第9章 温度检测技术
- 格式:ppt
- 大小:2.46 MB
- 文档页数:81
第9章新型传感器习题答案1.光纤传感器的性能有何特殊之处?主要有哪些应用?答:光导纤维传感器(简称光纤传感器)是七十年代迅速发展起来的一种新型传感器。
光纤传感器具有灵敏度高,不受电磁波干扰,传输频带宽,绝缘性能好,耐水抗腐蚀性好,体积小,柔软等优点。
目前已研制出多种光纤传感器,可用于位移、速度、加速度、液位、压力、流量、振动、水声、温度、电压、电流;磁场、核辐射等方面的测量。
应用前景十分广阔。
2.红外线温度传感器有哪些主要类型?它与别的温度传感器有什么显著区别?答:能把红外辐射转换成电量变化的装置,称为红外传感器,主要有热敏型和光电型两大类。
热敏型是利用红外辐射的热效应制成的,其核心是热敏元件。
由于热敏元件的响应时间长,一般在毫秒数量级以上。
另外,在加热过程中,不管什么波长的红外线,只要功率相同,其加热效果也是相同的,假如热敏元件对各种波长的红外线都能全部吸收的话,那么热敏探测器对各种波长基本上都具有相同的响应,所以称其为“无选择性红外传感器”。
这类传感器主要有热释电红外传感器和红外线温度传感器两大类。
光电型是利用红外辐射的光电效应制成的,其核心是光电元件。
因此它的响应时间一般比热敏型短得多,最短的可达到毫微秒数量级。
此外,要使物体内部的电子改变运动状态,入射辐射的光子能量必须足够大,它的频率必须大于某一值,也就是必须高于截止频率。
由于这类传感器以光子为单元起作用,只要光子的能量足够,相同数目的光子基本上具有相同的效果,因此常常称其为“光子探测器”。
这类传感器主要有红外二极管、三极管等。
3.红外线光电开关有哪些优越的开关特性?答:红外线光电开关具有表面反射率低、环境特性优越、回差距离远、响应频率高、输出状态灵活、检测方式多样、输出形式多等许多优越的开关特性。
4.超声波发生器种类及其工作原理是什么?它们各自特点是什么?答:超声波发生器有压电式超声波发生器和磁致伸缩超声波发生器两种。
压电式超声波发生器就是利用压电晶体的电致伸缩现象制成的。
习题与思考题解答(第9章) 1.什么是霍耳效应?解:在置于磁场中的导体或半导体内通入电流,若电流与磁场垂直,则在与磁场和电流都垂直的方向上会出现一个电势差,这种现象称为霍耳效应。
利用霍耳效应制成的元件称为霍耳传感器。
2.为什么导体材料和绝缘体材料均不宜做成霍耳元件?解:载流体的电阻率 ρ 与霍耳系数 R H 和载流子迁移率 μ 之间的关系为H =R ρμ 霍耳电压 U H 与材料的性质有关。
材料的 ρ、μ 大,R H 就大。
金属 μ 虽然很大,但 ρ很小,故不宜做成元件。
3.为什么霍耳元件一般采用N型半导体材料?解:在半导体材料中,由于电子的迁移率比空穴的大,即 μn >μp ,所以霍耳元件一般采用N型半导体材料。
4.霍耳灵敏度与霍耳元件厚度之间有什么关系?解:霍耳电压 U H 与元件的尺寸有关。
根据式H 1=K nqd,d 愈小,K H 愈大,霍耳灵敏度愈高,所以霍耳元件的厚度都比较薄,但 d 太小,会使元件的输入、输出电阻增加。
5.一块半导体样品如图9-1所示,其中d =1.0mm ,b =3.5mm ,l =10mm ,沿 x 方向通以I =1.0mA 的电流,在z 轴方向加有B =100T 的均匀磁场,半导体片两侧的电位差U =6.55mV 。
(1)这块半导体是正电荷导电(P 型)还是负电荷导电(N 型)?(2)求载流子浓度为多大?解:1)根据图9-1应是N 型半导体。
2)由于 H H =U K IB得出32H H 36.5510= 6.55101.01010V A T 0U K IB ---⨯==⨯⨯⨯ /() 设载流子浓度为 n ,由于H 1=K nqd,则 2432032193H 110.09510/m 95010/m 6.5510 1.60210110n K qd ---===⨯=⨯⨯⨯⨯⨯⨯个个6.某霍尔元件尺寸为L =10mm ,W =3.5mm ,d =1.0mm ,沿L 方向通以电流I =1.0mA ,在垂直于L 和W 的方向加有均匀磁场B =0.3T ,灵敏度为22V /(A ·T ),试求输出霍尔电势及载流子浓度。
