第五章 .特征值特、征向量及矩阵对角化总结
- 格式:doc
- 大小:534.00 KB
- 文档页数:11
线性代数知识点总结(第5章)(一)矩阵的特征值与特征向量1、特征值、特征向量的定义:设A为n阶矩阵,如果存在数λ及非零列向量α,使得Aα=λα,称α是矩阵A属于特征值λ的特征向量。
2、特征多项式、特征方程的定义:|λE-A|称为矩阵A的特征多项式(λ的n次多项式)。
|λE-A |=0称为矩阵A的特征方程(λ的n次方程)。
注:特征方程可以写为|A-λE|=03、重要结论:(1)若α为齐次方程Ax=0的非零解,则Aα=0·α,即α为矩阵A特征值λ=0的特征向量(2)A的各行元素和为k,则(1,1,…,1)T为特征值为k的特征向量。
(3)上(下)三角或主对角的矩阵的特征值为主对角线各元素。
△4、总结:特征值与特征向量的求法(1)A为抽象的:由定义或性质凑(2)A为数字的:由特征方程法求解5、特征方程法:(1)解特征方程|λE-A|=0,得矩阵A的n个特征值λ1,λ2,…,λn注:n次方程必须有n个根(可有多重根,写作λ1=λ2=…=λs=实数,不能省略)(2)解齐次方程(λi E-A)=0,得属于特征值λi的线性无关的特征向量,即其基础解系(共n-r(λi E-A)个解)6、性质:(1)不同特征值的特征向量线性无关(2)k重特征值最多k个线性无关的特征向量1≤n-r(λi E-A)≤k i(3)设A的特征值为λ1,λ2,…,λn,则|A|=Πλi,Σλi=Σa ii(4)当r(A)=1,即A=αβT,其中α,β均为n维非零列向量,则A的特征值为λ1=Σa ii=αTβ=βTα,λ2=…=λn=0(5)设α是矩阵A属于特征值λ的特征向量,则(二)相似矩阵7、相似矩阵的定义:设A、B均为n阶矩阵,如果存在可逆矩阵P使得B=P-1AP,称A与B相似,记作A~B8、相似矩阵的性质(1)若A与B相似,则f(A)与f(B)相似(2)若A与B相似,B与C相似,则A与C相似(3)相似矩阵有相同的行列式、秩、特征多项式、特征方程、特征值、迹(即主对角线元素之和)【推广】(4)若A与B相似,则AB与BA相似,A T与B T相似,A-1与B-1相似,A*与B*也相似(三)矩阵的相似对角化9、相似对角化定义:如果A与对角矩阵相似,即存在可逆矩阵P,使得P-1AP=Λ=,称A可相似对角化。
特征值和特征向量矩阵的相似对角化在线性代数中,矩阵是一个非常重要的数学对象。
特征值和特征向量则是矩阵中一组与矩阵相互关系紧密的特征。
矩阵的相似对角化是矩阵与特征值、特征向量之间的重要关系。
首先,我们来了解特征值和特征向量的概念。
设A是一个n阶矩阵,若存在一个非零向量X,使得满足AX=λX,其中λ是一个数,则称λ为矩阵A的特征值,X为特征值λ所对应的特征向量。
特征向量表示在进行矩阵变换时,只发生一个标量倍数的变化,特征值则表示这个标量倍数的大小。
接下来,我们来探讨一下矩阵的相似对角化。
对于一个n阶矩阵A,如果存在一个n阶可逆矩阵P,使得P−1AP是一个对角矩阵D,那么就称矩阵A相似于对角矩阵D,即A的相似对角化。
在相似对角化的过程中,矩阵A与D具有相同的特征值,而对角矩阵D的对角线上的元素即为矩阵A的特征值。
要进行矩阵的相似对角化,首先需要求得矩阵A的特征值和特征向量。
假设λ1,λ2,...,λn是矩阵A的n个特征值,对应的特征向量分别为X1,X2,...,Xn。
将这些特征向量按列排列,并组成一个矩阵P=[X1,X2,...,Xn],则P是一个可逆矩阵。
根据特征向量的定义,我们可以得到AX=PX,进一步可以得到AX=PX=PX[λ1,λ2,...,λn],即可以得到AP=P[λ1,λ2,...,λn]。
将矩阵A与对角矩阵D相乘,可以得到AP=PD。
根据上述推导,我们可以得到P−1AP=D,即A相似于对角矩阵D。
