用“定积分法”探索数列不等式放缩、裂项的目标
- 格式:pdf
- 大小:804.06 KB
- 文档页数:3
热点追踪Җ㊀广东㊀李文东㊀㊀不等式的证明是高考的重要内容,证明的方法多㊁难度大,特别是一些数列和型的不等式.这类不等式常见于高中数学竞赛题和高考压轴题中,由于证明难度较大,往往令人望而生畏.其中有些不等式若利用定积分的几何意义证明,则可达到以简驭繁㊁以形助数的解题效果.1㊀利用定积分证明数列和型不等式数列和型不等式的一般模式为ðni =1a i <g (n )(或ðni =1a i >g (n )),g (n )可以为常数.不失一般性,设数列a n =f (n )>0,此类问题可以考虑如下的定积分证明模式.(1)若f (x )单调递减.因为f (i )<ʏii -1f (x )d x ,从而ðni =1a i =ðn i =1f (i )<ðni =1ʏii-1f (x )d x =ʏn0f (x )d x .㊀㊀又因为ʏi i -1f (x )d x <f (i -1),从而ʏn +11f (x )d x =ðn +1i =2ʏi i-1f (x )d x <ðn +1i =2f (i -1)=ðni =1a i.㊀㊀(2)若f (x )单调递增.因为f (i )>ʏi i -1f (x )d x ,从而ðni =1a i=ðni =1f (i )>ðni =1ʏii-1f (x )d x =ʏn0f (x )d x .㊀㊀又因为ʏii -1f (x )d x >f (i -1),从而ʏn +11f (x )d x =ðn +1i =2ʏii-1f (x )d x >ðn +1i =2f (i -1)=ðni =1a i .例1㊀(2013年广东卷理19,节选)证明:1+122+132+ +1n2<74(n ɪN ∗).分析㊀本题证法大多采用裂项放缩来证明,为了得到更一般的结论,我们这里采用定积分来证明.证明㊀因为函数y =1xα(α>0且αʂ1)在(0,+ɕ)上单调递减,故ʏii -11x αd x >1iα(i ȡ3),从而当αʂ1时,ðni =11i α<1+12α+ðni =3ʏii -11x αd x =1+12α+ʏn21x αd x =1+12α-1(α-1)x α-1n 2=1+12α+1(α-1)2α-1-1(α-1)nα-1.㊀㊀利用这个不等式可以得到一些常见的不等式.若α=12,则ðn i =11i<1-32+2n =2n -1+(2-32)<2n -1.㊀㊀当α>1时,ðni =11iα<1+12α+1(α-1)2α-1=1+α+1α-1 12α.特别地,若α=2,则ðni =11i 2<1+2+12-1 122=74;若α=3,则ðni =11i3<1+3+13-1 123=54;若α=32,则ðni =11ii<1+32+132-1 1232=1+524<3;若α=1,则1n<ʏnn -11x d x =l n x nn -1=l n n -l n (n -1),从而可以得到12+13+ +1n +1<ʏn +111xd x =l n (n +1),1n +1+1n +2+ +12n<ʏ2nn1xd x =l n2.㊀㊀另一方面,1n -1>ʏnn -11xd x =l n x n n -1=l n n -l n (n -1),则1+12+13+ +1n -1>ʏn11x d x =l n n .㊀㊀当α=1时,借助定积分的几何意义上述不等式42热点追踪还可以进一步加强.图1是函数y =1x的部分图象,显然S 曲边梯形A B C F <S 梯形A B C F ,于是ʏn +1n1x d x <12(1n +1n +1),得l n (1+1n )<12(1n +1n +1),令n =1,2, ,n ,并采用累加法可得1+12+13+ +1n>l n (n +1)+n2(n+1)(n ȡ1).图1例2㊀证明:l n 42n +1<ðni =1i4i 2-1(n ɪN ∗).分析㊀由于i 4i 2-1=14(12i -1+12i +1),l n 42n +1=14l n (2n +1),故证明l n (2n +1)<ðni =1(12i -1+12i +1).构造函数f (x )=12x +1,显然f (x )单调递减,考虑到ðni =1(12i -1+12i +1)的结构,对函数f (x )采用类似图1中的梯形面积放缩.证明㊀由分析得ʏii -112x +1d x <12(12i -1+12i +1),故12l n (2n +1)=ʏn012x +1d x =ðni =1ʏii -112x +1d x <12ðni =1(12i -1+12i +1),不等式两边除以12即为所证.例3㊀证明13+15+17+ +12n +1<12l n (n +1)(n ɪN ∗).分析㊀若考虑函数y =12x +1,则有12i +1<ʏii -112x +1d x ,则ðni =112i +1<ðni =1ʏii -112x +1d x =ʏn012x +1d x =12l n (2x +1)n0=12l n (2n +1),达不到所证的精度,必须改变定积分放缩的精度.