最详细的开关电源分析
- 格式:doc
- 大小:1.32 MB
- 文档页数:37
开关电源的结构、原理及故障提出检修的技巧详细分
析
同时随着许多高新技术的发展,开关电源技术在不断地创新。
开关电源的设计要以安全性、可靠性为首要原则,在各种指标满足正常使用要求的条件下,为使电源在突发故障情况下安全可靠地工作,本文将详细的分析开关电源的结构、原理及故障提出检修的技巧以供大家参考。
开关电源的结构
开关电源主要由控制电路、检测电路、辅助电源四大部份构成。
(1)主电路
冲击电流限幅:限制接通电源瞬间输入侧的冲击电流。
输入滤波器:其作用是过滤电网存在的杂波及阻碍本机产生的杂波反馈回电网。
开关电源工作原理详解析开关电源是一种常见的电源供应器件,具有高效率、稳定性和可靠性等优点。
本文将详细解析开关电源的工作原理,包括其基本构成、工作过程以及相关应用。
一、基本构成开关电源主要由输入端、输出端、开关管、变压器、整流电路、滤波电路和稳压电路等组成。
输入端:负责接收交流电源输入,并通过变压器进行电压变换。
输入滤波电路:用于滤除交流电源输入时的干扰信号,保证后续电路正常工作。
整流电路:将输入的交流电转换为直流电,一般采用整流桥或者整流二极管进行整流。
滤波电路:通过滤波电容和滤波电感对整流电路输出的脉动电流进行滤波,使其变为更为纯净的直流电。
开关管:起到开关的作用,通过开关管的导通和关断,将高频信号传送到变压器。
变压器:将输入的电压进行变换,可以降压或升压,以满足输出端的要求。
稳压电路:控制输出电压的稳定性,通过反馈电路控制开关管的导通和关断,保持输出电压恒定。
二、工作过程1. 导通状态:开关管导通,电流从输入端经过变压器进入输出端。
在导通状态下,开关管内部电阻很小,电流能够顺利通过。
通过变压器的转换作用,电压可以降低或升高,然后通过整流电路和滤波电路处理,输出为直流电。
2. 关断状态:开关管关断,电流中断。
在关断状态下,开关管内部电阻很大,电流无法通过。
由于开关管的关断,变压器产生磁场的能量无处释放,因此会产生反向电压,反向电压的存在使得电流继续流动,这一能量会被储存在电感中。
通过不断交替地在导通状态和关断状态之间进行切换,开关电源可以实现高效率的电能转换,进而向输出端提供稳定的直流电。
三、应用领域开关电源由于其高效性和可靠性,广泛应用于各个领域。
以下是一些常见的应用:1. 电子产品领域:如电脑、手机、电视等消费电子产品,它们都需要稳定的直流电供应。
2. 工业自动化:在工业生产中,很多设备需要稳定可靠的电源,开关电源可以满足这些需求。
3. 通信设备:无论是固定电话、移动通信基站还是网络交换设备,都需要开关电源来提供稳定的电能。
详细解析开关电源电路:工作原理,电路组成,电路图
随着我国电子电力科技技术不断的发展,不管是在家用或者是其他地方所使用的电源开关,都得到了较大的突破性的实质发展。
目前,就以开关电源来说,几乎被广泛的应用于所有的电子电器设备,是如今当下电子信息产业中最不可缺少的一种电源方式。
开关电源工作原理对于热爱电源物理的人来所,其实还是很好理解开关电源工作原理的,在线性电源中,功率晶体管在工作,而线性电源中导致闭合或者是断开的则是PWM 开关电源,在闭合、断开两种的状态之下,加上功率晶体管的电压是比较小的,就会成产很大的电流,关闭开关电源的时候,则是反过来的,电压大,而电流就会特别的小,而控制开关电源工作原理的控制器,就是为了能够更好的保持稳定性,从而给人们的生活环境带来安全。
开关电源工作原理及工作条件
除了以上讲述的开关电源工作原理之外,而开关电源工作原理在运行的时候,开关电源也是一定的工作条件的,比如开关,在工作的时候,不是线性状态,而是在电子电器工作之下呈现开关状态;另外,直流,开关电源在工作时候,是直流,不是交流;最后一个开关电源的高频,在电子电器工作状态之下,是高频,而不是接近于工作的低频状态哦!在开关电源工作原理中,这些工作条件是一定的。
开关电源工作原理及主要特点
每一样产品的诞生,都有它独自存在的主要特点,就连开关电源也是一样的。