单片机第9章单片机的综合应用单片机作为一种集成了处理器、存储器、输入输出接口等功能的微型计算机系统,在现代电子技术领域中有着广泛的应用。
在这一章中,我们将探讨单片机在各个领域中的综合应用,了解其如何通过巧妙的设计和编程,为实际问题提供高效、可靠的解决方案。
单片机在智能家居中的应用是一个热门领域。
想象一下,当您下班回家时,房间的灯光自动亮起,温度调节到舒适的程度,窗帘根据光线自动开合。
这一切的实现都离不开单片机的智能控制。
通过传感器采集环境数据,如光线强度、温度、湿度等,单片机可以根据预设的条件进行判断和决策,控制各种家电设备的运行状态。
比如,当光线变暗时,单片机控制灯光亮起;当温度过高时,启动空调制冷。
在智能家居系统中,单片机不仅要实现对设备的精确控制,还需要保证系统的稳定性和低功耗,以确保长期可靠运行。
在工业自动化领域,单片机也发挥着重要作用。
工厂中的生产线往往需要对各种参数进行实时监测和控制,以保证产品的质量和生产效率。
单片机可以连接各类传感器,如压力传感器、流量传感器、位置传感器等,采集生产过程中的数据,并将其传输到中央控制系统。
中央控制系统中的单片机根据这些数据进行分析和处理,然后发出控制指令,调整设备的运行速度、加工精度等参数。
例如,在汽车生产线上,单片机可以控制机器人的动作精度,确保每一个零部件的安装都准确无误;在化工生产中,单片机可以监控反应釜的温度、压力等参数,保证化学反应的安全和稳定进行。
单片机在医疗设备中的应用也日益广泛。
从简单的体温计、血压计到复杂的心电图机、血糖仪等,单片机都在其中扮演着关键角色。
以血糖仪为例,单片机负责控制传感器对血液中的葡萄糖浓度进行检测,并将检测结果进行数字化处理和显示。
同时,单片机还可以将检测数据存储起来,以便医生进行长期的病情监测和分析。
在一些高端医疗设备中,如核磁共振成像(MRI)设备、手术机器人等,单片机更是承担着复杂的控制和数据处理任务,确保设备的精确运行和患者的安全。
第一章测试1.下面属于典型的自动化装置的是哪个选项()。
A:控制器B:执行器C:测量仪表D:测量变送器答案:ABD2.下面哪项是检测技术的新的发展方向()。
A:传感器、变送器的网络化产品B:智能传感器的发展C:微机械量检测技术D:成组传感器的复合检测答案:ABCD3.检测的目的就是获取被测对象的定量检测结果。
()A:错B:对答案:A4.检测技术的发展能够推动科学技术的发展,同样,科学技术的发展也能推动检测技术的发展。
()A:对B:错答案:A5.如果把人看做一个自动控制系统,人的大脑相当于系统中的()。
A:传感器B:控制器C:执行器D:计算器答案:B第二章测试1.下面不属于电学法测量方法的是()。
A:热电偶测温B:热电阻测温C:电容传感器测位移D:超声波测速答案:D2.利用弹簧秤称物体的重量属于()。
A:闭环检测B:比较检测C:偏差法D:间接检测答案:C3.用光电池作为传感器,是属于能量变换型检测.()A:错B:对答案:B4.对于一个物理量的检测,可以采用不同的敏感元件来实现。
()A:对B:错答案:A5.用天平秤物体的重量,属于偏位式测量。
()A:对B:错答案:B第三章测试1.要测量一个长度为1米的木板,小明用米尺测得长度为1.02米,相对误差为()。
A:2%B:-2%C:0.02%D:-0.02%答案:A2.仪表精度等级越高,测量结果越准确。
()A:错B:对答案:A3.下面对仪表的说法错误的是()。
A:精度高的仪表重复性好B:再现性数值越小,仪表质量越高C:有效度越大,仪表可靠度高D:重复性好的仪表精度高答案:A4.一台测温仪表,其零点为-200℃,量程为500℃,它能测量的最高温度为()。
A:500℃B:700℃C:-200℃D:300℃答案:D5.仪表的零点迁移后,其量程也随之迁移。
()A:对B:错答案:B第四章测试1.一个温度为40℃的物体,其温度在华氏温度下为()。