证明㊀结合不等式的右边,考虑函数f (x )=1x.如图2所示,在区间[i ,i +1]上,取区间的中点i +12,并以1i +12为高作矩形A E F B ,则S 矩形A E F B <ʏi +1i 1x d x .于是有22i +1=1i +12<ʏi +1i1xd x ,则ðni =122i +1<ðni =1ʏi +1i1xd x =ʏn +111xd x =l n (n +1),即ðn i =112i +1<12ln (n +1).图2例4㊀设n 是正整数,r 为正有理数.(1)求函数f (x )=(1+x )r +1-(r +1)x -1(x >-1)的最小值;(2)证明:n r +1-(n -1)r +1r +1<n r<(n +1)r +1-nr +1r +1;(3)设x ɪR ,记[x ]为不小于x 的最小整数,例如[2]=2,[π]=4,[-32]=-1.令S =381+382+383+ +3125,求[S ]的值.(参考数据:8043ʈ344 7,8143ʈ350 5,12543ʈ625 0,12643ʈ631 7.)分析㊀出题者的本意是利用第(1)问中的伯努利不等式来证明后两问,但这里我们利用积分来证明.证明㊀(1)f m i n (x )=0(求解过程略).(2)因为r 为正有理数,函数y =x r 在(0,+ɕ)上单调递增,故ʏnn -1x r d x <nr,而52热点追踪ʏnn -1x rd x =x r +1r +1n n -1=n r +1-(n -1)r +1r +1,故n r +1-(n -1)r +1r +1<n r.同理可得n r<ʏn +1n x rd x =x r +1r +1n +1n =(n +1)r +1-n r +1r +1,从而n r +1-(n -1)r +1r +1<n r<(n +1)r +1-n r +1r +1.(3)由于i 13<ʏi +1i x 13d x <(i +1)13,故S =ð125i =81i13<ð125i =81ʏi +1ix 13dx =ʏ12681x 13dx =34x 4312681=34(12643-8143),34(12543-8043)=34x 4312580=ʏ12580x 13d x =ð124i =80ʏi +1ix 13d x <ð124i =80(i +1)13=S .34(12543-8043)<S <34(12643-8043).代入数据,可得34(12543-8043)ʈ210.2,34(12643-8143)ʈ210.9.由[S ]的定义,得[S ]=211.2㊀利用积分证明函数不等式我们知道ʏx 2x 1fᶄ(x )d x =f (x 2)-f (x 1),因此,对于与f (x 2)-f (x 1)有关的问题,可以从定积分的角度去思考.若f (x )的导数f ᶄ(x )在区间(a ,b )上单㊀图3调递减且f ᶄ(x )为凹函数,如图3所示.设A C 的中点为B ,过点B 作B G ʅx 轴与f (x )交于点G ,过点G 作f (x )的切线与直线AH 和C D 分别交于点F 和I .设A (x 1,0),C (x 2,0),则f (x 2)-f (x 1)=ʏx 2x 1fᶄ(x )d x =S 曲边梯形A C J H ,S 矩形A C D E =f ᶄ(x 2+x 12)(x 2-x 1).因为S 曲边三角形E G H >S әE F G =S әD I G >S 曲边三角形J D G ,S 曲边梯形A C J H -S 矩形A C D E =S 曲边三角形E G H -S 曲边三角形J D G >0,于是有f (x 2)-f (x 1)x 2-x 1>f ᶄ(x 2+x 12).借助上述几何意义,一般地我们有如下结论.(1)若函数f (x )的导数f ᶄ(x )在区间(a ,b )上为凹函数,则对于任意的a <x 1<x 2<b ,有f (x 2)-f (x 1)x 2-x 1>f ᶄ(x 2+x 12);(2)若函数f (x )的导数f ᶄ(x )在区间(a ,b )上为凸函数,则对于任意的a <x 1<x 2<b ,有f (x 2)-f (x 1)x 2-x 1<f ᶄ(x 2+x12).例5㊀(1)函数f (x )=l n x ,因为f ᶄ(x )=1x在(0,+ɕ)上为凹函数,则对任意0<x 1<x 2,有l n x 2-l n x 1x 2-x 1>1x 2+x 12,即x 2-x 1l n x 2-l n x 1<x 1+x 22,此为对数均值不等式.(2)函数f (x )=x l n x ,因为f ᶄ(x )=1+l n x 在(0,+ɕ)上为凸函数,则对任意0<x 1<x 2,有x 2l n x 2-x 1l n x 1x 2-x 1<1+l n x 2+x 12.许多考题都是以此为背景命题,比如,如下高三模拟考试的压轴题.例6㊀已知函数f (x )=l n x -a x 22+(a -1)x -32a(a >0),在函数f (x )的图象上是否存在不同两点A (x 1,y 1),B (x 2,y 2),线段A B 中点的横坐标为x 0,直线A B 的斜率为k ,使得k >f ᶄ(x 0).