那么除了以上不同的开关电源工作原理之外,开关电源主要的特点是什么呢?首先从外观上看,重量较轻、体积较小,因为没有采用工频变压器,所以开关电源的重量、体积只有线性电源的百分之二十到百分之三十左右;另外还有一个非常重要的特点,从开关电源工作原理上看,。
开关电源工作原理详细解析开关电源是一种将输入电源进行高频开关,通过变压和整流来获得所需输出电压的电源装置。
其具有体积小、效果高、效率高以及可靠性好等特点,被广泛应用于电子设备中。
开关电源的工作原理主要包括三个基本环节:输入变压、高频开关和输出整流。
下面将详细解析开关电源的工作原理。
1.输入变压首先,将交流输入电源通过变压器进行变压。
变压器是由磁性材料制成的,通过电磁感应原理将输入电压转换为所需的输出电压。
变压器包括一个输入绕组和一个输出绕组,通过绕组的匝数比实现电压的变化。
输入变压结束后,得到所需的直流电压。
2.高频开关在输入变压后,输入电压变成了所需的直流电压。
接下来,将直流电压输入到高频开关电路中,这里的高频指的是开关管的开关频率达到了几十KHz~几十MHz。
高频开关电路由开关管、驱动电路、电感和电容等组成。
开关管是整个开关电源中重要的元件,其作用是开关输入电源的通断。
通常使用的开关管有MOSFET和IGBT两种。
驱动电路用于控制开关管的开关动作,以确保输出符合要求。
电感起到滤波的作用,它能够抵抗电流的变化,并将电流平滑地输出。
电容则起到稳压的作用,将波动电压平滑地转换为稳定的直流电压。
高频开关的原理是通过不断开关开关管,使输入电源以高频脉冲的形式提供给输出端。
开关时间很短,因此开关过程中电流的变化很小,这减小了能量损失。
3.输出整流高频开关电路的输出是以脉冲的形式存在的,需要进行整流处理,将脉冲电流转换为稳定的直流电流。
输出整流主要由输出电感、输出滤波电容和负载电阻组成。
输出电感和滤波电容起到平滑输出脉冲电流的作用,将脉冲电流转换为稳定的直流电流。
负载电阻则接收电源输出电流,并提供给负载使用。
除了上述三个基本环节外,开关电源还包括过压保护、电流限制和短路保护等功能。
这些功能是通过控制电压和电流的大小来实现的,避免电源过载。
总结起来,开关电源是通过变压和整流来获得所需输出电压的电源装置。
其工作原理包括输入变压、高频开关和输出整流。
开关电源工作原理超详细解析开关电源是一种常见的电源供应器件,它通过将输入电源的直流电转换为高频脉冲电流,再经过整流、滤波和稳压等环节,输出稳定的直流电。
本文将详细解析开关电源的工作原理,包括开关电源的基本组成部分、工作原理的流程、常见的开关电源拓扑结构以及其优点和应用。
一、开关电源的基本组成部分开关电源通常由以下几个基本组成部分构成:1. 输入电路:用于接收外部交流电源,并将其转换为适合开关电源工作的直流电压。
2. 整流电路:将输入电压转换为脉冲电流,通常采用整流桥或者整流电路来实现。
3. 滤波电路:用于平滑整流后的脉冲电流,以减小输出电压的波动。
4. 开关器件:通常采用晶体管或者功率MOSFET等开关器件,用于控制电流的开关状态。
5. 控制电路:用于控制开关器件的开关频率和占空比,以控制输出电压的稳定性。
6. 输出电路:将经过整流、滤波和稳压处理后的直流电压输出给负载。
二、开关电源的工作原理流程开关电源的工作原理可以分为以下几个流程:1. 输入电路接收交流电源:开关电源的输入电路通常采用变压器来降低输入电压,然后通过整流电路将交流电转换为直流电。
2. 整流电路将交流电转换为脉冲电流:整流电路通常采用整流桥或者整流电路来将交流电转换为脉冲电流,这样可以减小能量损耗。
3. 滤波电路平滑脉冲电流:滤波电路通常采用电容器和电感器来平滑脉冲电流,以减小输出电压的波动。
4. 控制电路控制开关器件的开关频率和占空比:控制电路通过对开关器件的控制,可以控制开关频率和占空比,从而控制输出电压的稳定性。
5. 输出电路将处理后的直流电压输出给负载:经过整流、滤波和稳压处理后的直流电压将被输出给负载,供其正常工作。
