水泥的高性能化
- 格式:docx
- 大小:17.37 KB
- 文档页数:7
再生骨料混凝土高强高性能化途径及其性能研究共3篇再生骨料混凝土高强高性能化途径及其性能研究1再生骨料混凝土是指将废弃的混凝土碎成一定大小的骨料再次利用,并通过现代化工艺进行回收利用的建筑材料,其具有环保、经济、资源可持续利用的优点。
然而,由于再生骨料混凝土中的骨料已经经历了一次使用,其性能与新鲜混凝土相比存在着一定的差异,如弹性模量、强度和耐久性等方面的差异。
因此,如何提高再生骨料混凝土的性能,综合考虑建筑的安全、性能和环保等方面的要求是当前迫切需要解决的问题。
再生骨料混凝土高强高性能化的途径主要有以下几点:1. 控制混凝土的水灰比水灰比是再生骨料混凝土强度的关键因素之一,因此控制混凝土的水灰比是提高强度的关键。
一般来说,适当降低水灰比,能够提高混凝土的强度。
同时,在降低水灰比的同时,应适当增加混凝土中的粉煤灰、矿渣粉等掺合料的用量,以改善混凝土的流动性,并提高混凝土的耐久性。
2. 优化骨料配合比再生骨料混凝土中骨料的比例对混凝土强度也有着很大的影响。
研究表明,再生骨料与新鲜混凝土的混合配合比要适宜,不能过多添加再生骨料,过多添加会影响混凝土的强度和稳定性,同时也会对混凝土的耐久性产生负面影响。
在确定适宜的骨料配合比的过程中,不仅要考虑骨料的种类、大小等因素,还要考虑混凝土的流动性等因素。
3. 使用化学掺和剂使用化学掺和剂是提高再生骨料混凝土强度的有效途径之一。
常见的化学掺和剂有高效减水剂、膨胀剂、凝结剂、抗裂剂等。
这些化学掺和剂能够改善混凝土的性能,改善混凝土的流动性,同时提高混凝土的强度和耐久性。
4. 采用陶瓷颗粒代替粗集料由于再生骨料中的粗骨料具有较弱的力学性能,研究人员开始采用陶瓷颗粒代替再生骨料中的粗集料,以提高再生骨料混凝土的强度和耐久性。
与再生骨料相比,陶瓷颗粒具有优异的力学性能、高强度和耐久性,因此采用陶瓷颗粒代替再生骨料中的粗集料是一种有效的途径,可以提高再生骨料混凝土的强度和耐久性。
高性能混凝土的原理与应用高性能混凝土的原理与应用一、概述高性能混凝土是近年来发展起来的一种新型混凝土材料,具有高强度、高耐久性、高抗渗性、高耐久性等优良性能,被广泛应用于桥梁、高层建筑、水利工程等领域,成为现代建筑工程中不可缺少的一部分。
二、高性能混凝土的原理1.材料的选择高性能混凝土的原理首先在于材料的选择。
高性能混凝土所选用的材料需要满足高强度、高密实度、高抗渗性等要求。
其中水泥需要选择高强度、低热发生的水泥;骨料需要选择高强度、低吸水率的骨料,如花岗岩、玄武岩等;粉煤灰的选择需要注意其细度和活性;外加剂需要选择高效的缓凝剂、减水剂等。
2.配合比设计高性能混凝土的配合比设计需要考虑到各种材料的性能特点,如水泥的强度、骨料的粒径、粉煤灰的比例等。
同时还需要考虑到混凝土的使用环境和要求,如混凝土的强度等级、抗渗性等级等。
3.施工工艺高性能混凝土的施工工艺需要注意以下几点:首先要保证混凝土的均匀性和密实度;其次要注意混凝土的养护,保证混凝土的强度和耐久性;最后需要注意混凝土的温度和湿度控制,以避免混凝土出现龟裂或开裂等问题。
三、高性能混凝土的应用1.桥梁工程高性能混凝土被广泛应用于桥梁工程中。
桥梁作为交通工程的重要组成部分,需要承受巨大的荷载和外界环境的影响。
高性能混凝土具有高强度、高耐久性等优点,能够很好地满足桥梁工程的要求。
2.高层建筑高层建筑作为城市中的标志性建筑,需要具有坚固的结构和高强度的材料。
