现场总线技术的发展与应用
- 格式:docx
- 大小:19.00 KB
- 文档页数:13
现场总线技术与应用现场总线技术与应用现场总线是应用生产现场、在微机化测控设备之间实现双向数字通信系统,是开放式、数字化、多点通信的低层控制网络。
现场总线是在20世纪年代中期发展起来的。
现场总线技术是将专用的微处理器植入传统的测控仪表,使其具备了数字计算和通信能力,采用连接简单的双绞线、同轴电缆、光纤等作为总线,按照公开、规范的通信协议,在位于现场的多个微机化测控仪表之间、远程监控计算机之间实现数据共享,形成适应现场实际需要的控制系统。
它的出现改变了以往采用电流、电压模拟信号进行测控信号变化慢,信号传输抗干扰能力差的缺点,也改变了集中式控制可能造成的全线瘫痪的局面。
由于微处理器的使用,使得现场总线有了较高的测控能力,提高了信号的测控和传输精度,同时丰富了控制信息内容,为远程传送创造了条件。
现场总线适应了工业控制系统向分散化、网络化、智能化发展的方向,一出现便成为全球工业自动化技术的热点,受到全世界的普通遍关注。
现场总线导致了传统控制系统结构的变革,形成了新型的网络集成式全分布控制系统--现场总线控制系统FCS(Fieldbus Control System)。
一、现场总线的特点现场总线系统打破了传统模拟控制系统采用的一对一的设备连线模式,而采用了总线通信方式,因而控制功能可不依赖控制室计算机直接在现场完成,实现了系统的分散控制,现场总线控制系统与传统的控制系统结构对经如图1所示。
1、增强了现场级的信息采集能力现场总线可从现场设备获取大量丰富信息,能够很好地满足工厂自动化乃至CIMS系统的信息集成要求。
现场总线是数字化的通信网络,它不单纯取代4~20mA 信号,还可实现设备状态、故障和参数信息传送。
系统除完成远程控制,还可完成远程参数化工作。
2、开放式、互操作性、互换性、可集成性不同厂家产品只要使用同一种总线标准,就具有互操作性、互换性,因此设备具有很好的可集成性。
系统为开放式,允许其他厂商将自己专长的控制技术,如控制算法、工艺方法、配方等集成到通用控制系统中,因此,市场上将有许多面向行业特点的监控制系统。
现场总线的发展历程、特点及分类、主要应用,使用方法一、现场总线的发展历程现场总线(Fieldbus)技术起源于20世纪80年代,当时主要是为了解决工业控制系统中数据传输和设备互联的问题。
随着技术的不断发展,现场总线技术已经成为现代工业自动化领域的关键技术之一。
1. 20世纪80年代初期,现场总线技术的研究与应用逐渐兴起,主要应用于石油、化工、钢铁等行业的过程控制系统。
2. 20世纪90年代,随着工业控制系统的发展和技术的进步,现场总线技术得到了广泛应用,几乎涵盖了所有工业生产领域。
3. 21世纪初至今,现场总线技术已经成为工业自动化系统的核心技术,越来越多的企业使用现场总线技术实现设备互联和数据传输。
二、现场总线的特点1. 开放性:现场总线技术遵循统一的国际标准,实现了不同厂商设备之间的互通互联。
2. 高可靠性:现场总线技术采用数字通信技术,具有抗干扰能力强和数据传输可靠的特点。
3. 高效率:现场总线技术可以实现设备之间的直接通信,减少了传统集中控制方式中的数据处理环节,提高了系统的响应速度和工作效率。
4. 易扩展性:现场总线技术采用网络式结构,扩展设备非常方便,可以根据实际需要进行灵活配置。
5. 低成本:现场总线技术可以减少布线、降低系统复杂度,从而减轻了系统维护和运行成本。
三、现场总线的分类根据现场总线的应用领域、通信协议和传输速率等特点,现场总线主要分为以下几类:1. 过程自动化现场总线:如FOUNDATION Fieldbus、PROFIBUS PA 等,主要用于过程控制系统中,实现设备之间的数据传输和控制。
2. 工厂自动化现场总线:如PROFIBUS DP、DeviceNet、CANopen 等,主要用于工厂自动化系统中,实现设备之间的数据交换和通信。
3. 传感器/执行器现场总线:如AS-i、IO-Link等,主要用于传感器、执行器等设备之间的通信。
四、现场总线的主要应用现场总线技术广泛应用于石油、化工、钢铁、电力、造纸、建材等工业领域,主要用于以下几个方面:1. 设备监控与控制:通过现场总线实现设备之间的实时数据采集、监控和控制。
现场总线技术的发展与应用摘要:现场总线作为一种开放的、全数字化、双向、多站的通信系统,近年来得到了迅猛的发展和应用。
为此本文阐述了现场总线的发展和多现场总线技术的应用。
关键字:现场总线自动化控制系统1 概述在计算机自动控制系统急速发展的今天,特别是考虑到现场总线已经普遍地渗透到自动控制的各个领域的现实,现场总线必将成为电工自动控制领域主要的发展方向之一。