三、常见的开关电源拓扑结构开关电源有多种拓扑结构,常见的有以下几种:1. 单端开关电源:输入电源和输出电源共用一个地线,适用于低功率应用。
2. 双端开关电源:输入电源和输出电源分别有独立的地线,适用于高功率应用。
12V开关电源电路工作原理分析该开关电源属于小功率开关电源,输入220V交流市电,输出12V直流电,最大输出电流1.3A,主要应用于小型设备的供电,比如楼宇监控设备等。
其电原理图如图1所示。
其控制核心器件为脉宽调制集成电路TL3843P(内含振荡器、脉宽调制比较器、逻辑控制器,具有过流、欠压等保护控制功能,最高工作频率可达500MHz.启动电流仅需ImA)。
各引脚功能如下:(1)脚是内部误差放大器的输出端,通常与(2)脚之间有反馈网络,确定误差放大器的增益。
(2)脚是反馈电压输入端,作为内部误差放大器的反相输入端,与同相输入端的基准电压(+2.5V)进行比较,产生误差控制电压,控制脉冲宽度。
(6)脚过流检测输入端,当接人的电压高于1V时,禁止驱动脉冲的输出。
(4)脚为RT/RC定时电阻和电容的公共接人端,用于产生锯齿振荡波。
(5)脚为接地端。
(6)脚为脉宽可调脉冲输出端。
(7)脚为工作电压输入端(10V>Vi≤30V)。
(8)脚为内部基准电压(VREF=5v)输出端。
图1 开关电源原理图一、输入与整流电路220V交流市电经O.IA保险管Fl及正温度系数热敏电阻PT1进入交流输入电路,交流输入电路由Cl和L构成,为一低通滤波器。
其主要作用是抗干扰、抑制杂波。
它既阻止市电网中高频干扰脉冲进入开关电源电路,叉阻止开关电源产生的高频干扰谐波进入市电网。
经过低通滤波器滤除了高频杂波的220V交流电,由ED1全桥整流。
C2滤波后,在C2两端得到约300V的直流电压。
该电压经开关变压器初级线圈后作为功率开关管Ql的工作电源;经R2到电容C4作为脉宽调制集成电路TL3843P的启动电源。
二、启动与稳压电路经整流滤波的300V电压:一路经开关变压器Tl的1~2绕组加到功率开关管Ql(K3326)的漏极,另一路经启动电阻R2加到U1(TL3843)的(7)脚,作为主控制芯片TL3843P的启动电源。
在电路加电的瞬间300V通过R2对C4进行充电,当Ul的(7)脚电压达到10V以上时,Ul的(8)脚输出5v基准电压,同时TL3843P内部的振荡电路开始工作,(6)脚输出工作脉冲,通过R4驱动开关管01工作,这时开关管工作于开关状态。
各种开关电源电路原理详细解剖开关电源电路是一种常见的电源供电电路,其采用了开关管(如MOSFET、BJT等)等元件进行开关控制,通过快速的开关过程来调整输入电源的输出电压或电流。
开关电源电路具有高效率、小体积和稳定性等优点,被广泛应用于各种电子设备中。
开关电源电路主要分为两个部分:输入端和输出端。
输入部分由滤波电路和整流电路组成,而输出部分则是由开关变换电路和滤波电路组成。
下面将详细介绍开关电源电路的原理。
1.输入端输入端主要包括变压器、整流电路和滤波电路。
变压器是将交流电源变换为所需的输入电压,在开关电源中通常采用高频变压器,可以有效减小体积。
整流电路使用整流二极管或整流桥,将交流电压转换为直流电压。
滤波电路用于降低输入电压的纹波,通常由电容和电感组成。
2.开关变换电路开关变换电路是开关电源电路的核心部分,主要包括开关元件、驱动电路和控制电路。
开关元件通常采用MOSFET或BJT,通过控制开关元件的导通和截止,实现输入到输出的电流或电压转换。
驱动电路负责对开关元件进行驱动,保证其正常工作。
控制电路根据输出电压或电流的变化情况,对开关元件的工作状态进行调整和控制。
3.输出端输出端主要由输出电感、输出电容和负载组成。
输出电感用于过滤开关元件产生的高频脉冲,减小输出纹波。
输出电容则用于提供稳定的直流输出电压。
负载是接在输出电容之后的电子设备,通过负载电流来消耗电源提供的电能。
开关电源电路的工作原理是:当输入交流电压通过滤波电路和整流电路转换为直流电压后,控制电路会监测输出电压或电流的变化情况,并根据需要对开关元件的工作状态进行调整。
