线性规划与单纯形法
- 格式:pptx
- 大小:3.26 MB
- 文档页数:13
单纯形法与线性规划问题线性规划是一种优化问题,其基本形式是在给定的约束条件下,使目标函数最大或最小。
这种问题在工业、商业、农业和社会等领域有着广泛的应用。
在解决线性规划问题时,单纯形法是一种经典和常用的算法。
本文将介绍单纯形法和其在线性规划问题中的应用。
一、单纯形法概述单纯形法是一种基于向量空间的方法,其基本思想是沿着可行解空间中的边缘逐步搜索找到最优解。
单纯形法的运算是建立在基向量的概念上,基向量是指满足线性不可约条件的可行解基组成的向量。
单纯形法的步骤如下:1. 构造首行,确定初始基向量。
2. 选择离目标函数最远并且为正的变量,称为入基变量。
3. 选择离约束最近的基变量,称为出基变量。
4. 通过 Gauss-Jordan 消元法计算新的基向量组,确定更新后的基向量。
5. 重复步骤 2-4 直至无法选择入基变量为止。
6. 找到目标函数的最优解。
二、线性规划问题线性规划问题的一般形式如下:$$\max_{x_1,x_2,\dots,x_n\ge0}f(x_1,x_2,\dots,x_n)$$$$\text{s.t.}\begin{cases}\sum_{j=1}^na_{1j}x_j\le b_1\\\sum_{j=1}^na_{2j}x_j\le b_2\\\dots\dots\\\end{cases}$$其中,$f(x_1,x_2,\dots,x_n)$ 为线性目标函数,$a_{ij}$ 和$b_i$ 均为常数。
三、单纯形法解决线性规划问题1. 转化为标准型单纯形法只能用于标准型的线性规划问题,因此需要将原始问题转化为标准型。
标准型的形式如下:$$\max_{x_1,x_2,\dots,x_n\ge0}\sum_{j=1}^nc_jx_j$$$$\text{s.t.}\begin{cases}\sum_{j=1}^na_{1j}x_j\le b_1\\\sum_{j=1}^na_{2j}x_j\le b_2\\\dots\dots\\\end{cases}$$2. 添加松弛变量将约束条件转化为等式形式时需要添加松弛变量,松弛变量是一种关于决策变量的人工变量,其值可以取负数。
线性规划与单纯形法线性规划(Linear Programming)是一种在资源有限的情况下,通过最优化目标函数来确定最佳解决方案的数学优化方法。
而单纯形法(Simplex Method)则是一种常用的求解线性规划问题的算法。
本文将介绍线性规划与单纯形法的基本概念和运算步骤,以及实际应用中的一些注意事项。
一、线性规划的基本概念线性规划的基本思想是在一组线性不等式约束条件下,通过线性目标函数的最小化(或最大化)来求解最优解。
其中,线性不等式约束条件可表示为:```a1x1 + a2x2 + ... + anxn ≤ b```其中,x1、x2、...、xn为决策变量,a1、a2、...、an为系数,b为常数。
目标函数的最小化(或最大化)可表示为:```min(c1x1 + c2x2 + ... + cnxn)```或```max(c1x1 + c2x2 + ... + cnxn)```其中,c1、c2、...、cn为系数。
二、单纯形法的基本思想单纯形法是由乔治·丹尼尔·丹齐格尔(George Dantzig)于1947年提出的求解线性规划问题的算法。
其基本思想是通过逐步迭代改进当前解,直至达到最优解。
三、单纯形法的运算步骤1. 初等列变换:将线性规划问题转化为标准型,即将所有约束条件转化为等式形式,并引入松弛变量或人工变量。
2. 初始化:确定初始可行解。
通常使用人工变量法来获得一个初始可行解。
3. 检验最优性:计算当前基础解的目标函数值,若目标函数值小于等于零,则该基础解即为最优解。
否则,进入下一步。
4. 基本可行解的变换:选择一个入基变量和一个出基变量,并进行基本变换,得到新的基础解。
5. 迭代求解:根据目标函数值是否小于等于零,判断是否达到最优解。
若达到最优解,则算法终止;若未达到最优解,则返回步骤3进行下一轮迭代。
四、单纯形法的实际应用注意事项1. 线性规划问题的约束条件必须是线性的,且可行解集合必须是有界的。
线性规划的解法线性规划是现代数学中的一种重要分支,它是研究如何在一定约束条件下优化某种目标函数的一种数学方法。
在现实生活中,许多问题都可以用线性规划求解。
如在生产中,如何安排产品的产量才能最大化利润;在运输中,如何安排不同的运输方式最大程度降低成本等等。
线性规划的解法有多种,下面我们就来对其进行详细的介绍。
1. 单纯形法单纯形法是线性规划中最重要的求解方法之一,它是由Dantzig于1947年提出的。
单纯形法的基本思路是从某一个初始解出发,通过挑选非基变量,使得目标函数值逐步减少,直到得到一个最优解。
单纯形法的求解过程需要确定初始解和逐步迭代优化的过程,所以其求解复杂度较高,但是在实际中仍有广泛应用。
2. 对偶线性规划法对偶线性规划法是一种将线性规划问题转化为另一个线性规划问题来求解的方法。