现场总线技术一直是国际上各大公司激烈竞争的领域;并且国外大公司已经在大力拓展中国市场,发展我国的现场总线产品已经刻不容缓。
现场总线对自动化技术的影响意义深远。
当今可以认为现场总线是提高自动化系统整体水平的基础技术,对国民经济影响重大。
因此,要在自动化领域中推广应用和发展现场总线。
现场总线是近年来自动化领域中发展很快的互连通信网络,具有协议简单开放、容错能力强、实时性高、安全性好、成本低、适于频繁交换等特点。
目前,国际上各种各样的现场总线有几百种之多,统一的国际标准尚未建立。
较著名的有基金会现场总线(FF)、HART现场总线、CAN现场总线、LONWORKS现场总线、PROFIBUS 现场总线、MODBUS、PHEONIX公司的INTERBUS、AS-INTERFACE总线等.自动化控制系统就是通信网络把众多的带有通信接口的控制设备、检测元件、执行器件与主计算机连接起来,由计算机进行智能化管理,实现集中数据处理、集中监控、集中分析和集中调度的新型生产过程控制系统。
从目前国内外自动化控制系统所应用的现场总线来看,主要有PROFIBUS、MODBUS、LONWORKS、FF、HART、CAN等现场总线。
以上系统基本上都是采用单一的现场总线技术,即整个自动化控制系统中只采用一种现场总线,整个系统构造比较单一。
现场总线已不仅仅是一个新技术领域或新技术问题,在研究它的同时,我们发现它已经改变了我们的观念;如何去看待现场总线,要比研究它的技术细节更为重要.1.1现场总线是一个巨大的商业机会一项权威报告声称现场总线的应用将使控制系统的成本下降67%;巨大的商业利益直接导致产生一个巨大的市场,并且促使传统市场萎缩,从而引发技术进步。
现场总线是当今自动化领域技术发展的热点之一,被誉为自动化领域的计算机局域网。
它的出现将对该领域的发展产生重要影响。
本场报告主要介绍了现场总线技术及其发展趋势,主要包括现场总线现状及发展、企业网络集成系统介绍和现场总线简介三部分。
一、现场总线现状发展1、现场总线的定义现场总线是应用在生产现场、在微机化测量控制设备之间实现双向串行多节点数字通信的系统,也被称为开放式、数字化、多点通信的底层控制网络。
它是工业控制的底层网络,与执行器、传感器等直接打交道,属于局域网的范畴。
现场总线技术将专用微处理器置入传统的测量控制仪表,使它们各自具有了数字计算和数字通讯能力,采用可进行简单连接的双绞线等作为总线,把多个测量控制仪表连接成网络系统,并按公开、规范的通信协议,在位于现场的多个微机化测量控制设备之间及现场仪表与远程监控计算机之间,实现数据传输与信息交换,形成各种适应实际需要的自动控制系统。
2、现场总线的本质特点现场总线系统打破了传统控制系统采用的按控制回路要求,设备一对一的分别进行连线的结构形式。
把原先DCS系统中处于控制室的控制模块、各输入输出模块放入现场设备,加上现场设备具有通信能力,因而控制系统功能能够不依赖控制室中的计算机或控制仪表,直接在现场完成,实现了彻底的分散控制。
现场总线控制系统既是一个开放通信网络,又是一种全分布控制系统。
它把作为网络节点的智能设备连接成自动化网络系统,实现基础控制、补偿计算、参数修改、报警、显示、监控、优化的综合自动化功能。
是一项以智能传感器、控制、计算机、数字通信、网络为主要内容的综合技术。
现场总线系统在技术上具有以下特点:系统具有开放性和互用性通信协议遵从相同的标准,设备之间可以实现信息交换,用户可按自己的需要,把不同供应商的产品组成开放互连的系统。
系统间、设备间可以进行信息交换,不同生产厂家的性能类似的设备可以互换。
系统功能自治性系统将传感测量、补偿计算、工程量处理与控制等功能分散到现场设备中完成,现场设备可以完成自动控制的基本功能,并可以随时诊断设备的运行状况。
现场总线技术及其应用 现场总线是连接智能现场设备和自动化系统的数字式、双向传输、多分支结构的通信网络,是过程控制技术、自动化仪表技术、计算机网络技术三大技术发展的交汇点,将带来控制系统的一大变革。
1 引言 随着计算机、控制、通信、网络等技术的发展,作为工业控制数字化、智能化与网络化典型代表的现场总线(FieldBus)技术也得到了发展迅速、影响巨大,引起了工程技术界的普遍兴趣与重视,使计算机控制系统逐步从集散控制系统(Distributed Control System dcs)走向以现场总线位基础的分布式现场总线控制系统(Fieldbus Control System,FCS),被誉为工业自动化领域具有革命性的新技术。