简证㊀由于f ᶄ(x )=1x-a x +a -1(a >0)在(0,+ɕ)上为凹函数,可见结论成立!例7㊀设函数f (x )=xex ,若x 1ʂx 2,且f (x 1)=f (x 2),证明:x 1+x 2>2.分析㊀本题的本质是极值点偏移问题,常见证法是利用对称性构造函数,这里采用定积分来证明.证明㊀不妨设x 1<x 2,由f ᶄ(x )=1-x ex ,可知f (x )在(-ɕ,1]上单调递增,在[1,+ɕ)上单调递减,且f (0)=0.当x >0时,f (x )>0,可知0<x 1<1<x 2.设x 1e x 1=x 2e x 2=t ,则x 1+x 2=t (e x 1+e x 2),x 2-x 1=t (e x 2-e x 1),考虑函数y =e x ,则根据定积分的梯形面积放缩有e x 2-e x 1=ʏx 2x 1e xd x <(e x 1+e x2)(x 2-x 1)2,则x 2-x 1t <12 x 2+x 1t(x 2-x 1),故x 1+x 2>2.(作者单位:广东省中山市中山纪念中学)62。
放缩裂项求和与放缩等比求和证明不等式摘要:常见的数列不等式大多与数列求和或求积有关,放缩的目的是为了能求和,利用裂项相消求和或等比数列的求和公式求和。
关键词:不等式等比数列裂项放缩分母有理化平方差公式检验指数函数的单调性放缩法证明不等式是数列与函数中的难点内容,在历年全国各地高考试题和模拟题中都有考查。
放缩法灵活多变,考同学们的洞察力,要求同学们能选准方法,把握好从哪一项开始放能达到证明的目的,并且不忘检验放缩前的几个取值,要求同学们能放到恰到好处,从而顺利答题。
本文了就两种用放缩法求和来证明不等式的方法进行了阐述。
1.放缩裂项求和问题1:证明对一切正整数,(1)有;;(2)有(3)有。
分析:在必修5,我们只掌握了简单数列及等差和等比数列的求和,这三个不等式的左边是一个数列的前n项和,右边是一个常数,显然这一数列既不是我们熟悉的等差数列也不是我们熟悉的等比数列,我们没法求将其前n项和求出,考滤到本问题是证明不等式,我们只需证明不等式左边的式子不大于一个比右边的常数小的可求和的式子,于是想到可通过放大成可裂项相消求和的数列。
常见的几种形式的放缩裂项:1. =;= =;== =;(以上三种对的放缩,显然第一种是放得最大的,第三种是放得最小的,通常放缩的尺度越小越好)2. ;3.。
例1(2013广东19)设数列的前项和为,已知,,1.求的值;(2)求数列的的通项公式;(3)证明对一切正整数,有。
要证证明:由(2)得,∴。
即证法一(选=放缩)成立;①当时,不等式为,成立;②当时,不等式为,③当时,综上可得对一切正整数,成立。
法二(选==放缩)①当时,不等式为成立;,②当时,综上可得对一切正整数,成立。
法三(选===放缩)成立;①当时,不等式为,②当时,对一切正整数,成立。
综上可得小结:选=放缩,需检验,从第三项开始放才能证出;选==放缩,只需检验,从第二项开始放可以证出;选===放缩,也是只需检验,从第二项开始放可以证出。
证明不等式的定积分放缩法定积分放缩法是一种常用的证明不等式的方法,它的基本思想是通过对不等式两边进行积分,利用积分的性质来证明不等式的正确性。
具体来说,我们可以通过放缩被积函数的大小,从而得到一个更加简单的不等式,进而证明原不等式的正确性。
下面我们以一个简单的例子来说明定积分放缩法的具体应用。
假设我们要证明如下不等式:$$\int_0^1 x^2 dx \leq \frac{1}{3}$$我们可以通过放缩被积函数$x^2$ 的大小来证明该不等式。
具体来说,我们可以将 $x^2$ 放缩为 $x$,即:$$x^2 \leq x, \quad 0 \leq x \leq 1$$因此,我们可以得到如下不等式:$$\int_0^1 x^2 dx \leq \int_0^1 x dx$$对右侧的积分进行计算,可以得到:$$\int_0^1 x dx = \frac{1}{2}$$因此,我们可以得到如下结论:$$\int_0^1 x^2 dx \leq \frac{1}{2}$$但是,这个结论并不能证明原不等式的正确性。
为了进一步放缩被积函数的大小,我们可以将 $x$ 放缩为 $1$,即:$$x \leq 1, \quad 0 \leq x \leq 1$$因此,我们可以得到如下不等式:$$\int_0^1 x dx \leq \int_0^1 1 dx$$对右侧的积分进行计算,可以得到:$$\int_0^1 1 dx = 1$$因此,我们可以得到如下结论:$$\int_0^1 x dx \leq 1$$综合以上两个结论,我们可以得到如下不等式:$$\int_0^1 x^2 dx \leq \frac{1}{2} \leq \frac{1}{3}$$因此,原不等式得证。
可以看出,通过定积分放缩法,我们成功地证明了该不等式的正确性。