这种方法的主要优势是,它可以用于求解某些无法用单纯形法求解的问题,如某些非线性规划问题。
对偶线性规划法的基本思路是将原问题通过拉格朗日对偶性转化为对偶问题,然后求解对偶问题,最终得到原问题的最优解。
3. 内点法内点法是一种由Nesterov和Nemirovsky于1984年提出的方法,它是一种不需要寻找可行起点的高效的线性规划求解方法。
内点法的基本思路是通过不断向可行域的内部靠近的方式来求解线性规划问题。
内点法的求解过程需要实现某些特殊的算法技术,其求解效率高,可以解决一些规模较大、约束条件复杂的线性规划问题。
4. 分枝定界法分枝定界法是一种通过逐步将线性规划问题分解成子问题来求解的方法。
这种方法的基本思路是,在求解一个较大的线性规划问题时,将其分解成若干个较小的子问题,并在每个子问题中求解线性规划问题,在不断逐步求解的过程中不断缩小问题的规模,最终得到问题的最优解。
总之,不同的线性规划解法各有千秋,根据实际问题的需要来选择合适的求解方法是非常重要的。
希望本文能够对您有所帮助。
第一章线性规划与单纯形法线性规划的英文名称为“Linear Programming”,简称LP,它是运筹学中发展最早、理论与计算方法最成熟的分支,应用十分广泛。
线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好(如产量最多,利润最大,成本最小)。
简单地讲,也就是资源的最优利用问题。
这类问题是在生产管理和经营活动中经常会遇到的。
早在1823年法国数学家傅里叶(Fourier)就提出了与线性规划有关的问题。
1939年,前苏联的经济学家康托洛维奇(Канторович)发表了重要著作《生产组织与计划中的数学方法》,书中针对生产的组织、分配、上料等一系列问题,提出了线性规划的模型,并给出了“解乘数法”的求解方法。
当时这个工作未引起足够的重视。
1947年美国数学家丹捷格(Dantzig)提出了线性规划的一般数学模型和求解线性规划问题的通用方法——单纯形法(Simplex method),这标志着线性规划这一运筹学的重要分支的诞生。
此后,对线性规划的研究日渐受到关注。
1960年康托洛维奇再次发表了《最佳资源利用的经济计算》一书,受到国内外的重视,为此他获得了诺贝尔经济学奖。
此外,阿罗、萨缪尔逊、西蒙、多夫曼和胡尔威茨等一批经济学家也因在线性规划研究中的贡献而获得了诺贝尔奖。
在这批经济学家的努力下,线性规划的理论得到了不断的完善,已发展成为一门成熟的理论。
今天,它已成为一个标准的工具,被广泛地应用于工业、农业、交通运输、军事和经济等各种决策领域,为世界上许多具有相当规模的公司和商业企业节省了数千乃至数百万美元的成本。
本章首先通过几个应用实例,引出线性规划问题并建立其数学模型,介绍线性规划的一些基本概念以及简单情形下的几何解法图解法,然后介绍线性规划的基本理论,讨论它的一般求解方法单纯形法,最后,介绍运用软件WinQSB解线性规划问题。
第一节线性规划问题的数学模型一、线性规划问题的实例在生产管理和经营活动中,通常需要对“有限的资源”寻求“最佳”的利用或分配方案。
第一章线性规划及单纯形法6.6单纯形法小结Drawingontheexampl,thetwoaxisinterceptsareplotted.2、求初始基可行解并进行最优性检验Cj比值CBXBb 检验数?jx1x2x3x4x53500081010012020103634001x3x4x5000035000令非基变量x1=0,x2=0,找到一个初始基可行解:x1=0,x2=0,x3=8,x4=12,x5=36,σj>0,此解不是最优(因为z=3x1+5x2+0x3+0x4+0x5)即X0=(0,0,8,12,36)T,此时利润Z=03、寻找另一基可行解Cj比值CBXBb检验数?jx1x2x3x4x53500081010012020103634001x3x4x5000035000-12/2=636/4=9主元首先确定入基变量再确定出基变量检验数?j81010060101/2012300-21x3x2x5050-30300-5/20Cj比值CBXBb检验数?jx1x2x3x4x53500081010012020103634001x3x4x5000035000-12/2=636/4=9令x1=0,x4=0,得x2=6,x3=8,x5=12,即得基可行解X1=(0,6,8,0,12)T此时Z=30σ1=3>0,此解不是最优迭代4、寻找下一基可行解Cj比值CBXBb检验数?jx1x2x3x4x53500081010060101/2012300-21x3x2x5050-30300-5/208-4检验数?j40012/3-1/360101/204100-2/31/3x3x2x1053-42000-1/2-1令x4=0,x5=0,得x1=4,x2=6,x3=4,即X0=(4,6,4,0,0)T?j<0最优解:X=(4,6,4,0,0)T最优值:Z=42小结:单纯形表格法的计算步骤①将线性规划问题化成标准型。
②找出或构造一个m阶单位矩阵作为初始可行基,建立初始单纯形表。