数字图像处理结课作业
- 格式:doc
- 大小:94.50 KB
- 文档页数:7
期末大作业报告课程名称:数字图像处理设计题目:手写数字识别学院:信息工程与自动化学院专业:计算机科学与技术年级: 2012 学生姓名:和云山(学号 201210405106)指导教师:王剑日期: 2015.6.19教务处制摘要随着信息技术的发展,信息建设在我国取得了迅猛的发展,数字识别技术的应用需求越来越广泛。
数字识别一般通过特征匹配及特征判别的方法来进行处理,前者一般适用于规范化的印刷体字符识别,现今该技术基本成熟;后者多用于手写字符识别,其研究还处于探索阶段,识别率还比较低。
因此,本文主要阐述手写数字识别技术。
人工神经网络技术在今年取得了巨大的发展,它具有的高度非线性,使我们能表达一些至少是目前尚无法用计算理论表达清楚的外部世界模型;同时,神经网络所具有的自学习,自组织能力使我们能在与外部世界的交互作用下,实现无法用当前的计算理论表达清楚的功能;对于那些无法建立精确数学模型的系统,神经网络有着独特的优势。
本文基于BP神经网络的方法来实现手写体数字识别。
首先对图像进行灰度化、二值化、平滑去噪、归一化、细化的预处理。
然后采用逐像素特征提取法提取数字图像特征。
最后是BP神经网络分类器的建立和识别过程,对训练后的网络模型进行测试,得出训练样本的识别率为98%,测试样本达到78%的识别率。
关键词:数字识别;预处理;BP神经网络一、实验原理手写体数字识别常规预处理和特征提取方法1.1 手写体数字识别的识别过程手写体数字识别时,使用不同的方法,处理的步骤可能并不完全相同。
但是就一般情况看,一个完整的识别系统,在识别时大致要经过以下几个处理阶段,如图3-1所示。
图1-1 识别过程图 1.2 手写体数字识别的常规预处理方法神经网络为手写体数字识别提供了一个强有力的手段。
目前,在神经网络模式识别中根据对输人样本的表达方式的选择有下面两大类:一类是直接将数字图像经数值化处理之后得到的像素点原始样本作为神经网络的输入;另一类则是对这种原始像素点构成的原始输人样本再作进一步的预处理或变换。
《数字图像处理》期末大作业大作业题目及要求:一、题目:本门课程的考核以作品形式进行。
作品必须用Matlab完成。
并提交相关文档。
二、作品要求:1、用Matlab设计实现图形化界面,调用后台函数完成设计,函数可以调用Matlab工具箱中的函数,也可以自己编写函数。
设计完成后,点击GUI图形界面上的菜单或者按钮,进行必要的交互式操作后,最终能显示运行结果。
2、要求实现以下功能:每个功能的演示窗口标题必须体现完成该功能的小组成员的学号和姓名。
1)对于打开的图像可以显示其灰度直方图,实现直方图均衡化。
2)实现灰度图像的对比度增强,要求实现线性变换和非线性变换(包括对数变换和指数变换)。
3)实现图像的缩放变换、旋转变换等。
4)图像加噪(用输入参数控制不同噪声),然后使用空域和频域进行滤波处理。
5)采用robert算子,prewitt算子,sobel算子,拉普拉斯算子对图像进行边缘提取。
6)读入两幅图像,一幅为背景图像,一幅为含有目标的图像,应用所学的知识提取出目标。
3、认真完成期末大作业报告的撰写,对各个算法的原理和实验结果务必进行仔细分析讨论。
报告采用A4纸打印并装订成册。
附录:报告模板《数字图像处理》期末大作业班级:计算机小组编号:第9组组长:王迪小组成员:吴佳达浙江万里学院计算机与信息学院2014年12月目录(自动生成)1 绘制灰度直方图,实现直方图均衡化 (5)1.1 算法原理 (5)1.2 算法设计 (5)1.3 实验结果及对比分析 (5)2 灰度图像的对比度增强 (5)2.1 算法原理 (5)2.2 算法设计 (5)2.3 实验结果及分析 (5)3 图像的几何变换 (5)3.1 算法原理 (5)3.2 算法设计 (5)3.3 实验结果及分析 (5)4 图像加噪(用输入参数控制不同噪声),然后使用空域和频域进行滤波处理 (5)4.1 算法原理 (5)4.2 算法设计 (6)4.3 实验结果及分析 (6)5 采用robert,prewitt,sobel,拉普拉斯算子对图像进行边缘提取 (6)5.1 算法原理 (6)5.2 算法设计 (6)5.3 实验结果及分析 (6)6 读入两幅图像,一幅为背景图像,一幅为含有目标的图像,应用所学的知识提取出目标 (6)6.1 算法原理 (6)6.2 算法设计 (6)6.3 实验结果及分析 (6)7 小结(感受和体会) (6)1 绘制灰度直方图,实现直方图均衡化1.1 算法原理图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。