现场总线是当今自动化领域技术发展的热点之一。
2 被誉为自动化领域的计算机局域网 2.1 现场总线及其特点 (1)什么是现场总线? 根据国际电工委员会(IEC)和美国仪表协会(ISA)的定义:现场总线是连接智能现场设备和自动化系统的数字、双向传输、多分支结构的通信网络,它的关键标志是能支持双向多节点、总线式的全数字通讯,具有可靠性高、稳定性好、抗干扰能力强、通信速率快、系统安全、造价低廉、维护成本低等特点。
国际电工协会(IEC)的SP50委员会对现场总线有以下三点要求: (1)同一数据链上过程控制单元(PCU)、plc等与数字1/0设备互连; (2)现场总线控制器可对总线上的多个操作站、传感器及执行机构等进行数据存取; (3)通信媒体安装费用较低。
面向智能制造现场总线技术的创新应用智能制造作为现代制造业的发展趋势,其核心在于通过高度自动化和智能化的生产方式,提高生产效率、降低成本、提升产品质量。
现场总线技术作为智能制造系统中的关键技术之一,它通过将传感器、执行器、控制器等设备通过数字通信网络连接起来,实现设备间的信息交换和协同工作。
本文将探讨面向智能制造的现场总线技术的创新应用,分析其在智能制造领域的重要作用和发展趋势。
一、智能制造现场总线技术概述智能制造现场总线技术是指在智能制造系统中,用于连接和控制现场设备的数据通信技术。
它能够实现设备间的高速、可靠、实时的数据传输,是智能制造系统实现自动化、智能化的基础。
现场总线技术的核心价值在于其能够支持多种设备和系统的集成,提供灵活的网络拓扑结构,以及强大的数据处理和分析能力。
1.1 现场总线技术的核心特性现场总线技术的核心特性包括实时性、可靠性、开放性和互操作性。
实时性是指现场总线能够保证数据传输的及时性,满足智能制造过程中对时间敏感性的要求。
可靠性则是指现场总线在各种工业环境下都能稳定运行,保证数据传输的准确性和完整性。
开放性意味着现场总线技术能够支持多种设备和协议,易于扩展和升级。
互操作性则是指不同品牌和型号的设备能够通过现场总线技术无缝连接和协同工作。
1.2 现场总线技术的应用场景现场总线技术在智能制造中的应用场景非常广泛,包括但不限于以下几个方面:- 自动化生产线:现场总线技术可以连接生产线上的各种传感器、执行器和控制器,实现生产过程的自动化控制。
- 机器人协同作业:通过现场总线技术,可以实现多台机器人之间的协同作业,提高生产效率和灵活性。
- 能源管理:现场总线技术可以用于监控和控制工厂的能源消耗,实现能源的优化配置和节能减排。
- 质量控制:现场总线技术可以实时收集生产过程中的数据,用于产品质量的监控和分析,提高产品质量。
二、智能制造现场总线技术的创新应用随着智能制造技术的不断发展,现场总线技术也在不断创新和升级,以适应智能制造的新需求。
现场总线技术在机器人领域的集成应用现场总线技术作为一种高效的数据通信手段,已经在工业自动化领域得到了广泛的应用。
随着机器人技术的快速发展,现场总线技术在机器人领域的集成应用也日益受到重视。
本文将探讨现场总线技术在机器人领域的集成应用,分析其在提高机器人系统性能、增强系统灵活性和降低成本方面的优势。
一、现场总线技术概述现场总线技术是一种用于工业自动化领域的数字通信协议,它允许多个设备在同一总线上进行数据交换。
这种技术的出现,极大地提高了工业自动化系统的通信效率和可靠性。
现场总线技术的核心特性包括实时性、可靠性、开放性和互操作性。
1.1 现场总线技术的核心特性现场总线技术的核心特性主要体现在以下几个方面:- 实时性:现场总线技术能够保证数据传输的实时性,满足工业自动化系统对快速响应的需求。
- 可靠性:现场总线技术采用了多种错误检测和纠正机制,确保数据传输的准确性和系统的稳定运行。
- 开放性:现场总线技术遵循开放的标准,不同厂商的设备可以在同一总线上无缝通信。
- 互操作性:现场总线技术支持多种设备和系统之间的互操作,便于系统集成和扩展。
1.2 现场总线技术的应用场景现场总线技术的应用场景非常广泛,包括但不限于以下几个方面:- 传感器和执行器的连接:现场总线技术可以将传感器和执行器连接到同一个网络,实现数据的实时采集和控制。
- 控制器和监控系统的集成:现场总线技术可以将控制器和监控系统集成到同一个网络,实现集中监控和控制。
- 机器人系统的通信:现场总线技术可以用于机器人系统的内部通信,提高机器人系统的协调性和灵活性。
二、机器人领域的集成应用随着机器人技术的不断发展,现场总线技术在机器人领域的集成应用越来越受到重视。
这种技术的应用,不仅可以提高机器人系统的通信效率,还可以增强系统的灵活性和可靠性。