高性能混凝土具有高强度、高密实度等特点,能够满足高层建筑的要求。
3.水利工程水利工程需要具有高抗渗性和耐久性等特点,以保证水利工程的长期稳定运行。
高性能混凝土具有高抗渗性、耐久性等特点,能够很好地满足水利工程的要求。
4.其他领域除了桥梁工程、高层建筑、水利工程等领域外,高性能混凝土还被广泛应用于隧道、码头、机场等领域。
四、高性能混凝土的未来发展高性能混凝土在未来的发展中将面临以下几个方面的挑战和机遇:1.环保化随着社会的发展和人们对环保的重视,高性能混凝土需要更加环保,减少对环境的污染。
文章编号:100125620(2006)0420073204油井水泥高性能化严海兵 陈大钧 蒋海(西南石油大学化学化工学院,四川成都)摘要 针对特殊工艺井为顺利实现勘探开发目的而对水泥石强度、韧性和抗腐蚀性等性能的特殊要求,论述了高性能油井水泥的基本含义和油井水泥高性能化的理论依据,阐述了国内外高性能油井水泥的发展概况。
对油井水泥高性能化的途径进行了叙述,指明了油井水泥高性能化研究的主要方向。
关键词 油井水泥 水泥浆性能 综述中图分类号:TE256.6文献标识码:A 水平井、大斜度井、需要酸化压裂作业的井、要采取强化采油的井或小眼井的固井中,对水泥的性能要求高,要求水泥石有较高的抗压强度、高韧性、高胶结强度、高抗腐蚀性等[1]。
解决这些问题的途径除了改进固井工艺外,主要还是提高固井材料的性能。
提高水泥性能可以从水泥熟料烧成制度的优化、水泥组分优化、水泥复合材料的开发、高效外加剂开发及其配套技术的研究上下功夫。
本文从复合化技术方面阐述开发高性能水泥及其复合材料的现状、理论及途径。
油井水泥材料面临的主要问题是:油井水泥属水硬性胶凝材料,其固有的水化特性、使用环境(高温、高压)和施工工艺(高水灰比、高流动性能)决定了其致命的“四高”缺陷,即高体积收缩、高滤失量、高密度和高脆性[2]。
这些缺陷是造成目前多数油气井套管损害或油气水窜的主要原因。
其中,高脆性的水泥石在强冲击载荷作用下,水泥环会破裂而形成宏观裂纹和界面破坏,造成层间窜流并严重腐蚀套管的问题难以克服。
研究表明,水泥的高脆性是造成水泥环在压力作用下破裂的主要原因。
这就需要提高水泥环的韧性、阻裂能力。
同时要提高水泥石的抗渗透性能,防止地层流体的侵入,尽可能减少套管和水泥石的腐蚀。
1 目前国内外高性能水泥概述油井水泥的高性能化除了借鉴建筑水泥的高性能化研究成果外,还要针对固井过程中的特殊情况,如在油气井中不要求水泥石有特别高的强度,而是需要高的抗冲击能力和耐久性。
混凝土材料的高性能化发展趋势是什么混凝土作为建筑工程中最常用的材料之一,其性能的不断提升对于工程质量和可持续发展具有重要意义。
随着科技的进步和工程需求的不断提高,混凝土材料正朝着高性能化的方向发展。
高性能混凝土(High Performance Concrete,简称 HPC)是在大幅度提高普通混凝土性能的基础上,采用现代混凝土技术制作的新型高技术混凝土。
它以耐久性作为设计的主要指标,针对不同用途要求,对下列性能重点予以保证:耐久性、工作性、适用性、强度、体积稳定性和经济性。
在强度方面,高性能混凝土具有更高的抗压、抗拉和抗弯强度。
这使得在相同承载要求下,可以减小构件的尺寸,从而减轻结构自重,增加建筑的使用空间。
例如,在高层建筑和大跨度桥梁中,高强度混凝土的应用能够有效减少柱子和梁的尺寸,增加建筑物的内部空间和美观性。
耐久性是高性能混凝土的一个关键特性。