这个过程就是矩阵的相似对角化。
矩阵的相似对角化有很多应用。
一个重要的应用是简化矩阵的计算。
对于相似的矩阵,它们具有相同的特征值,因此在计算矩阵的n次幂、矩阵的指数函数等复杂运算时,可以先对矩阵进行相似对角化,再进行计算。
相似对角矩阵的计算更加简单,计算结果也更容易分析和理解。
另外,相似对角化还可以帮助我们研究线性系统的稳定性。
对于一个线性系统,其稳定性可以通过矩阵的特征值来判断。
若所有特征值的实部都小于零,则线性系统是稳定的,否则不稳定。
矩阵对角化问题总结矩阵对角化是线性代数中的一个重要概念,它在很多数学和工程领域中都有广泛应用。
对角化可以把一个矩阵转化为对角矩阵的形式,简化了计算和分析的过程。
本文将对矩阵对角化的定义、条件以及计算方法进行总结。
首先,矩阵对角化的定义如下:对于一个n × n的矩阵A,如果存在一个可逆矩阵P,使得我们可以得到对角矩阵D,则称矩阵A是可对角化的。
其中,对角矩阵D的非零元素是A的特征值,且按照相应的特征值的重数排列。
为了判断一个矩阵是否可对角化,我们需要满足以下条件:1. 矩阵A必须是一个方阵(即行数等于列数)。
2. 矩阵A必须具有n个线性无关的特征向量,对应于n个不同的特征值。
当满足上述条件时,我们可以通过以下步骤进行矩阵对角化:1. 求出矩阵A的特征值,即解A的特征方程det(A-λI) = 0,其中I是单位矩阵。
2. 对每个特征值λ,解方程组(A-λI)X = 0,求得对应的特征向量X。
3. 将特征向量按列组成矩阵P。
4. 求出特征值构成的对角矩阵D。
需要注意的是,在实际求解矩阵对角化问题时,可能会遇到以下情况:1. 矩阵A的特征值重数大于1。
在这种情况下,我们需要确保对应于相同特征值的特征向量线性无关。
2. 矩阵A不可对角化。
这意味着矩阵A无法被相似变换为对角矩阵。
这可能发生在矩阵A的特征向量不足以构成一组基的情况下。
矩阵对角化在很多应用中具有重要意义,它简化了矩阵的计算和分析过程。
对角矩阵具有很好的性质,例如幂运算和指数函数的计算变得更加简单。
此外,在线性系统的稳定性和动态响应的分析中,矩阵对角化也起到了关键的作用。
总之,矩阵对角化是一个重要而又广泛应用的概念。
本文对矩阵对角化的定义、条件以及计算方法进行了总结,并提到了在实际问题中可能会遇到的情况。
了解矩阵对角化的概念和方法,对于深入理解和应用线性代数具有重要意义。
特征值特征向量与矩阵可对角化详解特征值特征向量与矩阵可对角化是线性代数中一个重要的概念,它在矩阵的理论研究和应用中有着广泛的应用。
本文将详细介绍特征值特征向量的定义、性质以及矩阵可对角化的条件和方法。
让我们一起来探索这一有趣而重要的概念。
首先,我们来介绍特征值和特征向量的定义。
设A是一个n阶矩阵,如果存在一个非零向量x,使得Ax=kx,其中k是一个常数,则k称为矩阵A的特征值,x称为矩阵A对应于特征值k的特征向量。
特征值和特征向量的定义看起来可能抽象,我们可以通过一个具体的例子来理解这个概念。
考虑一个2阶矩阵A=[[3,-2],[4,-1]],我们要找到它的特征值和特征向量。
首先,我们解方程A-λI=0,其中λ是特征值,I是单位矩阵。
这将得到一个关于λ的方程,我们解它可以找到特征值λ1=1和λ2=-1、然后,我们带入A-λI=0,解得对应于λ1的特征向量x1=[1,2]和对应于λ2的特征向量x2=[1,-1]。
所以,矩阵A的特征值是λ1=1和λ2=-1,对应的特征向量是x1=[1,2]和x2=[1,-1]。
接下来,我们来介绍特征值特征向量的性质。
首先,特征值与矩阵的大小是相关的,一个n阶矩阵最多有n个不同的特征值。
此外,矩阵的特征值和对应的特征向量是成对出现的,一个特征值可以对应多个特征向量。
矩阵可对角化的条件是,矩阵A的n个特征向量x1,x2,...,xn都线性无关。
