题意,故x=0不成立;当x≠0时,可以组成无重复三位数共有C41×C31×C21=4×3×2=24种,共用了24×3=72个数字,则每个数字用了=18次,则有252=18×(1+2+4+x),解可得x=7.【点评】本题考查排列知识,解题的关键是正确分类,合理运用排列知识求解,第(4)问注意分x为0与否两种情况讨论.20.【答案】(1)证明见解析;(2)证明见解析.考点:平面与平面平行的判定;空间中直线与直线的位置关系.21.【答案】【解析】解:(1)根据题意,得;该旋转体的下半部分是一个圆锥,上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,其表面积为S=×4π×2×2=8π,或S=×4π×2+×(4π×2﹣2π×)+×2π×=8π;(2)作ME⊥AC,EF⊥BC,连结FM,易证FM⊥BC,∴∠MFE为二面角M﹣BC﹣D的平面角,设∠CAM=θ,∴EM=2sinθ,EF=,∵tan∠MFE=1,∴,∴tan=,∴,∴CM=2.【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.22.【答案】【解析】【分析】(I)设圆心C(a,a),半径为r,利用|AC|=|BC|=r,建立方程,从而可求圆C的方程;(II)方法一:利用向量的数量积公式,求得∠POQ=120°,计算圆心到直线l:kx﹣y+1=0的距离,即可求得实数k的值;方法二:设P(x1,y1),Q(x2,y2),直线方程代入圆的方程,利用韦达定理及=x1•x2+y1•y2=,即可求得k的值;(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,求得,根据垂径定理和勾股定理得到,,再利用基本不等式,可求四边形PMQN面积的最大值;方法二:当直线l的斜率k=0时,则l1的斜率不存在,可求面积S;当直线l的斜率k≠0时,设,则,代入消元得(1+k2)x2+2kx﹣3=0,求得|PQ|,|MN|,再利用基本不等式,可求四边形PMQN面积的最大值.【解答】解:(I)设圆心C(a,a),半径为r.因为圆经过点A(﹣2,0),B(0,2),所以|AC|=|BC|=r,所以解得a=0,r=2,…(2分)所以圆C的方程是x2+y2=4.…(4分)(II)方法一:因为,…(6分)所以,∠POQ=120°,…(7分)所以圆心到直线l:kx﹣y+1=0的距离d=1,…(8分)又,所以k=0.…(9分)方法二:设P(x1,y1),Q(x2,y2),因为,代入消元得(1+k2)x2+2kx﹣3=0.…(6分)由题意得:…(7分)因为=x1•x2+y1•y2=﹣2,又,所以x1•x2+y1•y2=,…(8分)化简得:﹣5k2﹣3+3(k2+1)=0,所以k2=0,即k=0.…(9分)(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,四边形PMQN的面积为S.因为直线l,l1都经过点(0,1),且l⊥l1,根据勾股定理,有,…(10分)又根据垂径定理和勾股定理得到,,…(11分)而,即…(13分)当且仅当d1=d时,等号成立,所以S的最大值为7.…(14分)方法二:设四边形PMQN的面积为S.当直线l的斜率k=0时,则l1的斜率不存在,此时.…(10分)当直线l的斜率k≠0时,设则,代入消元得(1+k2)x2+2kx﹣3=0所以同理得到.…(11分)=…(12分)因为,所以,…(13分)当且仅当k=±1时,等号成立,所以S的最大值为7.…(14分)23.【答案】【解析】解:(Ⅰ)设等差数列的公差为d,由=4得=4,所以a2=3a1=3且d=a2﹣a1=2,所以a n=a1+(n﹣1)d=2n﹣1,=(Ⅱ)由b n=a n2n﹣1,得b n=(2n﹣1)2n﹣1.所以T n=1+321+522+…+(2n﹣1)2n﹣1①2T n =2+322+523+…+(2n ﹣3)2n ﹣1+(2n ﹣1)2n②①﹣②得:﹣T n =1+22+222+…+22n ﹣1﹣(2n ﹣1)2n=2(1+2+22+…+2n ﹣1)﹣(2n ﹣1)2n ﹣1=2×﹣(2n ﹣1)2n ﹣1=2n (3﹣2n )﹣3.∴T n =(2n ﹣3)2n +3.【点评】本题主要考查数列求和的错位相减,错位相减法适用于通项为一等差数列乘一等比数列组成的新数列.此方法是数列求和部分高考考查的重点及热点.24.【答案】为等边三角形.ABC ∆【解析】试题分析:由,根据正弦定理得出,在结合,可推理得到,2sin sin sin A B C =2a bc =2abc =+a b c ==即可可判定三角形的形状.考点:正弦定理;三角形形状的判定.。