27.2.1 第1课时 平行线分线段成比例
- 格式:doc
- 大小:1.10 MB
- 文档页数:3
平行线分线段成比例(续表)(续表)(续表)【学习目标】 1.知识层面(1)理解相似三角形的概念,了解相似三角形的对应元素及相似比;(2)掌握判定三角形相似的预备定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似. 2.能力层面(1)经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力;(2)通过相似多边形和三角形全等的条件类比,体会类比的教学思想,领会特殊与一般的关系. 【学习重难点】1.重点:掌握相似三角形的概念及判定两个三角形相似的预备定理,会运用预备定理判定两个三角形相似.2.难点:会准确的运用判定两个三角形相似的预备定理来判断两个三角形是否相似. 课前延伸 【知识梳理】1.相似多边形的性质:__对应角相等__,__对应边成比例__.2. 如图27-2-24,已知△ADE ∽△ABC ,AD =6 cm ,DB =3 cm ,BC =9.9 cm ,∠B =50°,则∠ADE =__50°__,DE =____ cm.图27-2-243.已知在△ABC 中,D ,E 分别是AB ,AC 的中点,则∠ADE =__∠B __,∠AED =__∠C __,DE BC __12__. 课内探究一、课堂探究1(a问题探究,自主学习)1.问题解决:如图27-2-25,在△ABC中,D是边AB的中点,DE∥BC,DE交AC于点E,△ADE与△ABC有什么关系?图27-2-25二、课堂探究2(分组讨论,合作探究)在课堂探究1问题的基础上,改变点D在AB上的位置,先自己画图、测量验证、猜想△ADE 与△ABC是否仍相似.(1)若点D为线段AB上任意一点,则△ADE与△ABC有什么关系?(2)若点D为AB延长线上任意一点,则△ADE与△ABC有什么关系?归纳:__平行于三角形一边的直线和其他两边(或延长线)相交,_所构成的三角形与原三角形相似__.几何语言:如图27-2-26,在△ABC中,∵__DE∥BC__,∴__△ADE∽△ABC__.图27-2-26三、反馈训练(可以设计成必做题与选做题两类,分层要求)1.如图27-2-27,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.图27-2-27 图27-2-282.如图27-2-28,已知在△ABC中,DE∥BC.(1)如果AD=2,DB=3,求DE∶BC的值;(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长.3.如图27-2-29,在△ABC中,DE∥AB,BD=8,CD=6,AE=4,则CE的长为(B)A . 6B . 163C . 4D . 3图27-2-29 图27-2-304.如图27-2-30,已知菱形BEDF 内接于△ABC ,点E ,D ,F 分别在AB ,AC 和BC 上.若AB =15 cm, BC =12 cm ,求菱形的边长. 课后提升一、课后练习题(1-6为必做题,7、8为选做题):1.如图27-2-31,AB ∥CD, AE ∥FD ,AE ,FD 分别交BC 于点G ,H ,则图中与△CEG 相似的三角形 有( B )A . 2个B . 3个C . 4个D . 5个图27-2-31 图27-2-32 图27-2-33 图27-2-342.如图27-2-32,DE ∥BC ,EO =6,OC =15,则△OED ∽__△OCB __,相似比为__2∶5__. 3.如图27-2-33,已知在△ABC 中,EF ∥GH ∥IJ ∥BC ,则图3中相似三角形共有__6__对. 4.如图27-2-34,在▱ABCD 中,EF ∥AB ,DE ∶EA =2∶3,EF =4,求CD 的长.5.如图27-2-35,在△ABC 中,DE ∥BC ,AD =EC ,DB =1 cm ,AE =4 cm ,BC =5 cm ,求DE 的长.图27-2-35 图27-2-366.