在恶劣的环境条件下,如海洋环境、化学腐蚀环境和冻融循环环境等,普通混凝土往往容易出现劣化和损坏。
而高性能混凝土通过优化配合比、使用优质原材料和添加外加剂等手段,显著提高了抗渗性、抗化学腐蚀性和抗冻性等耐久性指标。
这大大延长了混凝土结构的使用寿命,减少了维修和重建的成本。
工作性的改善也是高性能混凝土的重要发展趋势之一。
良好的工作性意味着混凝土在搅拌、运输、浇筑和振捣过程中能够更加顺畅,不易出现离析和泌水等问题。
这不仅提高了施工效率,还保证了混凝土的均匀性和密实性,从而提高了混凝土结构的质量。
体积稳定性对于混凝土结构的长期性能至关重要。
高性能混凝土通过控制水泥的水化热、减少收缩和徐变等措施,有效地降低了混凝土在硬化过程中的变形和开裂风险。
这对于大型混凝土结构,如大坝和大型基础,尤为重要,能够确保结构的整体性和安全性。
在原材料的选择上,高性能混凝土更加注重品质和性能。
水泥方面,通常选用高强度、低水化热的水泥品种;骨料则要求具有良好的级配、高强度和低吸水率;矿物掺合料,如粉煤灰、矿渣粉和硅灰等的应用也越来越广泛。
水泥的高性能化1 前言生产水泥的目的是满足各种混凝土建筑工程的需要。
国标中水泥按强度分等级,是为了满足混凝土建筑工程的基本物理性能要求。
从广东过去几十年混凝土材料的发展过程来看,上世纪80年代前,工程绝大部分使用低标号混凝土(C30以下)。
低标号混凝土对配制技术或配制材料的要求均较低,外加剂(减水剂)甚少用到混凝土工程。
在此情况下,无论是立窑水泥或湿法窑、干法窑烧制的转窑水泥,在配制混凝土时抗压强度差异不大。
即使今天,按此条件配制混凝土来进行对比,大部分的强度结果均有类似规律。
但从上世纪80年代到本世纪初,随着经济的高速发展,混凝土工程的大型化及混凝土材料的高性能化要求越来越多。
以广州近几年混凝土材料的设计、施工要求来看,出现了垂直高度300多米的泵送混凝土,高抛自流平(26m高度抛下、免振)等高工作性能的混凝土;C80高强混凝土,F5.0~6.0的高抗折、耐磨性好的道路混凝土;S20高抗渗、耐酸耐碱混凝土;低收缩抗开裂混凝土,广州新机场跑道的高强、抗冲击、耐磨、低收缩率混凝土;低水化热、高强度的大体积混凝土等等。
混凝土材料性能要求越来越高,数量日益增多。
为满足城市化及混凝土材料性能提高的要求,广东省商品混凝土搅拌站已有上百家,外加剂普遍使用,与外加剂相容性好的高标号水泥被首选、配制混凝土的粗细骨料质量要求及配制技术不断提高。
这些均是提高混凝土材料性能的措施及保证。
从混凝土材料的发展及配制技术的提高,人们也越来越认识到水泥高性能化的重要性。
简而言之,社会、经济的发展,要求混凝土材料的高性能化。
这促进了混凝土技术的发展,为配制高性能混凝土及降低生产成本,又提出了水泥的高性能化。
它是混凝土高性能化及低成本生产混凝土的基础。
目前广州市绝大部分重点工程、尤其是对混凝土性能要求较高的工程所用水泥均为省内几家大水泥厂提供,这主要是由水泥性能决定的。
2 水泥高性能化的含义目前水泥生产厂家对水泥的高性能化认识不全面。
在我国水泥与混凝土分属于两个行业,生产水泥的技术人员不了解混凝土技术及进展,更不懂得如何使水泥的性能与配制混凝土技术相适应,往往将高标号、高比表面积的水泥认为是优质水泥的唯一标准,结果出现了水泥与外加剂相容性差,配制大体积混凝土时温度应力大、收缩大及耐久性差等问题。
本文认为:水泥性能的优劣必须从水泥在混凝土中的使用性能及效果来衡量。
水泥的高性能化应包括以下三方面的含义:(1)是用现代先进技术生产的可大幅度提高各项物理性能的水泥。