总的来说,定积分放缩法是一种常用的证明不等式的方法,它的基本思想是通过放缩被积函数的大小,从而得到一个更加简单的不等式,进而证明原不等式的正确性。
数列不等式证明题经常出现在各类试题中.此类问题具有较强的综合性,且难度较大.解答此类问题,需仔细观察和研究数列,明确其特征和规律,并进行恰当的放缩.下面,笔者介绍两种运用放缩法证明数列不等式问题的思路.一、通过裂项进行放缩裂项相消法是求数列和的常用方法.对于通项公式为分式的数列不等式,可首先将数列的通项公式进行适当的变形,如通分、放缩、拆分,将其转化两项之差的形式,然后利用裂项相消法进行求和,再将所得的结果与求证目标进行对比,最后通过适当的放缩,根据不等式的传递性证明不等式.例1.设T n是数列{}a n的前n项之积,T n=1-a n(n∈N*).(1)求{}a n的通项公式;(2)设S n=T12+T12+…+T n2,求证:a n+1-12<S n<a n+1-13.证明:(1)a n=n n+1;(过程略)(2)由(1)得T n=a1a2…a n=12∙23∙34∙…∙n n+1=1n+1,故S n=122+132+…+1(n+1)2>12×3+13×4+…+1(n+1)(n+2)=12-1n+2,由a n+1-12=12-1n+2,得S n>a n+1-12.Sn<122-14+132-14+…+1(n+1)2-14=132∙52+152∙72+…+1(n+12)(n+32)=23-1n+32,又an+1-13=n+1n+2-13=23-1n+2>23-1n+32,故S n<a n+1-13.所以a n+1-12<S n<a n+1-13.关于1n2(n∈N*),常见的裂项放缩方法有1n2<1n(n-1)=1n-1-1n(n≥2),1n2<1n2-14=1n-12-1n+12,1n<1n2-1=12(1n-1-1n+1)(n≥2),在解题时可根据题目的条件灵活进行放缩.二、利用函数的单调性进行放缩数列是一类特殊的函数,具有单调性.因而在证明数列不等式时,可灵活运用数列和函数的单调性来求证.通常可根据数列不等式的特点,构造出函数模型,将其视为自变量为自然数的函数,再根据函数单调性的定义、导数与函数单调性之间的关系判断出函数的单调性,即可根据函数的单调性对不等式进行放缩,从而证明结论.例2.求证:ln22+ln33+ln44+…+ln3n3n<3n-5n+66(n∈N*).证明:设f(x)=ln x-x+1,于是f′(x)=1x-1.当x∈(0,1)时,f′(x)=1x-1>0;当x∈(1,+∞)时,f′(x)=1x-1<0,所以函数f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,故f(x)max=f(1)=0,即f(x)=ln x-x+1≤0,可得ln x x≤1-1x,所以ln22+ln33+ln44+…+ln3n3n<3n-1-(12+13+…+13n),因为12+13+…+13n=(12+13)+(14+15+…+19)+…+(12n+12n+1+…+13n)>56+(36+39)+(918+927)+…+(3n-12∙3n-1+3n-13n)=5n6,所以ln22+ln33+ln44+…+ln3n3n<3n-1-5n6=3n-5n+66.利用函数的性质对不等式进行放缩,关键在于构造一个合适的函数模型.这就需要仔细分析目标数列不等式的结构特征,将其进行适当的变形,抽象出一个简单的函数模型,再利用函数的单调性证明不等式.一般地,对于增函数,自变量大的函数值大,自变量小的函数值小;对于减函数,自变量大的函数值小,自变量小的函数值大.总而言之,在运用放缩法解答数列不等式证明题时,首先要根据题意和目标不等式确定放缩的方向,然后将数列的通项公式、前n项和式进行适当的放缩,以便将数列构造成可裂项求和的式子、函数式,再通过裂项,利用函数的单调性对不等式进行放缩,从而证明结论.(作者单位:江苏省盐城市第一中学)陈晓娟思路探寻49。
利用放缩法证明数列型不等式处理数列型不等式最重要要的方法为放缩法。
放缩法的本质是基于最初等的四则运算,利用不等式的传递性,其优点是能迅速地化繁为简,化难为易,达到事半功倍的效果;其难点是变形灵活,技巧性强,放缩尺度很难把握。
对大部分学生来说,在面对这类考题时,往往无从下笔.本文以数列型不等式压轴题的证明为例,探究放缩法在其中的应用,希望能抛砖引玉,给在黑暗是摸索的娃带来一盏明灯。
一、常用的放缩法在数列型不等式证明中的应用1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式问题。
裂项放缩法主要有两种类型:(1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。
例1设数列{}n a 的前n 项的和14122333n n n S a +=-⨯+,1,2,3,n =。
设2nn nT S =,1,2,3,n =,证明:132ni i T =<∑。