如图27-2-36,在▱ABCD 中,E 是BC 上一点,BE ∶EC =2∶3,AE 交BD 于点F ,求BF ∶FD .word11 / 11 7.如图27-2-37,在Rt △ABC 中,∠C =90°,三角形中有一内接正方形DEFC ,连接AF 交DE 于点G ,AC =15,BC =10,求GE.图27-2-37 图27-2-388.如图27-2-38,四边形ABCD 和四边形ACED 都是平行四边形,R 为DE 的中点,BR 分别交AC ,CD 于点P ,Q .(1)请写出图中各对相似三角形(相似比为1的除外);(2)求BP ∶PQ ∶QR .。
部审人教版九年级数学下册教学设计27.2.1 第1课时《平行线分线段成比例》一. 教材分析人教版九年级数学下册第27.2.1节《平行线分线段成比例》是初中数学的重要内容,主要讲述了在两平行线之间,如果一条直线截取了这两条平行线之间的线段,那么被截得的线段长度之比等于这两条平行线之间的距离之比。
这部分内容是学生学习几何中的重要基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的几何基础知识,对平行线、线段等概念有一定的理解。
但是,对于如何运用这些基础知识来解决实际问题,部分学生可能还存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行引导和讲解。
三. 教学目标1.知识与技能:使学生掌握平行线分线段成比例的定理及应用。
2.过程与方法:通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作和探究精神。
四. 教学重难点1.重点:平行线分线段成比例的定理及应用。
2.难点:如何灵活运用平行线分线段成比例定理解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入课题,激发学生的学习兴趣。
2.启发式教学法:引导学生主动探究、发现规律,培养学生的逻辑思维能力。
3.合作学习法:学生进行小组讨论,提高学生的团队协作能力。
六. 教学准备1.准备相关的生活实例和图片,用于导入和讲解。
2.准备练习题和拓展题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)利用生活实例或图片,引导学生关注平行线分线段成比例的现象,激发学生的学习兴趣。
例如,展示两栋楼之间的道路,让学生观察道路两侧的树木是否按照一定的比例生长。
2.呈现(10分钟)讲解平行线分线段成比例的定理,并通过几何图形进行展示。
引导学生理解定理的含义,并学会如何运用定理。
3.操练(10分钟)让学生进行一些相关的练习题,巩固对平行线分线段成比例定理的理解。
部审人教版九年级数学下册说课稿27.2.1 第1课时《平行线分线段成比例》一. 教材分析《平行线分线段成比例》是人教版九年级数学下册第27.2.1节的内容,本节课主要介绍了平行线分线段成比例的定理及其应用。
教材通过生活中的实例引入平行线分线段成比例的概念,让学生感受数学与生活的紧密联系。
紧接着,教材引导学生通过观察、思考、探索,发现平行线分线段成比例的规律,培养学生的逻辑思维能力和探究能力。
最后,教材提供了丰富的练习题,帮助学生巩固所学知识,提高解题能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对平行线、线段等概念有一定的了解。
但是,对于平行线分线段成比例的定理及其应用,学生可能较为陌生。
因此,在教学过程中,教师需要注重引导学生建立知识间的联系,激发学生的学习兴趣,帮助学生理解和掌握平行线分线段成比例的定理。
三. 说教学目标1.知识与技能目标:使学生掌握平行线分线段成比例的定理,并能运用定理解决实际问题。
2.过程与方法目标:通过观察、思考、探索,培养学生的逻辑思维能力和探究能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,感受数学与生活的紧密联系,培养学生的团队协作精神。