2.1 现场总线技术在机器人控制系统中的应用现场总线技术在机器人控制系统中的应用主要体现在以下几个方面:- 控制器与机器人本体的通信:通过现场总线技术,控制器可以实时地向机器人本体发送控制指令,同时接收机器人本体的状态信息。
现场总线技术现状调研报告现场总线技术现状调研报告一、引言现场总线技术是一种在现场设备之间传输数据和实现智能控制的通信技术,它不仅能提高系统的可靠性和安全性,还能简化系统的布线和维护工作。
本调研报告旨在对现场总线技术的现状进行调研分析,为相关领域的研究和应用提供参考。
二、现场总线技术的发展历程1. 20世纪70年代,班福德总线成为最早的现场总线技术,用于连接计算机和外围设备,实现数据的传输和控制。
2. 20世纪80年代,德国推出了第一个用于工业自动化的现场总线技术AS-Interface,以其简单、经济的特点得到了广泛应用。
3. 20世纪90年代,国际电工委员会 (IEC)发布了用于工业自动化的现场总线国际标准IEC61158系列,标志着现场总线技术的国际化进程。
4. 进入21世纪后,以Modbus、Profibus、CAN、EtherCAT等现场总线技术为代表的数字化总线技术快速发展,实现了更高的数据传输速率、更稳定的信号质量和更灵活的系统配置。
三、现场总线技术的特点1. 实时性强:现场总线技术能够实现快速的数据传输和控制,并能够及时响应系统的变化。
2. 可靠性高:现场总线技术采用多节点通信的方式,即使某个节点发生故障,系统仍可正常工作。
3. 易于扩展:现场总线技术支持模块化设计,系统可以根据实际需求进行扩展和升级。
4. 简化布线:现场总线技术能够减少布线量,减少了布线成本和工作量。
5. 容错能力强:现场总线技术支持多路径传输和冗余设计,能够提高系统的容错能力和可靠性。
四、现场总线技术的应用领域1. 工业自动化:现场总线技术广泛应用于工业领域,实现对各种工业设备的监控、控制和管理。
2. 智能建筑:现场总线技术可以实现对建筑系统中各种设备的集成和联动控制,提高建筑的能源利用效率和舒适性。
3. 交通领域:现场总线技术用于实现交通信号灯、道路监控系统和智能交通管理系统等的集成和控制。
4. 医疗设备:现场总线技术在医疗设备中的应用可以提高设备的智能化程度和安全性。
工业控制系统的现场总线技术发展趋势是什么在当今高度自动化的工业生产领域,工业控制系统的现场总线技术扮演着至关重要的角色。
现场总线技术作为连接工业现场设备和控制系统的桥梁,其不断发展和创新对于提高生产效率、保障生产质量、降低生产成本以及增强系统的可靠性和灵活性具有重要意义。
那么,工业控制系统的现场总线技术的发展趋势究竟是什么呢?首先,高速率和高实时性将成为现场总线技术发展的重要方向。
随着工业生产过程的日益复杂和对控制精度要求的不断提高,数据传输的速度和实时性变得尤为关键。
未来的现场总线技术将能够以更快的速度传输大量的实时数据,确保控制系统能够及时、准确地响应现场设备的状态变化,从而实现更加精确和高效的控制。
例如,在汽车制造的自动化生产线中,高速率和高实时性的现场总线能够确保各个工位之间的协同工作,提高生产节拍和产品质量。
其次,开放性和互操作性将进一步得到加强。
不同厂家生产的设备和系统往往存在兼容性问题,这给工业控制系统的集成和维护带来了很大的挑战。
为了解决这一问题,未来的现场总线技术将更加注重开放性和互操作性,通过制定统一的标准和规范,使得不同厂家的设备能够轻松地接入同一个控制系统,并实现无缝通信和协同工作。
这样一来,企业在选择设备和系统时将有更多的选择余地,同时也能够降低系统集成和维护的成本。
再者,工业以太网将在现场总线技术中占据更重要的地位。
工业以太网凭借其高速、可靠、易于扩展等优点,已经逐渐成为工业控制系统中的主流网络技术。
未来,随着工业以太网技术的不断成熟和完善,其在现场总线领域的应用将更加广泛。
例如,基于工业以太网的现场总线能够实现与企业级网络的无缝集成,从而实现生产管理和控制的一体化,提高企业的整体运营效率。
另外,无线现场总线技术也将迎来快速发展。
在一些特殊的工业环境中,如移动设备、难以布线的场所等,无线现场总线技术具有独特的优势。
未来,随着无线通信技术的不断进步,无线现场总线的传输速率、可靠性和安全性将得到显著提高,使其能够在更多的工业应用场景中得到应用。
现场总线技术在轨道交通中的应用模式现场总线技术作为现代工业自动化领域的关键技术之一,其在轨道交通领域的应用日益广泛。
现场总线技术通过将传统的点对点控制方式转变为网络化、数字化的控制方式,极大地提高了轨道交通系统的可靠性、灵活性和智能化水平。