数字图像处理实验报告实验选题:选题二组员:学号:班级:指导老师:实验日期:2019年5月22日一、实验目的及原理1.识别出芯片的引脚2.熟悉并掌握opencv的某些函数的功能和使用方法原理:通过滤波、形态学操作得到二值图,再在二值图中设置条件识别引脚部分。
二、实现方案对图片滤波、调节阈值做边缘检测过滤掉一部分图片中干扰元素;然后通过膨胀、腐蚀操作来减少引脚的空心部分;再通过findContours()函数找到引脚的边缘并得到轮廓的点集,设置特定的长宽比和矩形面积识别引脚部分。
三、实验结果四、源码#include<iostream>#include<cmath>#include"opencv2/highgui/highgui.hpp"#include"opencv2/imgproc/imgproc.hpp"using namespace std;using namespace cv;int main(int argv, char **argc){//载入图片Mat srtImag = imread("2.jpg");Mat G_blur = srtImag.clone();//降噪blur(G_blur, G_blur, Size(5, 5));//imshow("降噪", G_blur);//Canny边缘检测Mat Canny_Imag = G_blur;Canny_Imag = Canny_Imag > 176;Canny(G_blur, Canny_Imag, 300, 50, 3);//imshow("边缘检测", Canny_Imag);//膨胀Mat element = getStructuringElement(MORPH_RECT, Size(10, 10));dilate(Canny_Imag, Canny_Imag, element);//imshow("膨胀", Canny_Imag);//腐蚀Mat element_1 = getStructuringElement(MORPH_RECT, Size(11, 11));erode(Canny_Imag, Canny_Imag, element_1);//imshow("腐蚀", Canny_Imag);//查找轮廓vector<vector<Point>>contours;vector<Vec4i>hierarchy;findContours(Canny_Imag, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE);vector<vector<Point>> contour_s(contours.size());//该数组共有contours.size()个轮廓的点集vector<Rect> Rec_s(contours.size());//逼近多边形的点集数组//获得每个轮廓点集的逼近多边形的点集for (size_t i = 0; i < contours.size(); i++) {approxPolyDP(Mat(contours[i]), contour_s[i], 3,false);//contour_s存储逼近多边形的点集Rec_s[i]= boundingRect(contour_s[i]); //Rec_s存储最小包围矩形的点集}//筛选合适长宽比的矩形并将其画出来Mat result_Imag = srtImag.clone();for (size_t j = 0; j < contours.size(); j++) {double as_ra;//长宽比as_ra = Rec_s[j].height / Rec_s[j].width;if (as_ra > 3.3 && as_ra < 9.3 && Rec_s[j].area() > 20) { rectangle(result_Imag, Rec_s[j], Scalar(0, 255, 255), 2, 7);}}imshow("result", result_Imag);waitKey(0);return 0;}五、总结经过这次实验,我熟悉了对blur()、Canny()、dilate()、erode()、findContours()、approxPolyDP()等函数的使用,了解了Rect类的构成等。