四. 说教学重难点1.教学重点:平行线分线段成比例的定理及其应用。
2.教学难点:平行线分线段成比例定理的发现和证明。
五. 说教学方法与手段1.教学方法:采用问题驱动、合作探究的教学方法,引导学生主动参与课堂,提高学生的学习兴趣和积极性。
2.教学手段:利用多媒体课件、实物模型等辅助教学,帮助学生形象直观地理解平行线分线段成比例的定理。
六. 说教学过程1.导入新课:通过生活中的实例,引导学生关注平行线分线段成比例的现象,激发学生的学习兴趣。
2.探究新知:学生进行观察、思考、探索,引导学生发现平行线分线段成比例的规律,进而得出定理。
3.讲解与演示:对平行线分线段成比例的定理进行详细讲解,利用多媒体课件和实物模型进行演示,帮助学生理解定理。
27.2.1 相似三角形的判定第1课时 平行线分线段成比例1.了解相似比的定义;(重点)2.掌握平行线分线段成比例定理的基本事实以及利用平行线法判定三角形相似;(重点)3.应用平行线分线段成比例定理及平行线法判定三角形相似来解决问题.(难点)一、情境导入如图,在△ABC 中,D 为边AB 上任一点,作DE ∥BC ,交边AC 于E ,用刻度尺和量角器量一量,判断△ADE 与△ABC 是否相似.二、合作探究探究点一:相似三角形的有关概念如图所示,已知△OAC ∽△OBD ,且OA =4,AC =2,OB =2,∠C =∠D ,求:(1)△OAC 和△OBD 的相似比;(2)BD 的长.解析:(1)由△OAC ∽△OBD 及∠C =∠D ,可找到两个三角形的对应边,即可求出相似比;(2)根据相似三角形对应边成比例,可求出BD 的长.解:(1)∵△OAC ∽△OBD ,∠C =∠D ,∴线段OA 与线段OB 是对应边,则△OAC 与△OBD 的相似比为OA OB =42=21; (2)∵△OAC ∽△OBD ,∴AC BD =OA OB ,∴BD =AC ·OB OA =2×24=1.方法总结:相似三角形的定义既是相似三角形的性质,也是相似三角形的判定方法.变式训练:见《学练优》本课时练习“课堂达标训练”第1题探究点二:平行线分线段成比例定理【类型一】平行线分线段成比例的基本事实如图,直线l1、l2、l3分别交直线l4于点A、B、C,交直线l5于点D、E、F,直线l4、l5交于点O,且l1∥l2∥l3,已知EF∶DF=5∶8,AC=24.(1)求CBAB的值;(2)求AB的长.解析:(1)根据l1∥l2∥l3推出CBAB=EFDE;(2)根据l1∥l2∥l3,推出EFDF=BCAC=58,代入AC=24求出BC即可求出AB.解:(1)∵l1∥l2∥l3,∴CBAB=EFDE.又∵DF∶DF=5∶8,∴EF∶DE=5∶3,∴CBAB=53;(2)∵l1∥l2∥l3,EF∶DF=5∶8,AC=24,∴EFDF=BCAC=58,∴BC=15,∴AB=AC-BC=24-15=9.方法总结:运用平行线分线段成比例定理时,一定要注意正确书写对应线段的位置.变式训练:见《学练优》本课时练习“课堂达标训练”第3题【类型二】平行线分线段成比例的基本事实的推论如图所示,已知△ABC中,DE∥BC,AD=2,BD=5,AC=5,求AE的长.解析:根据DE∥BC得到ADAB=AEAC,然后根据比例的性质可计算出AE的长.解:∵DE ∥BC ,∴AD AB =AE AC ,即22+5=AE 5,∴AE =107. 方法总结:解题的关键是深入观察图形,准确找出图形中的对应线段,正确列出比例式.变式训练:见《学练优》本课时练习“课堂达标训练”第4题探究点三:相似三角形的引理【类型一】 利用相似三角形的引理判定三角形相似如图,在▱ABCD 中,E 为AB 延长线上的一点,AB =3BE ,DE 与BC 相交于点F ,请找出图中所有的相似三角形,并求出相应的相似比.解析:由平行四边形的性质可得:BC ∥AD ,AB ∥CD ,进而可得△EFB ∽△EDA ,△EFB ∽△DFC ,再进一步求解即可.解:∵四边形ABCD 是平行四边形,∴BC ∥AD ,AB ∥CD ,∴△EFB ∽△EDA ,△EFB ∽△DFC ,∴△DFC ∽△EDA ,∵AB =3BE ,∴相似比分别为1∶4,1∶3,3∶4.