本文将探讨现场总线技术在轨道交通中的应用模式,分析其在轨道交通系统中的作用和优势。
一、现场总线技术概述现场总线技术是一种基于网络的通信技术,它允许多个设备通过单一的通信介质连接并交换数据。
与传统的控制方式相比,现场总线技术具有以下特点:1.1 高度集成:现场总线技术通过将多个控制点集成到一个网络中,减少了布线复杂性,降低了系统的维护成本。
1.2 灵活性:现场总线技术允许设备之间的灵活连接,便于系统的扩展和升级。
1.3 实时性:现场总线技术能够实现数据的实时传输,保证了控制系统的响应速度。
1.4 可靠性:现场总线技术采用冗余设计和错误检测机制,提高了系统的可靠性和稳定性。
二、现场总线技术在轨道交通中的应用现场总线技术在轨道交通领域的应用主要体现在以下几个方面:2.1 列车控制系统:现场总线技术在列车控制系统中的应用,可以实现列车运行状态的实时监控和控制,提高列车运行的安全性和效率。
2.2 信号系统:在信号系统中,现场总线技术可以用于实现信号机、转辙机等设备的联网控制,提高信号系统的可靠性和灵活性。
2.3 车辆监控系统:现场总线技术在车辆监控系统中的应用,可以实现对车辆状态的实时监控,及时发现并处理车辆故障,保障车辆运行安全。
2.4 能源管理系统:现场总线技术在能源管理系统中的应用,可以实现对轨道交通系统中能源消耗的实时监控和优化,降低能源消耗,提高能源利用效率。
2.5 乘客信息系统:现场总线技术在乘客信息系统中的应用,可以实现对乘客信息的实时发布和更新,提高乘客的出行体验。
三、现场总线技术在轨道交通中的应用模式现场总线技术在轨道交通中的应用模式主要包括以下几种:3.1 分布式控制模式:在分布式控制模式中,现场总线技术将控制功能分散到各个设备上,每个设备都可以地处理自己的控制任务,提高了系统的灵活性和可靠性。
现场总线技术的应用与前景现场总线技术是近年来迅速发展起来的一种工业数据总线,主要解决工业现场的智能化仪表、控制器、执行机构等现场设备间的数字通讯以及这些现场设备和高级控制系统之间的信息传递问题。
标签:现场总线技术;种类;优点;发展现状;趋势现场总线(Fieldbus)是20世纪80年代末、90年代初国际上发展形成的,用于电气自动化、制造自动化,等领域的现场智能设备互连通讯网络。
它作为工厂数字通信网络的基础,沟通了生产过程现场及控制设备之间及其与更高控制管理层次之间的联系。
它不仅是一个基层网络,而且还是一种开放式、新型全分布控制系统。
这项以智能传感、控制、计算机、数字通讯等技术为主要内容的综合技术,已经受到世界范围的关注,成为自动化技术发展的热点,并将导致自动化系统结构与设备的深刻变革。
由于上述特点,从网络结构到通讯技术,都具有不同上层高速数据通信网的特色。
人们一般把50年代前的气动信号控制系统PCS称作第一代,把4~20mA 等电动模拟信号控制系统称为第二代,把数字计算机集中式控制系统称为第三代,而把70年代中期以来的集散式分布控制系统DCS称作第四代。
一般把现场总线系统称为第五代控制系统,也称作FCS(集中式控制系统)。
现场总线控制系统FCS作为新一代控制系统,一方面,突破所造成的缺陷;另一方面把DCS的集中与分散相结合的集散系统结构,变成了新型全分布式结构,把控制功能彻底下放到现场。
可以说,开放性、分散性与数字通讯是现场总线系统最显著的特征。
现场总线以数字信号取代模拟信号,在3C技术即计算机(Computer)、控制(Control)、通信(Communication)的基础上,大量现场检测与控制的信息就地采集、就地处理、就地使用,许多控制功能从控制室移至现场设备,一大批数字化、智能化的高新技术产品应运而生,自动化仪表与控制系统以崭新的面貌呈现在广大用户面前。
一般认为“现场总线是一种全数字化、双向、多站的通信系统,是用于工业控制的计算机系统的工业总线。
现场总线及其应用技术一、引言现场总线(Fieldbus)是指在工业自动化控制系统中,用于连接现场设备的一种通信总线技术。
它通过集成控制器和现场设备之间的数据交换,实现工业自动化系统的控制与监测。
本文将介绍现场总线的基本概念、工作原理以及在实际应用中的一些技术。
二、现场总线的基本概念现场总线是一种将传感器、执行器等现场设备与控制器相连的通信系统。
它能够提供双向通信、实时数据传输和分布式控制等功能,极大地简化了工业自动化系统的布线和维护工作。
常见的现场总线包括Profibus、Modbus、CAN等。
三、现场总线的工作原理现场总线的工作原理可以简单描述为以下几个步骤:1. 传感器或执行器将采集到的数据通过现场总线发送给控制器。