机械电子工程专题讲座课程回顾1.虚拟仪器技术发展及其机械电子工程中的应用专题讲座课的第一节课是王书茂教授讲的虚拟仪器技术发展及其机械电子工程中的应用,查文献可知,虚拟仪器(Virtual Instruments, 简称VI) 的概念,最早是由美国国家仪器公司(National InstrumentsCorp. 简称NI) 于1986 年提出来的【2】,虚拟仪器的出现是仪器技术发展史上的划时代革命,它融合了现代计算机技术、通信技术和测量技术,其核心部件是软件,利用软件来控制高性能的模块化硬件,完成各种测试、测量和自动化的应用【3】。
整个课程主要讲了虚拟仪器技术的发展历程以及在实际生产中的应用,从军事的导弹、卫星,到大田的检测管理系统设计。
在课程中,王书茂教授也简单的阐述了虚拟仪器相较于传统仪器的优点,结合教授讲解以及查阅资料得知虚拟仪器的优点有:①它突破了传统仪器在功能定义、数据处理显示与存储等方面的限制,对部分仪器硬件实现了软件化,降低了系统的研发成本并提高了系统灵活性【4】;②对于传统仪器也能发挥作用的测量环境,虚拟仪器以其开发周期短、效率高、自动化测量、成本低廉等优势正在逐步取代;③利用虚拟仪器的自动化检测和远程实时在线检测功能,将虚拟仪器应用于传统仪器难以胜任的测量环境,如有毒、危险、远程多参数测量环境下的实时参数检测;④利用虚拟仪器的实时在线检测和网络化远程测控等功能,对设备运行故障进行诊断【3】;⑤外伴随着图形用户界面(GUI)技术的高度发展,使得其实现友好人机交互界面,简单便捷。
⑥虚拟仪器加入了强大的软件接口功能, 对Lab-VIEW 与外部的应用程序,C 语言,WindowsAPI,Matlab 等编程语言实现了通信,这也极大地促进了虚拟仪器技术的发展【4】。
同时通过展示自己团队对收获机械、设施农业、喷灌设备、拖拉机及农用运输车、种子加工设备等农业装备中的应用成果,如:2005年开发了基于虚拟仪器技术的机动车静侧翻测控实验台和机动车质心高度检测实验台, 机动车静侧翻测控实验台不仅能自动控制倾翻台、精确检测车轮法向支撑反力和倾翻角, 而且实现了实验台的动画仿真实时跟踪和数据动态回放; 机动车质心高度检测实验台可以对机动车(拖拉机) 质心高度进行快速精确检测, 同时系统还利用远端频率计数模块设计了标准信号发生器, 可以发出高精度低频方波信号, 提供系统自检和外部标准时钟信号等【5】,给我们阐述了虚拟仪器技术的广泛应用场合以及虚拟仪器技术发展的大好前景,也简述几个师兄的就业等情形,从教授的讲解中看到了专业的美好前景。
数字图像处理结课论文摘要数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。
本文通过介绍对胸部x光的图像处理过程和车牌号码识别阐述了数字图像处理在现实生活生产中的应用。
一综述数字图像处理是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术.有处理精度高,处理内容丰富,可进行复杂的非线性处理,有灵活的变通能力。
但在处理速度上,特别是进行复杂的处理有一定的困难。
数字图像处理技术主要包括几何处理、算术处理、图像增强、图像复原、图像重建、图像编码、图像识别、图像理解等几个方面。
数字图像处理是20世纪60年代随着计算机技术的发展而产生、发展和不断成熟起来的一个新兴技术领域,它在理论上和实际应用中都取得了很大的成就。
视觉是人类最重要的感知手段,图像又是视觉的基础。
早期图像处理的目的是改善图像质量,它以人为对象,以改善人的视觉效果为目的。
图像处理中输入的是质量低的图像,输出的是改善质量后的图像。
常用的图像处理方法有图像增强、复原、编码、压缩等.如对拍摄的太空图像的处理,探测飞船发回的照片进行复杂的图像处理,获得了月球的地形图、彩色图及全景镶嵌图,为人类登月创举奠定了基础,也推动了数字图像处理这门学科的诞生。
在以后的宇航空间技术探测研究中,数字图像处理技术都发挥了巨大的作用。
数字图像处理技术取得的另一个巨大成就是在医学上。
1972用于头颅诊断的X射线计算机断层摄影装置被发明出来,也就是我们通常所说的CT(Computer Tomograph)。
CT的基本方法是根据人的头部截面的投影,经计算机处理来重建截面图像,成为图像重建.1975年又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。