方法总结:求相似比不仅要找准对应边,还需要注意两个三角形的先后顺序. 变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】 利用相似三角形的引理求线段的长如图,已知AB ∥EF ∥CD ,AD 与BC 相交于点O.(1)如果CE =3,EB =9,DF =2,求AD 的长;(2)如果BO ∶OE ∶EC =2∶4∶3,AB =3,求CD 的长.解析:(1)根据平行线分线段成比例可求得AF =6,则AD =AF +FD =8;(2)根据平行线AB ∥CD 分线段成比例知BO ∶OE =AB ∶EF ,结合已知条件求得EF =6;同理由EF ∥CD 推知EF 与CD 之间的数量关系,从而求得CD =10.5.解:(1)∵CE =3,EB =9,∴BC =CE +EB =12.∵AB ∥EF ,∴FO AF =EO EB ,则FO EO =AF EB.又∵EF ∥CD ,∴FO FD =EO EC ,则FO EO =FD EC ,∴AF EB =FD EC ,即AF 9=23,∴AF =6,∴AD =AF +FD =6+2=8,即AD 的长是8;(2)∵AB ∥CD ,∴BO ∶OE =AB ∶EF.又∵BO ∶OE =2∶4,AB =3,∴EF =6.∵EF ∥CD ,∴OE OC =EF CD .又∵OE ∶EC =4∶3,∴OE OC =47,∴EF CD =47,∴CD =74EF =10.5,即CD 的长是10.5. 方法总结:运用平行线分线段成比例的基本事实的推论一定要找准对应线段,以防解答错误.变式训练:见《学练优》本课时练习“课堂达标训练”第6题三、板书设计1.相似三角形的定义及有关概念;2.平行线分线段成比例定理及推论;3.相似三角形的引理.本节课宜采用探究式教学,教师在教学中是学生学习的组织者、引导者、合作者和共同研究者.鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新.上课时教师只在关键处点拨,在不足时补充.教师与学生平等地交流,创设民主、和谐的学习氛围.。
27.2.1 相似三角形的判定 第1课时 平行线分线段成比例
1.了解相似比的定义;(重点)
2.掌握平行线分线段成比例定理的基本事实以及利用平行线法判定三角形相似;(重点)
3.应用平行线分线段成比例定理及平行线法判定三角形相似来解决问题.(难点)
一、情境导入
如图,在△ABC 中,D 为边AB 上任一点,作DE ∥BC ,交边AC 于E ,用刻度尺和量角器量一量,判断△ADE 与△ABC 是否相似.
二、合作探究
探究点一:相似三角形的有关概念
如图所示,已知△OAC ∽△OBD ,且OA =4,AC =2,OB =2,∠C =∠D ,求:
(1)△OAC 和△OBD 的相似比;
(2)BD 的长.
解析:(1)由△OAC ∽△OBD 及∠C =∠D ,可找到两个三角形的对应边,即可求出相似比;(2)根据相似三角形对应边成比例,可求出BD 的长.
解:(1)∵△OAC ∽△OBD ,∠C =∠D ,∴线段OA 与线段OB 是对应边,则△OAC 与
△OBD 的相似比为OA OB =42=21
; (2)∵△OAC ∽△OBD ,∴AC BD =OA OB ,∴BD =AC ·OB OA =2×24
=1. 方法总结:相似三角形的定义既是相似三角形的性质,也是相似三角形的判定方法. 变式训练:见《学练优》本课时练习“课堂达标训练” 第1题
探究点二:平行线分线段成比例定理
【类型一】 平行线分线段成比例的基本事实
如图,直线l 1、l 2、l 3分别交直线l 4于点A 、B 、C ,交直线l 5于点D 、E 、F ,直线l 4、l 5交于点O ,且l 1∥l 2∥l 3,已知EF ∶DF =5∶8,AC =24.
(1)求CB AB
的值;
(2)求AB 的长.
解析:(1)根据l 1∥l 2∥l 3推出CB AB =EF DE ;(2)根据l 1∥l 2∥l 3,推出EF DF =BC AC =58
,代入AC =24求出BC 即可求出AB .