当需要提供更大的输出电流时,开关元件导通,输入电源能量通过变压器传递到输出端;当需要较小的输出电流时,开关元件截止,变压器不再传递能量到输出端。
通过快速的开关过程,可以在较高频率下实现输入电压和输出电压的转换。
总结起来,开关电源电路通过开关元件的控制实现输入输出电压或电流的转换,具有高效率、小体积和稳定性等优点。
开关电源的主要电路是由:防雷电路,输入电磁干扰滤波器(Electromagnetic Interference,简称EMI),输入整流滤波电路,功率变换电路,脉宽调制(PWM)控制器电路,输出整流滤波电路组成。
辅助电路有输入过压,欠压保护电路, 输出过压,欠压保护电路,输出过流保护电路,输出短路保护电路等。
开关电源的电路组成方框图如下:220V的交流电经交流滤波电路滤除外来的杂波信号,同时也防止电源本身产生的高频杂波对电网的干扰。
再经二极管桥式整流电路和滤波电路,整流滤波后得到约300V的直流电,送给功率变换电路进行功率转换。
功率变换电路中的开关功率管(IGBT)就在脉冲宽度调制(PWM)控制器(UC3842)输出的脉冲控制信号和驱动下,工作在“开”“关”状态,从而将300V直流电切换成宽度可变的高频脉冲电压。
把高频脉冲电压送给高频变压器,高频变压器的次级(二次侧)就会感应出一定的高频脉冲交流电,并送给高频整流滤波电路进行整流,滤波。
经高频整流滤波后便可得到我们所需的各种直流电压。
输出电压下降或上升时,由取样电路将取样信号通过光电耦合器(PC817),送入控制电路,经过其内部调制,由控制电路的输出端将变宽的或变窄的驱动脉冲送到开关功率管的栅极(G极),使变换电路产生的高频脉冲方波也随之变宽或变窄,由此改变输出电压平均值的大小,从而使直流电压基本稳定在所须的电压值上。
开关电源的电路原理图如下:开关电源电路原理图开关电源的常见故障分析及维修由于开关电源的输入部分工作在高压,大电流的状态下,故障率最高,如高压大电流整流二极管,滤波电容,开关功率管等较易损坏。
其次就是输出整流部分的整流二极管,保护二极管,滤波电容,限流电阻等较易损坏;再就是脉宽调制控制器的反馈部分和保护部分。
下面就对开关电源常见故障产生的原因作一分析及如何排除这些故障的维修方法。
一.保险丝熔断一般情况下,保险丝熔断说明开关电源的内部电路存在短路或过流的故障。
开关电源入门必读开关电源工作原理超详细解析开关电源是电源技术中常见的一种类型,它的工作原理相对较复杂。
本文将详细解析开关电源的工作原理,帮助读者快速入门。
开关电源的基本工作原理是将交流电源转换为高频脉冲电源,再经过变压、整流和滤波等步骤,最终获得所需的直流电压输出。
下面将分为几个方面详细解析开关电源的工作原理。
一、开关电源的基本组成部分开关电源包括输入端、控制电路、开关元件、变压器、整流滤波电路和输出端等组成部分。
1.输入端:接收外部交流电源输入,并经过保险丝和滤波电路等进行初步处理。
2.控制电路:负责控制开关元件的开关行为,控制电路由集成电路、电感和电容等组成。
3.开关元件:由开关管和二极管组成,承担着将交流信号转换为脉冲信号的关键任务。
4.变压器:通过变换输入电压和电流的比值,实现电压和电流的变换。
5.整流滤波电路:包括整流电路和滤波电路。
整流电路将脉冲电流转化为直流电流,滤波电路将直流电流进行进一步平滑处理。
6.输出端:将经过整流滤波处理后的直流电压输出给负载。
二、开关电源的工作原理开关电源的工作原理主要分为以下几个步骤:1.输入端处理:输入端首先通过保险丝保护电路,然后通过滤波电路对输入信号进行初步处理,去除杂质和干扰。
2.控制电路:控制电路根据输入端的信号控制开关元件的开关行为。
当开关元件关闭时,电源工作在储能状态,当开关元件开启时,电源进入释放能量状态。
3.开关元件:开关元件由开关管和二极管组成。
当开关管导通时,电源中的输入电流和能量通过变压器传递给负载,当开关管关断时,电源中的储能电流和能量通过二极管回流到输入端。
4.变压器:变压器将输入电压和电流进行变换,通过磁性耦合实现输出端所需的电压和电流。