1979年,这项无损伤诊断技术被授予诺贝尔奖,以表彰它对人类做出的划时代贡献。
从20世纪70年代中期开始,随着计算机技术和人工智能研究的迅速发展,数字图像处理技术向更高层次发展.人们已开始研究如何用计算机系统解释图像,类似人类视觉系统理解外部世界,这被称为图像理解或计算机视觉。
数字图像处理1.图像工程的三个层次是指哪三个层次?各个层次对应的输入、输出对象分别是什么?①图像处理特点:输入是图像,输出也是图像,即图像之间进行的变换。
②图像分割特点:输入是图像,输出是数据。
③图像识别特点:以客观世界为中心,借助知识、经验等来把握整个客观世界。
“输入是数据,输出是理解。
2.常用的颜色模型有哪些(列举三种以上)?并分别说明颜色模型各分量代表的意义。
①RGB(红、绿、蓝)模型②CMY(青、品红、黄)模型③HSI(色调、饱和度、亮度)模型3.什么是图像的采样?什么是图像的量化?1.采样采样的实质就是要用多少点来描述一幅图像,采样结果质量的高低就是用前面所说的图像分辨率来衡量。
简单来讲,对二维空间上连续的图像在水平和垂直方向上等间距地分割成矩形网状结构,所形成的微小方格称为像素点。
一副图像就被采样成有限个像素点构成的集合。
例如:一副640*480分辨率的图像,表示这幅图像是由640*480=307200个像素点组成。
2.量化量化是指要使用多大范围的数值来表示图像采样之后的每一个点。
量化的结果是图像能够容纳的颜色总数,它反映了采样的质量。
针对数字图像而言:采样决定了图像的空间分辨率,换句话说,空间分辨率是图像中可分辨的最小细节。
量化决定了图像的灰度级,即指在灰度级别中可分辨的最小变化。
数字图像处理(第三次课)调用图像格式转换函数实现彩色图像、灰度图像、二值图像、索引图像之间的转换。
图像的类型转换:对于索引图像进行滤波时,必须把它转换为RGB图像,否则对图像的下标进行滤波,得到的结果是毫无意义的;2.用MATLAB完成灰度图像直方图统计代码设计。
6789101112131415161718192021222324252627282930title('lady-lenna');if isrgb(a);b=rgb2gray(a);%RGB转换为灰度图像endsubplot(2,2,2);imshow(b);%显示图像title('ladygaga-lenna');[m,n]=size(a);%返回图像大小e=zeros(1,256);for k=0:255for i=1:mfor j=1:nif a(i,j)==ke(k+1)=e(k+1)+1;%灰度值相同的进行累加endendendendsubplot(2,2,4);bar(e);%画图像的灰度直方图title('灰度直方图');c=imrotate(a,20);%图像的旋转subplot(2,2,3);imshow(c);数字图像处理(第四次课)编写matlab函数,实现在医学图像中数字减影血管造影。
大作业指导书题目:数字图像处理院(系):物联网工程学院专业: 计算机班级:计算机1401-1406指导老师:学号:姓名:设计时间: 2016-2017学年 1学期摘要 (3)一、简介 (3)二、斑点数据模型.参数估计与解释 (4)三、水平集框架 (5)1.能量泛函映射 (5)2.水平集传播模型 (6)3.随机评估方法 (7)四、实验结果 (8)五、总结 (11)基于水平集方法和G0模型的SAR图像分割Abstract(摘要)这篇文章提出了一种分割SAR图像的方法,探索利用SAR数据中的统计特性将图像分区域。
我们假设为SAR图像分割分配参数,并与水平集模型相结合。
分布属于G分布中的一种,处于数据建模的目的,它们已经成功的被用于振幅SAR图像中不同区域的建模。
这种统计数据模型是驱动能量泛函执行区域映射的基础,被引用到水平集传播数值方案中,将SAR 图像分为均匀、异构和极其异构区域。
此外,我们引入了一个基于随机距离和模型的评估过程,用于量化我们方法的鲁棒性和准确性。
实验结果表明,我们的算法对合成和真实SAR 数据都具有准确性。
+简介1、Induction(简介)合成孔径雷达系统是一种成像装置,采用相干照明比如激光和超声波,并会受到斑点噪声的影响。
在SAR图像处理过程中,返回的是斑点噪声和雷达切面建模在一起的结果。
这个积性模型(文献[1])因包含大量的真实SAR数据,并且在获取过程中斑点噪声被建模为固有的一部分而被广泛应用。
因此,SAR图像应用区域边界和目标检测变得更加困难,可能需要斑点去除。