这又可以等价于矩阵A的n个特征向量x1,x2,...,xn都是线性独立的,即不存在一个非零向量x可以表示为这些特征向量的线性组合。
我们还可以通过矩阵的代数重数和几何重数来进一步讨论特征值的性质。
矩阵的代数重数是一个特征值λ在特征多项式中的重数,而几何重数是对应于特征值λ的特征向量的个数。
根据定理,矩阵的代数重数与几何重数之和等于矩阵的阶数。
当矩阵的代数重数等于几何重数时,我们称矩阵的特征值是简单的;当矩阵的代数重数大于几何重数时,我们称矩阵的特征值是重复的。
第五章 特征值、特征向量及矩阵的对角化(填空、选择为主)5.1矩阵的特征值和特征向量定义(矩阵的特征值和特征向量)设A 为n 阶方阵,如果存在数λ及非零向量x,使得 x Ax λ=(4-1) 或0)(=-x A E λ (4-2)则称λ为A 的一个特征值,x 为A 的对应于(或属于)特征值λ的一个特征向量. 求n 阶方阵A 的特征值与特征向量的一般步骤如下: 第一步:计算特征多项式||A E -λ;第二步:求出特征方程||A E -λ=0的全部根n λλλ,,,21 (重根按重数计算),则n λλλ,,,21 就是方阵的全部特征值.如果i λ为特征方程的单根,则称i λ为A 的单特征值;如果j λ为特征方程的k 重根,则称j λ为A 的k 重特征值,并称k 为j λ的重数;第三步:对A 的相异特征值中的每个特征值i λ,求出齐次线性方程组 0)(=-A E i λ(4-3)的一个基础解系j ik i i ξξξ,,,21 ,则j ik i i ξξξ,,,21 就是对应于特征值i λ的特征空间的一个基,而A 的属于i λ的全部特征向量为 j j ik k i i c c c x ξξξ+++= 2211 其中j k c c c ,,,21 为不全为零的任意常数.特征值和特征向量有下列基本性质:性质1 设n n ij a A ⨯=)(的全部特征值为n λλλ,,,21 ,则有||,21121A an ni iin ==+++∑=λλλλλλ利用性质1可以简化有关特征值问题的某些计算.性质2 设λ为方阵A 的一个特征值,且x 为对应的特征向量,则对任何正整数k,kλ为kA 的一个特征值且x 为对应的特征向量.更01)(a x a x a x f m m +++= ,则)(λf 为方阵E a A a A a A f m m 01)(+++= 的一个特征值,且x 为对应的特征向量.性质3 设λ为可逆方阵A 的一个特征值,则λλ1,0≠为1-A 的一个特征值,λ||A 为*A 的一个特征值性质4 设m λλλ,,,21 为方阵A 的互不相同的特征值,i x 为属于i λ的特征向量),,2,1(m i =,则向量组m x x x ,,,21 线性无关.更一般的,设i ik i i x x x ,,,21 为属于i λ的线性无关特征向量),,2,1(m i =,则向量组 m m k m m k k x x x x x x x x x ,,,,,,,,,,,,21222211121121 线性无关性质5 设重特征值,则属于的为方阵k A 0λ0λ的线性无关特征向量的个数不大于k 关于特征值与特征向量的结论见下图:5.2相似矩阵及方阵可相似对角化的条件定义(相似矩阵)对于同阶矩阵A,B ,若存在同阶可逆矩阵P ,使得B AP P =-1(4-4)则称A 与B 相似,或A 相似于B ,并称变换:AP P A 1-→ 为相似变换.矩阵的相似关系具有反身性(A 与A 相似)、对称性(A 与B 相似,则B 与A 相似)和传递性(A 与B 相似,B 与C 相似,则A 与C 相似).定理(矩阵A 与B 相似的必要条件)设矩阵A 与B 相似,则有 (1))()(B r A r =; (2)||||B A =;(3)||||B E A E -=-λλ,即A 与B 有相同的特征多项式(从而A 与B 有相同的特征值)(但要注意到其特征向量不一定相等);(4)TA 与TB 相似,1-A 与1-B相似,k A 与kB 相似.