(2)可满足混凝土性能的不同要求,显著改善混凝土的工作性能、力学性能、耐久性能,更有利于实现混凝土的高性能化。
(3)在配制混凝土时,能够用最少的水泥用量来达到高性能混凝土目标。
国标GB175-1999中已对各等级的水泥物理性能作了要求及规定。
但要使水泥在配制混凝土,尤其是配制高性能混凝土时体现出更优良的性能,还应注意以下几点:(1)水泥的标准稠度需水量要低。
这对减少配制混凝土时的需水量,提高混凝土性能有利。
(2)水泥胶砂的抗折、抗压强度高。
这与所配制混凝土的力学性能及生产成本直接相关。
(3)水泥与外加剂相容性好。
水泥与外加剂相容性的好坏决定了配制混凝土时的需水量、塌落度经时损失、外加剂掺量等,直接影响着混凝土拌合物的工作性能、混凝土的力学性能及生产成本。
这是水泥高性能化中最重要的性能之一。
(4)水泥配制砂浆和混凝土时泌水率小、水化热低、化学收缩值较小。
这对所配制混凝土的耐久性、体积稳定性有直接关系。
从现阶段认识来看,水泥的高性能化应具有以下的特点:配制混凝土时需水量低、流动性好、与外加剂(高效减水剂)有较好的相容性;具有较高的胶砂强度,在配制混凝土时,能减少水泥用量,增大矿物掺合料用量,实现混凝土的绿色化;水泥的颗粒分布合理,使之更有利于提高混凝土的工作性能与耐久性能。
3 影响水泥高性能化的主要因素针对水泥高性能化的要求,我们研究了熟料烧成工艺条件(熟料的矿物组成、煅烧温度、烧成速度、冷却制度)、水泥颗粒分布、混合材种类等因素的影响,分述如下:3.1、熟料矿物组成的影响C3S水化速度快,早后期强度高;C2S水化速度慢,水化热低,对28天以后强度增长有利;C3S与C2S矿物总量越高,水泥的力学性能、耐久性能越好。
C3A与C4AF为熔剂矿物,C3A需水量与水化热最大,凝结硬化快,对早期强度较有利,但水化产物稳定性较差,硬化浆体强度不高,对混凝土的工作性能与耐久性能不利。
从与外加剂相容性的研究结果来看,C3A吸附减水剂能力最强,其次是C4AF,C3S 与C2S对减水剂的吸附较少[1]。
一般来说熟料硅酸率越高,越有利于提高水泥的力学性能及其与外加剂的相容性。
但由于熟料矿物吸附减水剂的能力还受矿物的固溶量、结晶状态等因素影响,故不可单从率值的大小来判断水泥性能的优劣。
若熟料烧成率较高,硅酸盐矿物含量较多,A矿晶体发育良好,大小适中,晶形较好,f-CaO含量低时,水泥的力学性能及与外加剂的相容性就较好。
3.2、熟料的烧成温度及烧成速度的影响高温烧成的熟料与低温烧成的熟料表现出的性能不同。
高温快烧的熟料,硅酸盐矿物固溶较多其他组分(如C3S固溶Al2O3、Fe2O3、MgO等形成A矿)。
这增加了A矿的含量及内能,提高了水化活性,并使C3A与C4AF含量减少。
其固溶量随温度的升高及烧成速度的加快而增大。
故高温快烧的熟料,A矿发育良好,尺寸适中,边棱清晰,水泥浆体强度较高,与外加剂相容性好。
低温烧成的熟料,硅酸盐矿物活性较差,胶砂强度较低。
并且由于C3S固溶Al2O3、Fe2O3减少,熟料矿物中析晶出来C3A、C4AF较多,水泥标准稠度用水量大,与外加剂相容性差。
3.3、冷却制度的影响熟料在较高温度范围(1450~1200℃)的快速冷却,有利于A矿保持良好的晶形,减少C2S粉化,硅酸盐矿物活性较高;溶剂矿物多以玻璃体存在,大量减少C3A和C4AF的析晶。
因而快冷熟料,即使C3A、C4AF计算含量较高,由于大部分以玻璃体存在,所磨制的水泥仍与外加剂相容性好,凝结时间正常,水泥强度较高。