因此,斑点去除是必需的,有效的方法可以在文献[2][3][4][5][6][7][8][9][10]中找到。
对于SAR图像分割,水平集方法构成一类基于哈密顿-雅克比公式的重要算法。
水平集方法允许有效的分割标准公式,从文献[12]中讨论的传播函数项可以得到。
经典方法有着昂贵的计算成本,但现在的水平集的实现配置了有趣的低成本的替换。
《数字图像处理》课后作业253.5在位平面分层中,(a)如果将低阶位平面的一半设为零值,对一幅图像的直方图大体上有何影响?(b)如果将高阶位平面的一半设为零值,对一幅图像的直方图又有何影响?3.6试解释为什么离散直方图均衡化技术一般不能得到平坦的输出直方图。
3.14右图所示的两幅图像差异很大,但它们的直方图却相同。
假设每幅图像都用一个3×3的均值滤波模板进行模糊处理,那么:(a)模糊后的两幅图像的直方图还相同吗?试解释原因。
(b)如果您认为模糊后的两幅图像的直方图不相同,请画出这两幅图像的直方图。
3.19(a)给出计算n×n邻域中值的过程。
(b)当邻域中心逐像素地移动时,试提出一种更新邻域中值的技巧。
3.21下面所示的三幅图像是对教材中附图3.33中(a)图像分别采用大小为n=23,25和45的正方形均值模板处理后的模糊图像。
图像(a)和图像(c)中左下部的竖条被模糊了,但竖条之间的分隔仍很清楚。
然而,尽管产生图像(b)所用的模板要比处理图像(c)所用的模板尺寸小的多,但图像(b)中的竖条却融合在一起。
试解释这一现象的原因。
(提示:要注意竖条的宽度、竖条之间的间隔与模板尺寸的关系。
)(a) (b) (c)3.23在给定的应用中,先用一个均值模板对输入图像降噪,然后再用一个拉普拉斯模板来增强图像中的细节。
如果交换一下上述两个步骤的执行顺序,结果是否相同?3.24证明式(3.6-3)所示的拉普拉斯算子具有各向同性(旋转不变形)。
22222f ff x y ∂∂∇=+∂∂ 式(3.6-3)提示:证明时要用到下列坐标轴旋转变换公式:cos sin sin cos x x y y x y θθθθ''=-''=+ ,其中,(x ,y )为未旋转的坐标,而(x ’,y ’)为旋转后的坐标。
3.25您在教材图3.38中看到的中心系数为-8的拉普拉斯模板所得到的锐化结果,要比中心系数为-4的拉普拉斯模板所得到的锐化结果更清晰些。
图像处理毕业设计题目篇一:数字图像处理论文——各种题目长春理工大学——professor——景文博——旗下出品1基于形态学运算的星空图像分割主要内容:在获取星图像的过程中,由于某些因素的影响,获得的星图像存在噪声,而且星图像的背景经常是不均匀的,为星图像的分割造成了极大的困难。
膨胀和腐蚀是形态学的两个基本运算。
用形态学运算对星图像进行处理,补偿不均匀的星图像背景,然后进行星图像的阈值分割。
要求:1> 图像预处理:对原始星空图像进行滤波去噪处理;2> 对去噪后的图像进行形态学运算处理;3> 选取自适应阈值对形态学运算处理后的图像进行二值化;4> 显示每步处理后的图像;5> 对经过形态学处理后再阈值的图像和未作形态学处理后再阈值的图像进行对比分析。
待分割图像直接分割图像处理后的分割图像2基于数字图像处理的印刷电路板智能检测方法主要内容:通过对由相机实时获取的印刷电路板图像进行焊盘识别,从而提高电子元件的贴片质量,有效提高电路板的印刷效率。
要求:1> 图像预处理:将原始彩色印刷电路板图像转成灰度图像,对灰度图像进行背景平滑和滤波去噪;2> 对去噪后的图像进行图像增强处理,增强边缘提取的效果。
3> 对增强后的图像进行边缘提取(至少两种以上的边缘提取算法);4> 显示每步处理后的图像(原始电路板图像可自行查找);5> 图像处理后要求能对每个焊盘进行边缘提取,边缘清晰。
3静止背景下的移动目标视觉监控主要内容:基于视觉的人的运动分析最有前景的潜在应用之一是视觉监控。
视觉监控系统的需求主要来自那些对安全要求敏感的场合,如银行、商店、停车场、军事基地等。
通过对静止背景下的目标识别,来提醒监测人员有目标出现。
要求:1> 对原始参考图和实时图像进行去噪处理;2> 对去噪后的两幅图像进行代数运算,找出目标所在位置,提取目标,并将背景置黑;3> 判断目标大小,若目标超过整幅图像的一定比例时,说明目标进入摄像保护区域,系统对监测人员进行提示(提示方式自选)。
数字图像处理期末大作业一、问题描述实现第十章中采用Hough变换来检测图像中圆的过程。