2. 控制器接收到数据后,进行处理并发送相应的控制指令给现场设备。
3. 现场设备接收到控制指令后,执行相应的动作,并将执行结果反馈给控制器。
四、现场总线的应用技术1. 实时性技术现场总线要求具有较高的实时性,能够在短时间内完成数据的传输和处理。
为了提高实时性,现场总线采用了一系列技术,如时间触发、通信速率调整和数据压缩等。
2. 安全性技术现场总线在工业自动化系统中承担着重要的控制和监测任务,因此安全性是其应用中的重要考虑因素。
现场总线采用了多种安全技术,如数据加密、身份认证和访问控制等,保障系统的安全运行。
3. 故障诊断技术现场总线能够实时监测现场设备的状态,并提供故障诊断功能。
通过采集设备的运行数据和故障信息,现场总线可以及时判断设备的工作状态,并进行故障定位和排除。
4. 网络管理技术现场总线通常由多个设备组成一个网络,因此需要进行网络管理。
网络管理技术包括网络拓扑结构的设计、数据包的路由和转发、网络性能的监测和调优等,保证网络的稳定和可靠运行。
5. 数据采集与处理技术现场总线能够实时采集大量的数据,并进行处理和分析。
数据采集与处理技术包括数据采样、滤波、数据压缩和数据存储等,为后续的控制和决策提供可靠的数据支持。
现场总线在列车控制网络中的应用与发展现场总线技术作为信息传输和通信的一种重要方式,在各个领域得到了广泛的应用。
在列车控制网络领域,现场总线技术同样发挥了重要的作用。
本文将探讨现场总线在列车控制网络中的应用与发展,并分析其带来的优势和挑战。
1. 现场总线技术概述现场总线技术是指通过一根通信线缆将各个传感器、执行器等设备与控制器连接在一起,实现数据的传输和通信。
它采用了分布式控制的思想,将系统的控制节点分布在各个设备上,从而实现了系统的高度灵活性和可靠性。
2. 现场总线在列车控制网络中的应用2.1 列车传感器网络现场总线技术可以连接列车上各种传感器,如温度传感器、压力传感器和速度传感器等。
通过实时采集和传输传感器数据,可以监控列车的各项参数,并及时进行故障诊断和维护。
这对于提高列车的安全性和可靠性具有重要意义。
2.2 列车执行器网络现场总线技术可以连接列车上的执行器,如驱动器和制动器等。
通过实时传输控制指令,可以实现对列车的精确控制和调节。
例如,在紧急情况下,可通过现场总线迅速刹车,确保列车安全停车。
2.3 列车通信网络现场总线技术可以用作列车内部的通信网络,实现各个设备之间的数据交换和共享。
通过现场总线技术,不仅可以实现列车的自动控制,还可以支持乘客信息系统、视频监控系统等功能的实现。
3. 现场总线在列车控制网络中的发展趋势3.1 高速传输随着列车控制网络对数据传输速度的要求越来越高,现场总线技术也在努力提高其传输速度。
例如,采用更高的通信频率和更快的数据传输协议,以满足对实时性的要求。
3.2 大容量支持随着列车控制网络中设备数量的增加,对现场总线技术的容量支持提出了更高的要求。
因此,现场总线技术需要能够支持更大的节点数量和更大的数据传输量。
3.3 高可靠性列车控制网络中对数据的传输可靠性要求非常高。
因此,现场总线技术需要提供更好的纠错和冗余机制,以保证数据的可靠传输和处理。
4. 现场总线应用的优势和挑战4.1 优势现场总线技术可以实现列车控制网络的高度集成和自动化。
现场总线技术的发展与应用摘要:现场总线作为一种开放的、全数字化、双向、多站的通信系统,近年来得到了迅猛的发展和应用。
为此本文阐述了现场总线的发展和多现场总线技术的应用。
关键字:现场总线自动化控制系统1概述在计算机自动控制系统急速发展的今天,特别是考虑到现场总线已经普遍地渗透到自动控制的各个领域的现实,现场总线必将成为电工自动控制领域主要的发展方向之一。
现场总线技术一直是国际上各大公司激烈竞争的领域;并且国外大公司已经在大力拓展中国市场,发展我国的现场总线产品已经刻不容缓。
现场总线对自动化技术的影响意义深远。
当今可以认为现场总线是提高自动化系统整体水平的基础技术,对国民经济影响重大。
因此,要在自动化领域中推广应用和发展现场总线。
现场总线是近年来自动化领域中发展很快的互连通信网络,具有协议简单开放、容错能力强、实时性高、安全性好、成本低、适于频繁交换等特点。
目前,国际上各种各样的现场总线有几百种之多,统一的国际标准尚未建立。
较著名的有基金会现场总线(FF)、HART现场总线、CAN现场总线、LONWORKS现场总线、PROFIBUS 现场总线、MODBUS、PHEONIG 公司的INTERBUS、AS —INTERFACE 总线等。
自动化控制系统就是通信网络把众多的带有通信接口的控制设备、检测元件、执行器件与主计算机连接起来,由计算机进行智能化管理,实现集中数据处理、集中监控、集中分析和集中调度的新型生产过程控制系统。