推论 若n 阶矩阵A 相似于对角矩阵∧=diag(ƛ1,ƛ2,…,ƛn )时,∧的主对角线元素ƛ1,ƛ2,…,ƛn 就是A 的n 特征值.定理(矩阵相似与对角矩阵的充分必要条件)n 阶矩阵A 相似于对角矩阵的充分必要条件是A 有n 个线性无关的特征向量.推论 矩阵A 相似于对角矩阵的充分必要条件是A 的属于每个特征值的线性无关特征向量个数正好等于该特征值的重数.定理(矩阵相似于对角矩阵的充分条件)如果n 阶矩阵A 有n 个互不相同的特征值(即A 的特征值都是特征值),则A 必相似于对角矩阵.矩阵可相似对角化的条件见下图(设A 是n 阶矩阵)5.3 向量的内积、长度及正交性定义 几何中,两个向量 的数量积定义为:其中 是 的长度, 是的夹角.如果在直角坐标系下,向量表示为则依据坐标表示向量 的长度为: ,向量 的夹角为:代数中定义 设 维向量称为向量的内积.称为向量 的长度(或范数),特别,当 时,称 为单位向量.称 为向量 与 的夹角;特别,,当 (即 )时,称向量 与 正交. 注:内积是向量的一种运算,如果x 和y 都是列向量,可以记作[x ,y]=x T y ,其结果是一个数.且[x ,x]=x 1^2+x 2^2+…+x n ^2≥0,当且仅当x=0时成立.4. 向量长度的性质:(1) 非负性:0≥α且00=⇔=αα (2) 齐次性:ααk k = (3) 三角不等式:βαβα+≤+以上定义的概念有如下性质:1 .2 .3 .4 . ,( )5 .6 .7 .称一组两两正交的非零向量为正交向量组.定理设n维向量是一组两两正交的非零向量(或称是正交向量组),则线性无关.证设,两边与作内积,得因故,同理,,所以线性无关.定义设是向量空间,是的一组基,且是正交向量组,则称是的一组正交基.如果既是的一组正交基,又是单位向量,则称是规范正交基或单位正交基.正交基的求法(施密特正交化公式解决矩阵的对角化问题):1.正交化设是向量空间,是的一组基,则,,是的一组正交基.2.单位化如果取则是规范正交基.例3 设⎪⎪⎪⎭⎫ ⎝⎛-=1211α,⎪⎪⎪⎭⎫ ⎝⎛-=1312α,⎪⎪⎪⎭⎫ ⎝⎛-=0143α,试用施密特正交化过程把这组向量规范正交化.解 取11α=b ;[]⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-=-=1113512164131,1211222bb b b αα; [][]⎪⎪⎪⎭⎫ ⎝⎛=--=1012,,222231211333b b b b b b b ααα. 再把它们单位化,取⎪⎪⎪⎭⎫ ⎝⎛-=121611e ,⎪⎪⎪⎭⎫ ⎝⎛-=111312e ,⎪⎪⎪⎭⎫ ⎝⎛=101213e .即合所求.例4 已知⎪⎪⎪⎭⎫⎝⎛=1111α,求一组非零向量32,αα,使321,,ααα两两正交.解 32,αα应满足方程01=x Tα,即0321=++x x x .它的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1011ξ,⎪⎪⎪⎭⎫ ⎝⎛-=1102ξ.把基础解系正交化,即合所求.亦即取 12ξα=,[][]1112123,,ξξξξξξα-=.于是得⎪⎪⎪⎭⎫ ⎝⎛-=1012α,⎪⎪⎪⎭⎫ ⎝⎛--=121213α.正交矩阵定义 1 .是阶方阵,并且(即),称为正交阵.2 .若是正交阵,则称 是正交变换.正交阵的充要条件:为正交阵的列(行)是两两正交的单位向量.为正交矩阵的充要条件是或证 设,是的列向量,则为正交阵是两两正交的单位向量.