,通过包括平滑(把细节去除),边缘检测(得到轮廓)以及Hough变换得到的圆,并把结果叠加到原来的灰度图像上。
给出具体的过程,中间结果,最后结果,实现的代码,并写出报告。
二、图片的获取以及预处理针对老师提供的一副硬币图片,要求检测出其中的hough圆,并叠加到原图像上以便增强图像。
在检测hough圆之前,首先要对图像进行平滑处理,进行拉普拉斯变换,然后检测垂直方向,水平方向,+45度和-45度方向的边缘,将四个方向的边缘叠加起来,得到总的边缘,对该图像进行二值化,然后对得到的图像检测其hough圆,得到圆形边缘,将该图像叠加到原图像上,就实现了图像边缘增强的目的。
三、图像处理算法的基本原理以及处理结果本实验流程图如下:1.读取图像图像处理的第一步就是对所采集的图像进行读入,本次实验的输入图像是一幅灰度图像,不需要将图像转换成为灰度图像,直接利用函数imread ()完成。
原图像如下所示:原图像2.图像预处理在图像预处理中,我们完成了两步工作,首先使用方差为1的高斯噪声对图像进行平滑,然后进行拉普拉斯变换,即)],(*)([2y x f r h ∇,222r 2e 21)(σσ-=πr h 为方差为2σ的高斯噪声,本实验中12=σ。
又),(*)]([)],(*)([22y x f r h y x f r h ∇=∇,其中2224222]2[)(σσσr er r h --=∇,将)(2r h ∇和),(y x f 分别进行傅里叶别换,将其逐点相乘,再进行傅里叶反变换,就得到了预处理后的图像。
3.边缘检测对水平,垂直,+45度,-45度方向进行边缘检测,本实验中我们采用了Prewitt 梯度算子,它用于检测水平方向,垂直方向,+45度方向和-45度方向的掩膜分别如下:水平掩膜 垂直掩膜 +45度掩膜 -45度掩膜使用这四个掩膜分别对上一步得到的图像逐点进行处理,就可以得到四个方向的边缘了(本实验中边缘的一个像素都不处理),再将它们加起来,就得到了总的边缘,实验结果如下:水平边缘垂直边缘-45度边缘总的边缘如下图所示:4.二值化对上图得到的图像进行二值化,这里我采用的是循环方式确定图像全局阈值,即首先以图像的平均值作为阈值,将图像分成两部分,分别求两部分的平均值,新的阈值为这两个平均值的均值,重复上述过程,直到两次阈值之差小于特定的值时停止,并以最后一次得到的阈值对图像进行二值化,本实验中我要求两次阈值之差小于0.5时停止,最后得到的全局阈值为 -102.1332,二值化后的图像如下所示:二值化后的图像5.Hough变换检测圆形边界Hough 变换的原理就是利用图像全局特征将边缘像素连接起来组成区域封闭边界,它将图像空间转换到参数空间,在参数空间对点进行描述,达到检测图像边缘的目的。
计算机图像处理题目:图像分割的原理及方法学院:材料科学与工程学院班级:金属材料3班学号:11080822姓名:王兴旺数字图像处理技术是一个跨学科的领域。
随着计算机科学技术的不断发展,图像处理和分析逐渐形成了自己的科学体系,新的处理方法层出不穷,尽管其发展历史不长,但却引起各方面人士的广泛关注。
首先,视觉是人类最重要的感知手段,图像又是视觉的基础,因此,数字图像成为心理学、生理学、计算机科学等诸多领域内的学者们研究视觉感知的有效工具。
其次,图像处理在军事、遥感、气象等大型应用中有不断增长的需求。
图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。
它是由图像处理到图像分析的关键步骤。
现有的图像分割方法主要分以下几类:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。
近年来,研究人员不断改进原有的图像分割方法并把其它学科的一些新理论和新方法用于图像分割,提出了不少新的分割方法。
基于阈值的分割方法灰度阈值分割[1]法是一种最常用的并行区域技术,它是图像分割中应用数量最多的一类。
阈值分割方法实际上是输入图像f到输出图像g的如下变换:其中,T为阈值,对于物体的图像元素g(i,j)=l,对于背景的图像元素g(i,j)=0。
由此可见,阈值分割算法的关键是确定阈值,如果能确定一个合适的阈值就可准确地将图像分割开来。
阈值确定后,将阈值与像素点的灰度值比较和像素分割可对各像素并行地进行,分割的结果直接给出图像区域。
阈值分割的优点是计算简单、运算效率较高、速度快。
在重视运算效率的应用场合(如用于硬件实现),它得到了广泛应用。