A:40℉B:94℉C:104℉D:72℉答案:C2.膨胀式温度计是利用液体的热胀冷缩特性做成的。
温度测量方法温度是物体分子热运动的表现,是物体内能的一种表现形式。
温度的测量是非常重要的,它在工业生产、科学研究、医疗保健等领域都有着广泛的应用。
本文将介绍几种常见的温度测量方法。
首先,我们来介绍最常见的一种温度测量方法——使用温度计。
温度计是利用物质的热膨胀性原理来测量温度的一种工具。
常见的温度计有水银温度计、酒精温度计、电子温度计等。
其中,水银温度计是最常用的一种。
它利用了水银在不同温度下的膨胀系数不同的原理,通过测量水银柱的高度来确定温度。
酒精温度计则是利用酒精的膨胀性来进行温度测量。
电子温度计则是利用半导体材料的电阻随温度变化的特性来测量温度。
温度计具有测量范围广、精度高、使用方便等优点,但也存在着易碎、受环境影响大等缺点。
其次,我们来介绍红外线测温技术。
红外线测温技术是利用物体在不同温度下发出的红外辐射能量与温度之间的关系来进行温度测量的一种技术。
它可以实现对远距离、高温度、移动目标的非接触式测温。
红外线测温技术广泛应用于冶金、电力、化工、玻璃、陶瓷、造纸、制药、食品等行业。
它具有测量范围广、速度快、非接触等优点,但也存在着受环境影响大、测量精度受距离、目标表面特性等因素影响等缺点。
另外,还有一种温度测量方法是热电偶测温。
热电偶是利用两种不同金属导体接触处产生的热电动势与温度之间的关系来进行温度测量的一种传感器。
热电偶具有响应速度快、测量范围广、结构简单等优点,但也存在着灵敏度低、易受干扰等缺点。
最后,我们介绍一种新型的温度测量方法——纳米材料温度测量。
纳米材料温度测量是利用纳米材料在不同温度下的电学、光学性质发生变化的原理来进行温度测量的一种方法。
纳米材料温度传感器具有响应速度快、精度高、对环境影响小等优点,但由于目前纳米材料制备和应用技术还不够成熟,因此在工业生产中的应用还比较有限。
综上所述,温度测量方法有很多种,每种方法都有其适用的场景和特点。
在实际应用中,我们需要根据具体的测量要求和环境条件选择合适的温度测量方法,以确保测量的准确性和可靠性。
认识温度监测技术教案温度监测技术在现代社会中扮演着非常重要的角色,它涉及到许多领域,包括工业生产、医疗保健、环境保护等等。
了解温度监测技术对我们的日常生活和工作都有着重要意义。
因此,本文将从温度监测技术的基本原理、应用领域和发展趋势等方面进行介绍,帮助读者更好地认识和理解这一技术。
一、温度监测技术的基本原理。
温度监测技术是通过测量物体的热量来确定其温度的一种技术。
在物体受热时,其分子会加速运动,产生热量,使得温度升高;而在物体散热时,其分子会减缓运动,释放热量,使得温度降低。
因此,通过测量物体散热或吸热的情况,就可以确定其温度。
目前常用的温度监测技术包括接触式温度监测和非接触式温度监测两种。
接触式温度监测是通过将温度传感器直接接触到物体表面,利用传感器的特性来测量物体的温度。
常见的接触式温度传感器有热电偶和热敏电阻等。
热电偶是利用两种不同金属的接触产生的热电势来测量温度的传感器,其测量范围广,精度高,但需要与被测物体接触,不适用于高温、高压和腐蚀性环境。
热敏电阻是利用材料的电阻随温度变化的特性来测量温度的传感器,其结构简单,价格低廉,但对环境条件要求较高。
非接触式温度监测是通过红外辐射测量物体的温度,其原理是物体在一定温度下会发出特定波长的红外辐射,通过测量这种辐射的强度来确定物体的温度。
非接触式温度监测适用于高温、高压和腐蚀性环境,但其测量范围较窄,精度较低。
二、温度监测技术的应用领域。
温度监测技术在工业生产、医疗保健、环境保护等领域都有着广泛的应用。
在工业生产中,温度监测技术被用于控制生产过程中的温度,保证产品质量。
例如,在金属加工中,需要控制金属的加热温度和冷却温度,以保证产品的硬度和韧性。
在化工生产中,需要控制反应温度和冷却温度,以保证反应的速率和产物的纯度。
此外,温度监测技术还被用于监测设备的运行温度,保证设备的安全运行。
在医疗保健领域,温度监测技术被用于监测人体的体温,帮助医生诊断疾病。