5.整流滤波电路:整流电路将经过变压器变换后的输出信号转化为直流电压,滤波电路将直流电压进行平滑处理,去除残余脉冲和噪声。
6.输出端:经过整流滤波电路处理后的直流电压输出给负载,从而实现电源对负载的供电支持。
开关电源各功能电路详解 一、 开关电源的电路组成。 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下:
二、 输入电路的原理及常见电路。 1、AC 输入整流滤波电路原理:
① 防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。 ② 输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对 C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③ 整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、 DC 输入滤波电路原理:
① 输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4 为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于 C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使 Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
三、 功率变换电路 1、 MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、 常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断 。 R1和Q1中的结电容CGS、CGD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量也就越多;当Q1截止时,变压器通过D1、D2、R5、R4、C3释放能量,同时也达到了磁场复位的目的,为变压器的下一次存储、传递能量做好了准备。IC根据输出电压和电流时刻调整着⑥脚锯形波占空比的大小,从而稳定了整机的输出电流和电压。 C4和R6为尖峰电压吸收回路。 4、推挽式功率变换电路: Q1和Q2将轮流导通。
5、有驱动变压器的功率变换电路: T2为驱动变压器,T1为开关变压器,TR1为电流环。 四、 输出整流滤波电路: 1、 正激式整流电路:
T1为开关变压器,其初极和次极的相位同相。D1为整流二极管,D2为续流二极管,R1、C1、R2、C2为削尖峰电路。L1为续流电感,C4、L2、C5组成π型滤波器。 2、 反激式整流电路: T1为开关变压器,其初极和次极的相位相反。D1为整流二极管,R1、C1为削尖峰电路。L1为续流电感,R2为假负载,C4、L2、C5组成π型滤波器。 3、同步整流电路:
工作原理:当变压器次级上端为正时,电流经 C2、R5、R6、R7使Q2导通,电路构成回路,Q2 为整流管。Q1栅极由于处于反偏而截止。当变压器次级下端为正时,电流经C3、R4、R2使 Q1导通,Q1为续流管。Q2栅极由于处于反偏而截止。L2为续流电感,C6、L1、C7组成π 型滤波器。R1、C1、R9、C4为削尖峰电路。
五、 稳压环路原理 1、反馈电路原理图: 2、工作原理: 当输出 U0升高,经取样电阻R7、R8、R10、VR1分压后,U1③脚电压升高,当其超过U1②脚基准电压后 U1①脚输出高电平,使Q1导通,光耦OT1发光二极管发光,光电三极管导通,UC3842①脚电位相应变低,从而改变U1⑥脚输出占空比减小,U0降低。 当输出 U0降低时,U1③脚电压降低,当其低过U1②脚基准电压后U1①脚输出低电平,Q1不导通,光耦OT1发光二极管不发光,光电三极管不导通,UC3842①脚电位升高,从而改变U1⑥脚输出占空比增大,U0降低。周而复始,从而使输出电压保持稳定。调节VR1可改变输出电压值。 反馈环路是影响开关电源稳定性的重要电路。如反馈电阻电容错、漏、虚焊等,会产生自激振荡,故障现象为:波形异常,空、满载振荡,输出电压不稳定等。