人们发展了各种各样的阈值处理技术,包括全局阈值、自适应阈值、最佳阈值等等。
全局阈值是指整幅图像使用同一个阈值做分割处理,适用于背景和前景有明显对比的图像。
它是根据整幅图像确定的:T=T(f)。
但是这种方法只考虑像素本身的灰度值,一般不考虑空间特征,因而对噪声很敏感。
常用的全局阈值选取方法有利用图像灰度直方图的峰谷法、最小误差法、最大类间方差法、最大熵自动阈值法以及其它一些方法。
在许多情况下,物体和背景的对比度在图像中的各处不是一样的,这时很难用一个统一的阈值将物体与背景分开。
这时可以根据图像的局部特征分别采用不同的阚值进行分割。
实际处理时,需要按照具体问题将图像分成若干子区域分别选择阈值,或者动态地根据一定的邻域范围选择每点处的阈值,进行图像分割。
这时的阈值为自适应阈值。
阈值的选择需要根据具体问题来确定,一般通过实验来确定。
对于给定的图像,可以通过分析直方图的方法确定最佳的阈值,例如当直方图明显呈现双峰情况时,可以选择两个峰值的中点作为最佳阈值。
图1(a)和(b)分别为用全局阈值和自适应阈值对经典的Lena图像进行分割的结果。
图1(a)全局阈值(b)自适应阈值基于区域的分割方法区域生长和分裂合并法是两种典型的串行区域技术,其分割过程后续步骤的处理要根据前面步骤的结果进行判断而确定。
区域生长区域生长的基本思想是将具有相似性质的像素集合起来构成区域。
具体先对每个需要分割的区域找一个种子像素作为生长的起点,然后将种子像素周围邻域中与种子像素有相同或相似性质的像素(根据某种事先确定的生长或相似准则来判定)合并到种子像素所在的区域中。
将这些新像素当作新的种子像素继续进行上面的过程,直到再没有满足条件的像素可被包括进来。
这样一个区域就长成了。
区域生长需要选择一组能正确代表所需区域的种子像素,确定在生长过程中的相似性准则,制定让生长停止的条件或准则。
相似性准则可以是灰度级、彩色、纹理、梯度等特性。
选取的种子像素可以是单个像素,也可以是包含若干个像素的小区域。
大部分区域生长准则使用图像的局部性质。
生长准则可根据不同原则制定,而使用不同的生长准则会影响区域生长的过程。
图2脑部图像和区域生长法分割的结果区域生长法的优点是计算简单,对于较均匀的连通目标有较好的分割效果。
它的缺点是需要人为确定种子点,对噪声敏感,可能导致区域内有空洞。
另外,它是一种串行算法,当目标较大时,分割速度较慢,因此在设计算法时,要尽量提高效率。
区域分裂合并区域生长是从某个或者某些像素点出发,最后得到整个区域,进而实现目标提取。
分裂合并差不多是区域生长的逆过程:从整个图像出发,不断分裂得到各个子区域,然后再把前景区域合并,实现目标提取。
分裂合并的假设是对于一幅图像,前景区域由一些相互连通的像素组成的,因此,如果把一幅图像分裂到像素级,那么就可以判定该像素是否为前景像素。
当所有像素点或者子区域完成判断以后,把前景区域或者像素合并就可得到前景目标。
在这类方法中,最常用的方法是四叉树分解法(如图3所示)。
设R代表整个正方形图像区域,P代表逻辑谓词。
基本分裂合并算法步骤如下:图3 四叉树分割后的图像(1)对任一个区域,如果H(R i)=FALSE就将其分裂成不重叠的四等份;(2)对相邻的两个区域R i和R j,它们也可以大小不同(即不在同一层),如果条件H(R i∪R j)=TRUE满足,就将它们合并起来。
(3)如果进一步的分裂或合并都不可能,则结束。
分裂合并法的关键是分裂合并准则的设计。
这种方法对复杂图像的分割效果较好,但算法较复杂,计算量大,分裂还可能破坏区域的边界。
基于边缘的分割方法图像分割的一种重要途径是通过边缘检测,即检测灰度级或者结构具有突变的地方,表明一个区域的终结,也是另一个区域开始的地方。
这种不连续性称为边缘。
不同的图像灰度不同,边界处一般有明显的边缘,利用此特征可以分割图像。
图像中边缘处像素的灰度值不连续,这种不连续性可通过求导数来检测到。
对于阶跃状边缘,其位置对应一阶导数的极值点,对应二阶导数的过零点(零交叉点)。
因此常用微分算子进行边缘检测。
常用的一阶微分算子有Roberts算子、Prewitt算子和Sobel算子,二阶微分算子有Laplace 算子和Kirsh算子等。
在实际中各种微分算子常用小区域模板来表示,微分运算是利用模板和图像卷积来实现。
这些算子对噪声敏感,只适合于噪声较小不太复杂的图像。
由于边缘和噪声都是灰度不连续点,在频域均为高频分量,直接采用微分运算难以克服噪声的影响。
因此用微分算子检测边缘前要对图像进行平滑滤波。