从目前国内外自动化控制系统所应用的现场总线来看,主要有PROFIBUS、MODBUS、LONWORKS、FF、HART、CAN等现场总线。
以上系统基本上都是采用单一的现场总线技术,即整个自动化控制系统中只采用一种现场总线,整个系统构造比较单一。
现场总线已不仅仅是一个新技术领域或新技术问题,在研究它的同时,我们发现它已经改变了我们的观念;如何去看待现场总线,要比研究它的技术细节更为重要。
1.1现场总线是一个巨大的商业机会一项权威报告声称现场总线的应用将使控制系统的成本下降67 %;巨大的商业利益直接导致产生一个巨大的市场,并且促使传统市场萎缩,从而引发技术进步。
这些对于我们行业来说都很重要,因为我们正处在新旧市场交替的关口。
1.2.现场总线是一场技术革命现场总线带来了观念的变化,我们以往开发新产品,往往只注意产品本身的性能指标,对于新产品与其它相关产品的关联就考虑比较少一点。
这样对于电工行业这样一个比较保守的行业来说,新产品就不那么容易地被用户接收。
而现场总线产品却恰恰相反,它是一个由用户利益驱动的市场,用户对新产品应用的积极性比生产商更高。
然而,现场总线新产品的开发也与传统产品不同;它是从系统构成的技术角度来看问题,它注重的是系统整体性能的提高,不强求局部最优,而是整体的配合。
这种配合在主控计算机软件运行下能使控制系统应用新的理论来发挥最大的效能;这一点是传统产品很难做到的。
现场总线的“负跨越(指在技术水平提高的同时,掌握和应用这项新技术的难度却降低了)”的特性使它的推广更加容易。
2.现场总线的发展2.1自动控制领域的发展过程2.1.150多年前第一代过程控制体系是基于 5 - 13psi的气动信号标准(气动控制系统PCS, PneumaticControlSystem )。
简单的就地操作模式,控制理论初步形成,尚未有控制室的概念。
2.1.2第二代过程控制体系(模拟式或ACS,AnalogControlSystem )是基于0 —10mA或4 —20mA的电流模拟信号,这一明显的进步,在整整25年内牢牢地统治了整个自动控制领域。
它表征了电气自动控制时代的到来。
控制理论有了重大发展,三大控制论的确立奠定了现代控制的基础;控制室的设立,控制功能分离的模式一直沿用至今。
2.1.3第三代过程控制体系(CCS,ComputerControlSystem ).70年代开始了数字计算机的应用,产生了巨大的技术优势,人们在测量,模拟和逻辑控制领域率先使用,从而产生了第三代过程控制体系(CCS,ComputerControlSystem )。
这个被称为第三代过程控制体系是自动控制领域的一次革命,它充分发挥了计算机的特长,于是人们普遍认为计算机能做好一切事情,自然而然地产生了被称为“集中控制”的中央控制计算机系统,需要指出的是系统的信号传输系统依然是大部分沿用 4 - 20mA的模拟信号,但是时隔不久人们发现,随着控制的集中和可靠性方面的问题,失控的危险也集中了,稍有不慎就会使整个系统瘫痪。
所以它很快被发展成分布式控制系统(DCS )。
2.1.4第四代过程控制体系(DCS,DistributedControlSystem 分布式控制系统):随着半导体制造技术的飞速发展,微处理器的普遍使用,计算机技术可靠性的大幅度增加,目前普遍使用的是第四代过程控制体系(DCS,或分布式数字控制系统),它主要特点是整个控制系统不再是仅仅具有一台计算机,而是由几台计算机和一些智能仪表和智能部件构成一个了控制系统。
于是分散控制成了最主要的特征。
除外另一个重要的发展是它们之间的信号传递也不仅仅依赖于 4 - 20mA的模拟信号,而逐渐地以数字信号来取代模拟信号。
2.1.5第五代过程控制体系(FCS,FieldbusControlSystem 现场总线控制系统):FCS是从DCS发展而来,就象DCS从CCS发展过来一样,有了质的飞跃。
“分散控制”发展到“现场控制”;数据的传输采用“总线”方式。
但是FCS与DCS的真正的区别在于FCS有更广阔的发展空间。
2.2现场总线崛起的过程80年代,微处理器及其相关技术的不断发展,使得数据传送环节成为DCS 发展的瓶颈。
1982年,现场总线的概念首先在欧洲提出,两年后于1984年各国开始进行现场总线标准的研究和制定。
1986年由Rosemount提出的通讯协议HART (HighwayAddressableRemoteTransducer, 可寻址远程传感器数据通路),主要是在 4 —20mA 的DC信号上叠加FSK (FrepuencyShiftKeying, 频率调制键控)数字信号,结果取得了很好的效果,同时In terbus等简单的现场总线也都取得了成功。