证明:易得12(21)(21),3n nn S +=--1132311()2(21)(21)22121n n n n n n T ++==-----, 112231113113111111()()221212212121212121nn i i i n n i i T ++===-=-+-++---------∑∑=113113()221212n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1112121n n +---,然后再求和,即可达到目标。
(2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。
例 2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的前n 和为n S ,2n n n T S S =-; (I )求证:1n n T T +>; (II )求证:当2n ≥时,2n S 71112n +≥。
高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n(3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC T r rr n r(4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn nn 21121)12(21--=- (6) n n n -+<+221:(7))1(21)1(2--<<-+n n nn n(8)n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n nn n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+(14) !)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15))2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i】例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n(2)求证:nn412141361161412-<++++(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222n nn -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案 (4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n!例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n 当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例 4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a<<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知&0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m kk k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证:1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1( ∑=++++++++--=-++---+--=n k m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m nk m nk m m k k n nnn n k m k k111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m n k m n k m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立.例6.已知n n n a 24-=,nn na a a T +++= 212,求证:23321<++++n T T T T .|解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n n n nT -+-=-----=+++-++++= 所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n n n n从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n nn T T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n xn,求证: *))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+|二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n nn∈+-<++++ . 解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n n n+++--<++++ 因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 311212191817161514131213131216533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>--- 所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα 解析:构造函数xx x f ln )(=,得到22ln ln nn nn≤αα,再进行裂项)1(1111ln 222+-<-≤n n nnn ,求和后可以得到答案(函数构造形式: 1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:nn n 1211)1ln(113121+++<+<++++解析:提示:2ln 1ln 1ln 1211ln )1ln(++-++=⋅⋅-⋅+=+ n n n n n n n n n 函数构造形式:x x x x 11ln ,ln -><当然本题的证明还可以运用积分放缩 如图,取函数xx f 1)(=,首先:⎰-<nin ABCFx S1,从而,)ln(ln |ln 11i n n x x i nn i n nin --==<⋅--⎰ 取1=i 有,)1ln(ln 1--<n n n,所以有2ln 21<,2ln 3ln 31-<,…,)1ln(ln 1--<n n n,n n n ln )1ln(11-+<+,相加后可以得到:)1ln(113121+<++++n n 另一方面⎰->ni n ABDExS1,从而有)ln(ln |ln 11i n n x x i i n n i n ni n --==>⋅---⎰ ~取1=i 有,)1ln(ln 11-->-n n n ,所以有nn 1211)1ln(+++<+ ,所以综上有nn n 1211)1ln(113121+++<+<++++ 例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和e n<+⋅⋅++)311()8111)(911(2 .解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n nFE D C BAn-inyxO解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案函数构造形式:)0(13)1ln(1)0(132)1ln(>+>++⇔>+->+x x x x x x x (加强命题)例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,$所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n n a a a n n +==+++证明2n a e <. 解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到nn n a n n aln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n nn a n n a)2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21nn n n a 211ln 2+++≤。
证明数列前n项和不等式的定积分放缩法摘要:本文深入分析数列与函数之间的联系,结合高等数学中数项级数[4]的观点研究高考证明数列前n项和不等式的相关问题。
本着“数形结合”的重要数学思想,抓住数列的本质是数值函数这一特点,另辟蹊径,利用分析学“定积分”这一工具,探究对数列前n项和不等式进行放缩的方法。
关键词:数列;不等式;定积分;数形结合。
数列,高考的重中之重。
而对于数列前n项和不等式的证明更是天津高考的难点。
这类问题大致可以分为两种:如果这样简单分类的话,那么显然第二种题型会比第一种更复杂[2]。
对于第一种题型,题目中已然给出了我们要证明的“对象”,即便我们对原数列“无从下手”,也可以根据“式”的偶性,将不等号右边的式子也看作是某一数列的“和”,再通过“和转项”的方式找到其对应的“项”,从而我们不妨逐项比较,最后累加达到目的。
此外,山穷水复之时,数学归纳法也是个不错的选择。
所以,对于第一种题型来说,有多种比较成熟的应对方法,这里就不逐一列举。
然而,对于第二种题型,“和转项”与归纳法则不再适用。
题目中要求寻找的,类似于这个数列前n项和的“极限”,而这个“极限”则是一个常数。
在处理这一类问题时,我们通常要将原数列的通项进行一定程度的放缩与变形,处理成为一个能够求和的数列,并且由变形后数列的“和”可以进一步证明我们想要的结论(如果将变形后数列的前n项和看作一个函数,那么待证明的常数C通常是这个函数的极限)。