LoG算子和Canny算子是具有平滑功能的二阶和一阶微分算子,边缘检测效果较好,如图4所示。
其中loG算子是采用Laplacian算子求高斯函数的二阶导数,Canny算子是高斯函数的一阶导数,它在噪声抑制和边缘检测之间取得了较好的平衡。
图4 边缘检测结果 (a)LoG算子 (b)Canny算子关于微分算子的边缘检测的详细内容可参考文献[2]。
基于特定理论的分割方法图像分割至今尚无通用的自身理论。
随着各学科许多新理论和新方法的提出,出现了许多与一些特定理论、方法相结合的图像分割方法。
基于聚类分析的图像分割方法特征空间聚类法进行图像分割是将图像空间中的像素用对应的特征空间点表示,根据它们在特征空间的聚集对特征空间进行分割,然后将它们映射回原图像空间,得到分割结果。
其中,K均值、模糊C均值聚类(FCM)算法是最常用的聚类算法。
K均值算法先选K个初始类均值,然后将每个像素归入均值离它最近的类并计算新的类均值。
迭代执行前面的步骤直到新旧类均值之差小于某一阈值。
模糊C均值算法是在模糊数学基础上对K均值算法的推广,是通过最优化一个模糊目标函数实现聚类,它不像K均值聚类那样认为每个点只能属于某一类,而是赋予每个点一个对各类的隶属度,用隶属度更好地描述边缘像素亦此亦彼的特点,适合处理事物内在的不确定性。
利用模糊C均值(FCM)非监督模糊聚类标定的特点进行图像分割,可以减少人为的干预,且较适合图像中存在不确定性和模糊性的特点。
FCM算法对初始参数极为敏感,有时需要人工干预参数的初始化以接近全局最优解,提高分割速度。
另外,传统FCM算法没有考虑空间信息,对噪声和灰度不均匀敏感。
基于模糊集理论的分割方法模糊集理论具有描述事物不确定性的能力,适合于图像分割问题。
近年来,出现了许多模糊分割技术,在图像分割中的应用日益广泛。
目前,模糊技术在图像分割中应用的一个显著特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。
模糊阈值技术利用不同的S型隶属函数来定义模糊目标,通过优化过程最后选择一个具有最小不确定性的S函数。
用该函数增强目标及属于该目标的像素之间的关系,这样得到的S型函数的交叉点为阈值分割需要的阈值,这种方法的困难在于隶属函数的选择。
基于模糊集合和逻辑的分割方法是以模糊数学为基础,利用隶属图像中由于信息不全面、不准确、含糊、矛盾等造成的不确定性问题。
该方法在医学图像分析中有广泛的应用,如薛景浩[3]等人提出的一种新的基于图像间模糊散度的阈值化算法以及它在多阈值选择中的推广算法,采用了模糊集合分别表达分割前后的图像,通过最小模糊散度准则来实现图像分割中最优阈值的自动提取。
该算法针对图像阈值化分割的要求构造了一种新的模糊隶属度函数,克服了传统S函数带宽对分割效果的影响,有很好的通用性和有效性,方案能够快速正确地实现分割,且不需事先认定分割类数。
实验结果令人满意。
基于小波变换的分割方法小波变换是近年来得到了广泛应用的数学工具,它在时域和频域都具有良好的局部化性质,而且小波变换具有多尺度特性,能够在不同尺度上对信号进行分析,因此在图像处理和分析等许多方面得到应用。
基于小波变换的阈值图像分割方法的基本思想是首先由二进小波变换将图像的直方图分解为不同层次的小波系数,然后依据给定的分割准则和小波系数选择阈值门限,最后利用阈值标出图像分割的区域。
整个分割过程是从粗到细,有尺度变化来控制,即起始分割由粗略的L2(R)子空间上投影的直方图来实现,如果分割不理想,则利用直方图在精细的子空间上的小波系数逐步细化图像分割。
分割算法的计算馈与图像尺寸大小呈线性变化。
基于神经网络的分割方法近年来,人工神经网络识别技术已经引起了广泛的关注,并应用于图像分割。
基于神经网络的分割方法的基本思想是通过训练多层感知机来得到线性决策函数,然后用决策函数对像素进行分类来达到分割的目的。
这种方法需要大量的训练数据。
神经网络存在巨量的连接,容易引入宅间信息,能较好地解决图像中的噪声和不均匀问题。
选择何种网络结构是这种方法要解决的主要问题。
总结与展望对图像分割算法的研究已有几十年的历史,借助各种理论至今已提出了上千种各种类型的分割算法。
尽管人们在图像分割方面做了许多研究工作。
但由于尚无通用分割理论,因此现已提出的分割算法大都是针对具体问题的,并没有一种适合于所有图像的通用的分割算法。
但是可以看出,图像分割方法正朝着更快速、更精确的方向发展,通过各种新理论和新技术结合将不断取得突破和进展。