这样DSC的发展的重点落在了现场总线上,开始了被称为第五代过程控制体系(FCS, FieldbusControlSystem 现场总线控制系统) 的时代。
FCS是从DCS发展而来,有一个量变到质变的过程。
从表面上来看,FCS 与DCS区别仅仅在于从“分散控制”发展到“现场控制”;数据的传输从“点到点”采用“总线”方式。
其实不然,当时系统论的观点已被广泛地接受,人们开始以大系统的概念来看待整个过程控制体系。
系统的增大,导致了网络的通讯技术急剧发展;于是科技界充分认识到在计算机系统的发展中起过重要作用的总线技术可以大大地推进控制系统的发展。
整个控制系统就象是一台巨大的“计算机”按总线方式运行,这样资源的共享成了FCS的主要发展空间,于是现场总线应运而生,并且以前所未有的激烈程度展开了市场竞争。
2.3现场总线的技术基础:现场总线以数字信号取代模拟信号,在3C技术即计算机(Computer )、控制(Control )、通信(Communication )的基础上,大量现场检测与控制的信息就地采集、就地处理、就地使用,许多控制功能从控制室移至现场设备,一大批数字化、智能化的高新技术产品应运而生,自动化仪表与控制系统以崭新的面貌呈现在广大用户面前。
一般认为“现场总线是一种全数字化、双向、多站的通信系统,是用于工业控制的计算机系统的工业总线。
按照国际电工委员会IEC61158的标准定义:“安装在制造和过程区域的现场装置与控制室内的自动控制装置之间的数字式、串行、多点通信的数据总线称为现场总线。
从现场总线控制系统(FCS,FieldbusControlSystem )的角度来看,它的通讯网络结构将是ISO的通讯模型的七层结构(一般简化为三层,物理层、数据链路层、应用层)。
2.4各种现场总线与标准2.4.1IEC1984年提出现场总线国际标准的草案。
1993年才通过了物理层的标准IEC1158 —2。
2.4.2SP50IEC/ISASP50 国际总线规范由Ho neywell 等公司共同开发。
1984 年美国仪表协会ISA (InstrumentSocietyofAmerica )下属的标准实施(StandardandPractice )第50组,简称ISA/SP50开始制定现场总线标准,1992年IEC批准了SP50的物理层标准。
2.4.3Profibus,过程现场总线,1987年德国联邦科技部集中了Siemens等13家公司的5个研究所成立了一个专门委员会开始制定Profibus。
1991年4月完成了制定工作,在DIN19245中发表,对其进行了论述从而正式为德国现场总线的国家标准,现在是欧洲标准prENS50170的三个组成部分之一。
被工业界称为“德国派”。
2.4.4ISP 和ISPF1992 年由Siemens,FoGboro,Rosemount,Fisher,Yokogawa,ABB 等公司成立ISP 组织(InteroperableSystemProject, 可互操作系统规划),是一个以Profibus为基础制定的现场总线,1993年成立ISPF(ISPFoundation,ISP 基金会)。
2.4.5WorldFIP 工厂仪表世界协议,1993年由Honeywell,Bailey 等公司牵头成立FIP (FactoryInstrumentationProtocol ) ,120 家公司加盟,以法国标准46 —602/603/604/606 为基础制定.该标准与德国的Profibus同时在欧洲投票通过为欧洲标准prEN50170,成为三个组成部分之一。
被工业界称为“法国派”。
2.4.6FF (FielbdusFoundation,现场总线基金会)1994 年 6 月ISPF 和WorldFIP握手言和成立了FF,总部设在美国TeGas州的Austin,有会员120 家,它是一个非商业化的公正的国际标准化组织和协会组织,无专利许可要求,供任何人使用(WorldFIP的欧洲部分在1995年3月才参加)。
低速总线H1 已进入实用阶段。
FF 发展的主要障碍来自Profibus的商业利益。
2.5几种有影响的现场总线2.5.1CAN由德国RobertBasch以及几个集成电路制造商一起开发,最初是专门为汽车工业设计,后来推广到各个领域.目前已由ISO/TC22技术委员会批准为ISO11898 (通信速率小于1Mbps )和ISO11519 (通信速率小于等于125kbps )。