慢速冷却时,熟料中β-C2S转变为γ-C2S,矿物活性降低,C3A、C4AF大量析晶,磨制的水泥与外加剂相容性差。
3.4、水泥的颗粒分布与形状的影响水泥中4~30um的颗粒对强度增长贡献最大,大于60um的颗粒对强度基本不起作用,小于3um的颗粒对减少泌水、缩短凝结时间、提高1天强度有利。
水泥颗粒分布集中,颗粒堆积的空隙率大,水泥标准稠度大,凝结时间长,1天强度低,与外加剂的相容性也较差,反之亦然。
故较佳的颗粒分布是水泥颗粒较分散,使之在浆体中能达到最紧密堆积,若颗粒分布都集中在4~30um,则水泥的力学性能得以更充分地发挥,与外加剂相容性也较好。
此外,水泥的比表面积大小要适当,比表面积过大,细颗粒含量过多,易造成水泥标准稠度用水量增大,配制混凝土时需水量增大,水泥与外加剂相容性变差等问题。
反之,水泥比表面积过小,凝结时间延长,早期强度低,易造成较严重的泌水现象。
水泥颗粒的球形度对水泥的流变性能影响较大,球形度高的颗粒流动性能好,对减少配制混凝土时的需水量、改善水泥与外加剂相容性均有利。
但目前国内生产设备尚难以实现这一目标。
3.5、混合材的影响混合材种类及掺量对水泥的标准稠度用水量、水泥与外加剂的相容性及配制混凝土时的需水量影响较大。
在水泥中掺入大量轻烧态的火山灰质混合材,会严重破坏水泥各方面的使用性能,应引起重视,并严加限制。
经研究表明矿渣、石灰石、较优质的粉煤灰等材料做混合材对水泥的使用性能、与外加剂的相容性、混凝土的工作性能、力学性能及耐久性能影响较少。
此外,水泥中石膏的品种及掺量、碱含量、含碳量等对水泥的高性能化也有影响。
4、实现水泥高性能化的主要途径4.1、优化熟料的矿物组成、烧成温度、速度及冷却速度熟料矿物组成要根据工业窑炉的预烧及烧成能力来设定。
对大型预分解窑,可选用较高的硅酸率、铝氧率和适中的饱和系数,这样有利于提高熟料的烧成温度。
在新型干法窑系统中,由于物料预烧好,烧成温度高,烧成速度快(提高窑的快转率),冷却速度快(窑内冷却带短,选用新型冷却机),可形成较多的硅酸盐矿物和玻璃体,C3A、C4AF大部分固溶于A矿及形成玻璃体。
这种熟料磨制的水泥性能优良。
受湿法窑的预烧能力及热力强度的限制,配料的硅酸率难与预分解窑相比,但也应尽量提高硅酸率,一般来说湿法窑窑内冷却带较长,烧成温度、速度及冷却速度均不及预分解窑,故铝氧率不宜过高。
4.2、优化水泥的颗粒分布对比实验证明,水泥颗粒的连续级配及紧密堆积;增加30um以下的颗粒含量;控制适宜的水泥比表面积;是优化水泥颗粒分布的三个目标值。
这对于减小水泥标准稠度用水量,减少配制混凝土的需水量,改善与外加剂的相容性,提高水泥、混凝土的强度及混凝土耐久性均有利。
初步的对比结果表明:开流粉磨系统磨制的水泥(比表面积在360~390m2/kg)更有利于性能的最优化。
若考虑系统的节能或水泥颗粒分布的可调性,实现最优化等因素,应选用哪种粉磨系统及设备磨制水泥尚需进一步对比研究。
水泥颗粒的球形化无疑对水泥性能有利,但国内目前难以实现。
4.3、混合材的优化从水泥的高性能化考虑,水泥中应少掺或不掺混合材。
混合材的加入会降低水泥的胶砂强度及与外加剂的相容性。
混合材宜采用掺合料形式在配制混凝土时,根据混凝土性能的需要酌情加入。
高性能水泥若要掺加混合材,应选择矿渣、石灰石、优质粉煤灰等材料,掺量不宜过多。
4.4、熟料配方、水泥颗粒分布的设定还应尽量考虑降低水泥水化热、泌水率、收缩等性能。