显然,这执行起来十分困难,要求学生有足够的“数学远见”,并且要记一些常用的方法和结论,无疑是“雾里看花”。
因为,即使在这些结论上下了很大功夫,题目稍加变化后,学生们仍是感到“无从下手”。
况且,即便命题人不改变题目的结构,仅仅是将不等式的强度加大,学生在解题时,还是会陷入漫无目的“尝试”。
所以,数列前n项和不等式的证明一直以来都是高考的难点,而那些尽可能巧妙地解决这类问题的方法大多都指向“构造”的思想。
数列专题3一、裂项求和法裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:通项为分式结构,分母为两项相乘,型如:11+•n n a a , }{n a 是0≠d 的等差数列。
常用裂项形式有: ;111)1(1+-=+n n n n 1111()()n n k k n n k =-++;)121121(211)12)(12()2(2+--+=+-n n n n n ; ])2)(1(1)1(1[21)2)(1(1++-+=+-n n n n n n n ; )(11b a ba b a --=+; )(11n k n k n k n -+=++特别地:n n nn -+=++111 二、用放缩法证明数列中的不等式将不等式一侧适当的放大或缩小以达证题目的方法,叫放缩法。
1.常见的数列不等式大多与数列求和或求积有关,其基本结构形式有如下4种:①1n i i ak =<∑(k 为常数);②1()n i i a f n =<∑;③1()n i i a f n =<∏;④1ni i a k =<∏(k 为常数). 放缩目标模型→可求和(积)→等差模型、等比模型、裂项相消模型2.几种常见的放缩方法(1)添加或舍去一些项,如:a a >+12;n n n >+)1((2)将分子或分母放大(或缩小) ①n n n n n 111)1(112--=-< ; 111)1(112+-=+>n n n n n(程度大) ②)1111(21)1)(1(111122+--=+-=-<n n n n n n )2(≥n (程度小) ③1111111121312111<+=++++++≤+++++++n n n n n n n n n 或21221212121312111==+++≥+++++++n n n n n n n n n ④n n n n n n n ==+++>++++111131211 ⑤平方型:)121121(2144441222+--=-<=n n n n n ; )111(41)1(41441)12(122nn n n n n n --=-=-<- ⑥立方型:])1(1)1(1[21)1(1123+--=-<n n n n n n n )2(≥n ⑦指数型: )1()(111≥>-≤--b a b a a b a n n n ;)1()(111≥>-≤--b a b a a b a n n ⑧kk k k k 21111<++=-+; ⑨利用基本不等式,2)1()1(++<+n n n n ,如:4lg 16lg 15lg )25lg 3lg (5lg 3log 2=<=+<⋅(一)放缩目标模型可求和—等比数列或等差数列例如:(1)求证:)(121212121*32N n n ∈<++++ .(2)求证:)(1121121121121*32N n n ∈<++++++++ .(3)求证:)(22323222121*32N n n n n ∈<++++++++ .总结:放缩法证明与数列求和有关的不等式,若1n i i a =∑可直接求和,就先求和再放缩;若不能直接求和的,一般要先将通项n a 放缩后再求和.问题是将通项n a 放缩为可以求和且“不大不小”的什么样的n b 才行呢?其实,能求和的常见数列模型并不多,主要有等差模型、等比模型、错位相减模型、裂项相消模型等. 实际问题中,n b 大多是等比模型或裂项相消模型.(1)先求和再放缩例1.设各项均为正数的数列{a n }的前n 项和为S n ,满足4S n =a n +12-4n -1,n ∈N *,且a 2,a 5,a 14构成等比数列.(1)证明:2a =(2)求数列{a n }的通项公式; (3)证明:对一切正整数n ,有1223111112n n a a a a a a ++++<.(2)先放缩再求和例如:求证:)(2131211*222N n n∈<++++.例如:函数x x x f 414)(+=,求证:)(2121)()2()1(*1N n n n f f f n ∈-+>++++ .例2.设数列{a n }的前n 项和为S n ,满足,且a 1,a 2+5,a 3成等差数列. (1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有.总结:一般地,形如n n n b a a -=或b a a n n -=(这里1≥>b a )的数列,在证明k a a a n<+++11121。