正交矩阵的等价定义:正交矩阵有下列基本性质: 设A,B 都是n 阶正交矩阵,则 (1)1±=A(2)*T 1A A A )与(即-也是正交矩阵(注:A 为正交能推出A 为可逆矩阵且T1A A =-,但反之不成立)(3)如果A,B 为同阶正交矩阵,则AB 也是正交矩阵.(4)实矩阵A 为正交矩阵,当且仅当A 的列(行)向量组为正交单位向量组. 利用上述的性质(4),可以比较方便的检验矩阵是否为正交矩阵. 正交变换定义 若P 为正交阵,则线性变换y=P x 称为正交变换.正交变换的性质:设是正交变换的系数矩阵,则,从而及.正交变换有下列性质(其中A为正交矩阵):(1)保内积性:若2211,AxyAxy==,则),(),(2121xxyy=;(2)保长度性:若Axy=,则||||xy=正交矩阵的判断例题5.4实对称矩阵的性质及正交相似对角化实对称矩阵有下列性质:性质1 实对称矩阵的特征值都是实数.性质2 实对称矩阵的属于不同特征值的特征向量必正交.即设λ1,λ2是实对称矩阵A的两个特征值,p1,p2是对应的特征向量,若λ1≠λ2则p1与p2正交.性质3 若λ为实对称矩阵A的k重特征值,则A的属于λ的线性无关特征向量正好有k个.定理设A为实对称矩阵,则必存在正交矩阵P,使得APPAPP T=-1为对角矩阵.求正交矩阵P,使得Λ=-APP1对角矩阵的方法:1)、求出A的全部特征值nλλλ,,21:由方程0||=-AEλ解得;2)、对于每一个),,2,1(,nii=λ,解齐次线性方程组0)(=-xAEiλ,找出基础解系siiippp,,,213)、将nppp,,,21正交化,单位化,得一组正交单位向量nηηη,,,21;4)、因为nλλλ,,21各不相同,因此所求的向量组是两两正交的单位向量组,其向量的总数为n,这组列向量就构成了正交矩阵Q。
例6、设实对称矩阵⎪⎪⎪⎭⎫⎝⎛----=3222221A,求正交矩阵Q,使得AQQ1-为对角矩阵。
解:1)、求特征值 由0)5)(2)(1(3222221||=--+=---=-λλλλλλλA I ,得A 的特征值为5,2,1321==-=λλλ;2)、当11-=λ时,解齐次线性方程组0)(=--χA I ,即0420232022321=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---x x x 得同解方程组⎪⎩⎪⎨⎧==232121x x x x ,取22=x ,得1,231==x x ,于是基础解系⎪⎪⎪⎭⎫⎝⎛=1221χ;当22=λ时,解齐次线性方程组0)2(=-χA I ,即0120202021321=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛-x x x 得同解方程组⎩⎨⎧=-=232122x x x x ,取12-=x ,得2,231-==x x ,于是基础解系⎪⎪⎪⎭⎫ ⎝⎛--=2122χ;当53=λ时,解齐次线性方程组0)5(=-χA I ,即0220232024321=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛x x x 得同解方程组⎪⎩⎪⎨⎧-==323121x x xx ,取23=x ,得2,121-==x x ,于是基础解系⎪⎪⎪⎭⎫ ⎝⎛-=2213χ,3)、321,,χχχ是正交向量组,将它们单位化,313232||||111⎪⎪⎪⎪⎭⎫ ⎝⎛==χχχ,323132||||222⎪⎪⎪⎪⎭⎫⎝⎛--==χχχ,323231||||333⎪⎪⎪⎪⎭⎫ ⎝⎛-==χχχ 则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---==323231323132313232)(321χχχQ ,且⎪⎪⎪⎭⎫ ⎝⎛-=Λ==-500200011AQ Q AQ Q T。