解:(1)∵l 1∥l 2∥l 3,∴CB AB =EF DE .又∵DF ∶DF =5∶8,∴EF ∶DE =5∶3,∴CB AB =53
; (2)∵l 1∥l 2∥l 3,EF ∶DF =5∶8,AC =24,∴EF DF =BC AC =58
,∴BC =15,∴AB =AC -BC =24-15=9.
方法总结:运用平行线分线段成比例定理时,一定要注意正确书写对应线段的位置. 变式训练:见《学练优》本课时练习“课堂达标训练” 第3题
【类型二】 平行线分线段成比例的基本事实的推论
如图所示,已知△ABC 中,DE ∥BC ,AD =2,BD =5,AC =5,求AE 的长.
解析:根据DE ∥BC 得到AD AB =AE AC
,然后根据比例的性质可计算出AE 的长. 解:∵DE ∥BC ,∴AD AB =AE AC ,即22+5=AE 5
,∴AE =107. 方法总结:解题的关键是深入观察图形,准确找出图形中的对应线段,正确列出比例式. 变式训练:见《学练优》本课时练习“课堂达标训练”第4题
探究点三:相似三角形的引理
【类型一】 利用相似三角形的引理判定三角形相似
如图,在▱ABCD 中,E 为AB 延长线上的一点,AB =3BE ,DE 与BC 相交于点F ,请找出图中所有的相似三角形,并求出相应的相似比.
解析:由平行四边形的性质可得:BC ∥AD ,AB ∥CD ,进而可得△EFB ∽△EDA ,△EFB ∽△DFC ,再进一步求解即可.
解:∵四边形ABCD 是平行四边形,∴BC ∥AD ,AB ∥CD ,∴△EFB ∽△EDA ,△EFB ∽△DFC ,∴△DFC ∽△EDA ,∵AB =3BE ,∴相似比分别为1∶4,1∶3,3∶4.
方法总结:求相似比不仅要找准对应边,还需要注意两个三角形的先后顺序.
变式训练:见《学练优》本课时练习“课堂达标训练”第5题
【类型二】 利用相似三角形的引理求线段的长
如图,已知AB ∥EF ∥CD ,AD 与BC 相交于点O . (1)如果CE =3,EB =9,DF =2,求AD 的长;
(2)如果BO ∶OE ∶EC =2∶4∶3,AB =3,求CD 的长.
解析:(1)根据平行线分线段成比例可求得AF =6,则AD =AF +FD =8;(2)根据平行线AB ∥CD 分线段成比例知BO ∶OE =AB ∶EF ,结合已知条件求得EF =6;同理由EF ∥CD 推知EF 与CD 之间的数量关系,从而求得CD =10.5.
解:(1)∵CE =3,EB =9,∴BC =CE +EB =12.∵AB ∥EF ,∴FO AF =EO EB ,则FO EO =AF EB
.又∵EF ∥CD ,∴FO FD =EO EC ,则FO EO =FD EC ,∴AF EB =FD EC ,即AF 9=23
,∴AF =6,∴AD =AF +FD =6+2=8,即AD 的长是8;
(2)∵AB ∥CD ,∴BO ∶OE =AB ∶EF .又∵BO ∶OE =2∶4,AB =3,∴EF =6.∵EF ∥CD ,∴OE OC =EF CD .又∵OE ∶EC =4∶3,∴OE OC =47,∴EF CD =47,∴CD =74
EF =10.5,即CD 的长是10.5.
方法总结:运用平行线分线段成比例的基本事实的推论一定要找准对应线段,以防解答错误.
变式训练:见《学练优》本课时练习“课堂达标训练”第6题
三、板书设计
1.相似三角形的定义及有关概念;
2.平行线分线段成比例定理及推论;
3.相似三角形的引理.
本节课宜采用探究式教学,教师在教学中是学生学习的组织者、引导者、合作者和共同研究者.鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新.上课时教师只在关键处点拨,在不足时补充.教师与学生平等地交流,创设民主、和谐的学习氛围.。