六、短路保护电路 1、在输出端短路的情况下,PWM控制电路能够把输出电流限制在一个安全范围内,它可以用多种方法来实现限流电路,当功率限流在短路时不起作用时,只有另增设一部分电路。 2、短路保护电路通常有两种,下图是小功率短路保护电路,其原理简述如下:
当输出电路短路,输出电压消失,光耦OT1不导通,UC3842①脚电压上升至5V左右,R1与R2的分压超过TL431基准,使之导通,UC3842⑦脚VCC电位被拉低,IC停止工作。UC3842停止工作后①脚电位消失,TL431不导通UC3842⑦脚电位上升,UC3842重新启动,周而复始。当短路现象消失后,电路可以自动恢复成正常工作状态。 3、下图是中功率短路保护电路,其原理简述如下:
当输出短路,UC3842①脚电压上升,U1 ③脚 电位高于②脚时,比较器翻转①脚输出高电位,给 C1充电,当C1两端电压超过⑤脚基准电压时 U1⑦脚输出低电位,UC3842①脚低于1V,UCC3842 停止工作,输出电压为0V,周而复始,当短路 消失后电路正常工作。R2、C1是充放电时间常数, 阻值不对时短路保护不起作用。 4、 下图是常见的限流、短路保护电路。其工作原理简述如下:
当输出电路短路或过流,变压器原边电流增大,R3 两端电压降增大,③脚电压升高,UC3842⑥脚输出占空 比逐渐增大,③脚电压超过1V时,UC3842关闭无输出。 5、下图是用电流互感器取样电流的保护电路,有着功耗小,但成本高和电路较为复杂,其工作原理简述如下: 输出电路短路或电流过大,TR1次级线圈感 应的电压就越高,当UC3842③脚超过1伏,UC3842 停止工作,周而复始,当短路或过载消失,电路自行恢复。
七、输出端限流保护
上图是常见的输出端限流保护电路,其工作原理简述如上图:当输出电流过大时,RS(锰铜丝)两端电压上升,U1③脚电压高于②脚基准电压,U1①脚输出高电压,Q1导通,光耦发生光电效应,UC3842①脚电压降低,输出电压降低,从而达到输出过载限流的目的。
八、输出过压保护电路的原理 输出过压保护电路的作用是:当输出电压超过设计值时,把输出电压限定在一安全值的范围内。当开关电源内部稳压环路出现故障或者由于用户操作不当引起输出过压现象时,过压保护电路进行保护以防止损坏后级用电设备。应用最为普遍的过压保护电路有如下几种: 1、可控硅触发保护电路: 如上图,当Uo1输出升高,稳压管(Z3)击穿导通,可控硅(SCR1)的控制端得到触发电压,因此可控硅导通。Uo2电压对地短路,过流保护电路或短路保护电路就会工作,停止整个电源电路的工作。当输出过压现象排除,可控硅的控制端触发电压通过R对地泄放,可控硅恢复断开状态。 2、光电耦合保护电路:
如上图,当Uo有过压现象时,稳压管击穿导通,经光耦(OT2)R6到地产生电流流过,光电耦合器的发光二极管发光,从而使光电耦合器的光敏三极管导通。Q1基极得电导通, 3842的③脚电降低,使IC关闭,停止整个电源的工作,Uo为零,周而复始,。 3、输出限压保护电路:
输出限压保护电路如下图,当输出电压升高,稳压管导通光耦导通,Q1基极有驱动电压而道通,UC3842③电压升高,输出降低,稳压管不导通,UC3842③电压降低,输出电压升高。周而复始,输出电压将稳定在一范围内(取决于稳压管的稳压值)。 4、输出过压锁死电路: 图A的工作原理是,当输出电压Uo升高,稳压管导通,光耦导通,Q2基极得电导通,由于Q2的导通Q1基极电压降低也导通,Vcc电压经R1、Q1、R2使Q2始终导通,UC3842③脚始终是高电平而停止工作。在图B中,UO升高U1③脚电压升高,①脚输出高电平,由于D1、R1的存在,U1①脚始终输出高电平Q1始终导通,UC3842①脚始终是低电平而停止工作。正反馈?
九、功率因数校正电路(PFC) 1、原理示意图: