2017—2018学年八年级科学第二学期期中试卷(含答案)
- 格式:doc
- 大小:211.92 KB
- 文档页数:6
2017-2018学年山东省枣庄市薛城区八年级(下)期中数学试卷一、选择题(下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来,每小题3分,共36分)1.不等式3x+6≥9的解集在数轴上表示正确的是()A.B.C.D.2.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C =36°,则∠DAC的度数是()A.70°B.44°C.34°D.24°3.如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A.30°B.60°C.90°D.120°4.如图,在△ABC中,∠C=90°,∠B=22.5°,AB的垂直平分线交AB于D,交BC于E,若CE=3,则BE的长是()A.3B.6C.2D.35.如图,在方格纸中,△ABC经过变换得到△DEF,正确的变换是()A.把△ABC绕点C逆时针方向旋转90°,再向下平移2格B.把△ABC绕点C顺时针方向旋转90°,再向下平移5格C.把△ABC向下平移4格,再绕点C逆时针方向旋转180°D.把△ABC向下平移5格,再绕点C顺时针方向旋转180°6.不等式组的非负整数解的个数是()A.4B.5C.6D.77.实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a﹣3>b﹣3B.﹣3c<﹣3d C.1﹣a>1﹣c D.b﹣d>08.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A.①B.②C.③D.④9.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S=BC•AH D.AB=AD△ABC10.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是()A.m≥5B.m>5C.m≤5D.m<511.如图,在△ABC中,AB=AC,DE=DF,DE⊥AB,DF⊥AC,垂足分别是E、F.现有下列结论:①AD 平分∠BAC;②AD⊥BC;③AD上任意一点到AB、AC的距离相等;④AD上任意一点到BC两端点的距离相等.其中正确结论的个数有()A.1B.2C.3D.412.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为()A.B.C.D.不能确定二、填空题(共6小题,每小题4分,满分24分)13.若等腰三角形的一个外角是110°,则其底角为.14.已知五个正数的和等于1.用反证法证明:这五个数中至少有一个大于或等于应先假设.15.关于x的一元一次不等式的解集为x≥4,则m的值为.16.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x≤ax+3的解集是.17.如图在Rt△ABC中,∠ACB=90°,∠ABC=58°,将Rt△ABC绕点C旋转到Rt△A'B'C,使点B恰好落在A'B'上,A'C交AB于点D,则∠ADC的度数为°.18.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买个.三、解答题(共7道大题,满分60分)19.(8分)如图所示,已知△ABC的角平分线BM,CN相交于点P.(1)判断AP能否平分∠BAC?请说明理由.(2)由此题你得到的结论是.20.(8分)已知关于x的方程3x﹣(2a﹣3)=5x+3(a+2)的解是非正数,求字母a的取值范围.21.(8分)同学们知道:“在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.”(1)请写出它的逆命题;该逆命题是一个命题(填“真”或“假”)(2)若你的判断是真命题请写出证明过程(要求画图,并写出已知,求证).若是假命题,请说明理由.22.(8分)解不等式组请结合题意,完成本题解答过程.(1)解不等式①,得,依据是.(2)解不等式②,得.(3)解不等式③,得.(4)把不等式①,②和③的解集在数轴上表示出来.(5)从图中可以找出三个不等式解集的公共部分,得不等式组的解集.(6)根据不等式组的解集确立出该不等式组的最大整数解为.23.(8分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2).请解答下列问题:(1)画出△ABC向左平移6个单位得到的△A1B1C1,并写出A1的坐标.(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.24.(10分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.25.(10分)感知:如图①,AD平分∠BAC,∠B+∠C=180°,∠B=90°.判断DB与DC的大小关系并证明.探究:如图②,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,DB与DC的大小关系变吗?请说明理由.应用:如图③,四边形ABDC中,∠B=45°,∠C=135°,DB=DC=a,则AB﹣AC=.(用含a的代数式表示)2017-2018学年山东省枣庄市薛城区八年级(下)期中数学试卷参考答案与试题解析一、选择题(下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来,每小题3分,共36分)1.不等式3x+6≥9的解集在数轴上表示正确的是()A.B.C.D.【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:移项,得:3x≥9﹣6,合并同类项,得:3x≥3,系数化为1,得:x≥1,故选:C.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.2.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C =36°,则∠DAC的度数是()A.70°B.44°C.34°D.24°【分析】由AB=BD,∠B=40°得到∠ADB=70°,再根据三角形的外角的性质即可得到结论.【解答】解:∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故选:C.【点评】本题考查了等腰三角形的性质,三角形内角和定理,掌握等边对等角是解题的关键,注意三角形外角性质的应用.3.如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A.30°B.60°C.90°D.120°【分析】根据题意,由直线AB与直线A′B′的夹角是90°即可确定旋转角的大小.【解答】解:如图:延长AB、A′B′,直线AB与直线A′B′的夹角是90°,故旋转角α为90°.故选:C.【点评】考查了旋转的性质,解题的关键是能够根据题意确定旋转中心的知识,难度不大.4.如图,在△ABC中,∠C=90°,∠B=22.5°,AB的垂直平分线交AB于D,交BC于E,若CE=3,则BE的长是()A.3B.6C.2D.3【分析】利用线段的垂直平分线的性质计算.【解答】解:已知∠C=90°,∠B=22.5°,DE垂直平分AB.故∠B=∠EAB=22.5°,所以∠AEC=45°.又∵∠C=90°,∴△ACE为等腰三角形所以CE=AC=3,故可得AE=3.故选:D.【点评】本题考查的是线段的垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等),难度一般.5.如图,在方格纸中,△ABC经过变换得到△DEF,正确的变换是()A.把△ABC绕点C逆时针方向旋转90°,再向下平移2格B.把△ABC绕点C顺时针方向旋转90°,再向下平移5格C.把△ABC向下平移4格,再绕点C逆时针方向旋转180°D.把△ABC向下平移5格,再绕点C顺时针方向旋转180°【分析】观察图象可知,先把△ABC绕点C顺时针方向旋转90°,再向下平移5格即可得到.【解答】解:根据图象,△ABC绕点C顺时针方向旋转90°,再向下平移5格即可与△DEF重合.故选:B.【点评】本题考查了几何变换的类型,几何变换只改变图形的位置,不改变图形的形状与大小,本题用到了旋转变换与平移变换,对识图能力要求比较高.6.不等式组的非负整数解的个数是()A.4B.5C.6D.7【分析】先求出不等式组的解集,再求出不等式组的非负整数解,即可得出答案.【解答】解:∵解不等式①得:x≥﹣,解不等式②得:x<5,∴不等式组的解集为﹣≤x<5,∴不等式组的非负整数解为0,1,2,3,4,共5个,故选:B.【点评】本题考查了解一元一次不等式组和一元一次不等式组的整数解,能求出不等式组的解集是解此题的关键.7.实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a﹣3>b﹣3B.﹣3c<﹣3d C.1﹣a>1﹣c D.b﹣d>0【分析】依据实数a,b,c,d在数轴上的对应点的位置,即可得到a,b,c,d的大小关系,进而利用不等式的基本性质得出结论.【解答】解:∵a<b,∴a﹣3<b﹣3,故A选项错误;∵c<d,∴﹣3c>﹣3d,故B选项错误;∵a<c,∴1﹣a>1﹣c,故C选项正确;∵b<d,∴b﹣d<0,故D选项错误;故选:C.【点评】本题考查了实数与数轴,观察数轴,逐一分析四个选项的正误是解题的关键.8.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A.①B.②C.③D.④【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,进而得出答案.【解答】解:当正方形放在③的位置,即是中心对称图形.故选:C.【点评】此题主要考查了中心对称图形的定义,正确把握定义是解题关键.9.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S=BC•AH D.AB=AD△ABC【分析】根据已知条件可知直线BC是线段AD的垂直平分线,由此一一判定即可.【解答】解:A、正确.如图连接CD、BD,∵CA=CD,BA=BD,∴点C、点B在线段AD的垂直平分线上,∴直线BC是线段AD的垂直平分线,故A正确.B、错误.CA不一定平分∠BDA.C、错误.应该是S=•BC•AH.△ABCD、错误.根据条件AB不一定等于AD.故选:A.【点评】本题考查作图﹣基本作图、线段的垂直平分线的性质等知识,解题的关键是掌握证明线段垂直平分线的证明方法,属于基础题,中考常考题型.10.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是()A.m≥5B.m>5C.m≤5D.m<5【分析】求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了即可确定m的范围.【解答】解:解不等式2x﹣1>3(x﹣2),得:x<5,∵不等式组的解集为x<5,∴m≥5,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.如图,在△ABC中,AB=AC,DE=DF,DE⊥AB,DF⊥AC,垂足分别是E、F.现有下列结论:①AD 平分∠BAC;②AD⊥BC;③AD上任意一点到AB、AC的距离相等;④AD上任意一点到BC两端点的距离相等.其中正确结论的个数有()A.1B.2C.3D.4【分析】根据角平分线的逆定理可知①正确,利用等腰三角形底边上的中线、高线与顶角的角平分线三线合一,可得②④正确;利用角平分线上的点到角两边的距离相等,可得③.【解答】解:①∵DE=DF,DE⊥AB,DF⊥AC,∴AD平分∠BAC,故①正确;②∵AB=AC,AD平分∠BAC,∴AD⊥BC.故②正确;③∵AD是△ABC的角平分线,角平分线上的点到角两边的距离相等,∴AD上任意一点到边AB、AC的距离相等.故③正确;④∵AB=AC,AD平分∠BAC,∴BD=CD,即AD是BC的垂直平分线,∴AD上任意一点到BC两端点的距离相等;故④正确.所以①、②、③、④均正确,故选:D.【点评】本题考查了等腰三角形的性质、角平分线的性质等知识.根据相关知识对各选项进行逐个验证是正确解答本题的关键.12.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为()A.B.C.D.不能确定【分析】作出图形,根据等边三角形的性质求出高AH的长,再根据三角形的面积公式求出点P到三边的距离之和等于高线的长度,从而得解.【解答】解:如图,∵等边三角形的边长为3,∴高线AH=3×=,S=BC•AH=AB•PD+BC•PE+AC•PF,△ABC∴×3•AH=×3•PD+×3•PE+×3•PF,∴PD+PE+PF=AH=,即点P到三角形三边距离之和为.故选:B.【点评】本题考查了等边三角形的性质,根据三角形的面积求点P到三边的距离之和等于等边三角形的高是解题的关键,作出图形更形象直观.二、填空题(共6小题,每小题4分,满分24分)13.若等腰三角形的一个外角是110°,则其底角为70°或55°.【分析】分这个外角为底角的外角和顶角的外角,分别求解即可.【解答】解:当110°外角为底角的外角时,则其底角为:180°﹣110°=70°;当110°外角为顶角的外角时,则其顶角为:70°,则其底角为:=55°,故答案为:70°或55°.【点评】本题主要考查等腰三角形的性质和三角形内角和定理的应用,掌握等腰三角形的两底角相等和三角形三个内角的和为180°是解题的关键.14.已知五个正数的和等于1.用反证法证明:这五个数中至少有一个大于或等于应先假设这五个数都小于.【分析】熟记反证法的步骤,直接从结论的反面出发得出即可.【解答】解:知五个正数的和等于1.用反证法证明:这五个数中至少有一个大于或等于应先假设这五个数都小于,故答案为:这五个数都小于【点评】此题主要考查了反证法,反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.15.关于x的一元一次不等式的解集为x≥4,则m的值为2.【分析】先用含有m的式子把原不等式的解集表示出来,然后和已知解集进行比对得出关于m的方程,解之可得m的值.【解答】解:解不等式得:x≥,∵不等式的解集为x≥4,∴=4,解得:m=2,故答案为:2.【点评】本题主要考查解一元一次不等式,当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.16.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x≤ax+3的解集是x≥﹣1.【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式﹣2x≤ax+3的解集即可.【解答】解:∵函数y1=﹣2x过点A(m,2),∴﹣2m=2,解得:m=﹣1,∴A(﹣1,2),∴不等式﹣2x<ax+3的解集为x≥﹣1.故答案为:x≥﹣1.【点评】此题主要考查了一次函数与一元一次不等式,关键是求出A点坐标.17.如图在Rt△ABC中,∠ACB=90°,∠ABC=58°,将Rt△ABC绕点C旋转到Rt△A'B'C,使点B恰好落在A'B'上,A'C交AB于点D,则∠ADC的度数为84°.【分析】首先由旋转的性质可知:△BB′C是等腰三角形,由三角形内角和定理可求得∠BCB′的度数,进而可求得∠BCD的度数,即可根据三角形的外角性质求得∠ADC的度数.【解答】解:由旋转的性质知:∠ABC=∠B′=58°,BC=B′C;在等腰△BCB′中,由三角形内角和定理知:∠BCB′=180°﹣2∠B′=64°,∴∠BCD=90°﹣∠BCB′=26°;∴∠ADC=∠ABC+∠BCD=58°+26°=84°;故∠ADC的度数为84°.【点评】此题主要考查了旋转的性质,还涉及到三角形内角和定理及三角形的外角性质,难度不大.18.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买16个.【分析】设购买篮球x个,则购买足球(50﹣x)个,根据总价=单价×购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可.【解答】解:设购买篮球x个,则购买足球(50﹣x)个,根据题意得:80x+50(50﹣x)≤3000,解得:x≤.∵x为整数,∴x最大值为16.故答案为:16.【点评】本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.三、解答题(共7道大题,满分60分)19.(8分)如图所示,已知△ABC的角平分线BM,CN相交于点P.(1)判断AP能否平分∠BAC?请说明理由.(2)由此题你得到的结论是三角形的三条内角平分线相交于一点.【分析】如图,作辅助线;证明PK=PL即可解决问题.【解答】解:(1)AP能平分∠BAC;理由如下:如图,过点P作PQ⊥BC、PK⊥AB、PL⊥AC;∵△ABC的角平分线BM、CN相交于点P,∴PK=PQ,PL=PQ,∴PK=PL,∴AP平分∠BAC;(2)结论:三角形的三条内角平分线相交于一点.故答案为:三角形的三条内角平分线相交于一点.【点评】该题主要考查了三角形的内角平分线的性质及其应用问题;作辅助线是解决该题的关键.20.(8分)已知关于x的方程3x﹣(2a﹣3)=5x+3(a+2)的解是非正数,求字母a的取值范围.【分析】依次移项,合并同类项,系数化为1,得到x关于a的解,根据方程的解为非正数,得到关于a 的一元一次不等式,解之即可.【解答】解:3x﹣(2a﹣3)=5x+3(a+2),移项得:3x﹣5x=3a+6+2a﹣3,合并同类项得:﹣2x=5a+3,系数化为1得:x=﹣,∵方程的解是非正数,∴﹣≤0,解得:a,即字母a的取值范围为:a.【点评】本题考查解一元一次不等式和一元一次方程的解,正确掌握解一元一次不等式和解一元一次方程的方法是解题的关键.21.(8分)同学们知道:“在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.”(1)请写出它的逆命题在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半;该逆命题是一个真命题(填“真”或“假”)(2)若你的判断是真命题请写出证明过程(要求画图,并写出已知,求证).若是假命题,请说明理由.【分析】(1)写出逆命题,并判断是真命题;(2)首先写出已知、求证,画出图形,借助等边三角形的判定和性质证明或借助三角形的外接圆证明.【解答】解:(1)原命题的逆命题为:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半,该逆命题是一个真命题;故答案为:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半,真;(2)已知,在Rt△ABC中,∠A=30°,∠ACB=90°.求证:BC=AB.证明:证法一:如图1所示,延长BC到D,使CD=BC,连接AD,易证AD=AB,∠BAD=60°.∴△ABD为等边三角形,∴AB=BD,∴BC=CD=AB,即BC=AB.证法二:如图2所示,取AB的中点D,连接DC,有CD=AB=AD=DB,∴∠DCA=∠A=30°,∠BDC=∠DCA+∠A=60°.∴△DBC为等边三角形,∴BC=DB=AB,即BC=AB.证法三:如图3所示,在AB上取一点D,使BD=BC,∵∠B=60°,∴△BDC为等边三角形,∴∠DCB=60°,∠ACD=90°﹣∠DCB=90°﹣60°=30°=∠A.∴DC=DA,即有BC=BD=DA=AB,∴BC=AB.证法四:如图3所示,作△ABC的外接圆⊙D,∠C=90°,AB为⊙O的直径,连DC,有DB=DC,∠BDC=2∠A=2×30°=60°,∴△DBC为等边三角形,∴BC=DB=DA=AB,即BC=AB.【点评】本题考查的是直角三角形30度角的性质和等边三角形的判定、互逆命题的定义,熟练掌握直角三角形30度角的性质的证明是关键.22.(8分)解不等式组请结合题意,完成本题解答过程.(1)解不等式①,得x≥﹣3,依据是不等式两边都乘以(或除以)同一个负数,不等号的方向改变.(2)解不等式②,得x>﹣2.(3)解不等式③,得x<2.(4)把不等式①,②和③的解集在数轴上表示出来.(5)从图中可以找出三个不等式解集的公共部分,得不等式组的解集﹣2<x<2.(6)根据不等式组的解集确立出该不等式组的最大整数解为x=1.【分析】分别求出每一个不等式的解集,根据各不等式解集在数轴上的表示,确定不等式组的解集.【解答】解:(1)解不等式①,得x≥﹣3,依据是:不等式两边都乘以(或除以)同一个负数,不等号的方向改变.(2)解不等式②,得x>﹣2.(3)解不等式③,得x<2.(4)把不等式①,②和③的解集在数轴上表示出来如下:(5)从图中可以找出三个不等式解集的公共部分,得不等式组的解集:﹣2<x<2.(6)根据不等式组的解集确立出该不等式组的最大整数解为:x=1;故答案为:(1)x≥﹣3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变;(2)x>﹣2;(3)x<2;(5)﹣2<x<2;(6)x=1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.(8分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2).请解答下列问题:(1)画出△ABC向左平移6个单位得到的△A1B1C1,并写出A1的坐标.(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.【分析】(1)分别画出A、B、C的对应点A1、B1、C1即可;(2)分别画出A、B、C的对应点A2、B2、C2即可;(3)分别画出A2、B2、C2的对应点A3、B3、C3即可.【解答】解:(1)△A1B1C1,如图所示;A1(﹣4,2);(2)△A2B2C2如图所示;并写出A2(4,0),(3)△A3B3C3如图所示,A3(﹣4,0)、【点评】本题考查作图﹣旋转变换、平移变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(10分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【分析】(按买3个A种魔方和买4个B种魔方钱数相同解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.(按购买3个A种魔方和4个B种魔方需要130元解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.【解答】(按买3个A种魔方和买4个B种魔方钱数相同解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.(2)设购进A 种魔方m 个(0<m ≤50),总价格为w 元,则购进B 种魔方(100﹣m )个,根据题意得:w 活动一=20m ×0.8+15(100﹣m )×0.4=10m +600;w 活动二=20m +15(100﹣m ﹣m )=﹣10m +1500.当w 活动一<w 活动二时,有10m +600<﹣10m +1500,解得:m <45;当w 活动一=w 活动二时,有10m +600=﹣10m +1500,解得:m =45;当w 活动一>w 活动二时,有10m +600>﹣10m +1500,解得:45<m ≤50.综上所述:当m <45时,选择活动一购买魔方更实惠;当m =45时,选择两种活动费用相同;当m >45时,选择活动二购买魔方更实惠.(按购买3个A 种魔方和4个B 种魔方需要130元解答)解:(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据题意得:,解得:. 答:A 种魔方的单价为26元/个,B 种魔方的单价为13元/个.(2)设购进A 种魔方m 个(0<m ≤50),总价格为w 元,则购进B 种魔方(100﹣m )个,根据题意得:w 活动一=26m ×0.8+13(100﹣m )×0.4=15.6m +520;w 活动二=26m +13(100﹣m ﹣m )=1300.当w 活动一<w 活动二时,有15.6m +520<1300,解得:m <50;当w 活动一=w 活动二时,有15.6m +520=1300,解得:m =50;当w 活动一>w 活动二时,有15.6m +520>1300,不等式无解.综上所述:当0<m <50时,选择活动一购买魔方更实惠;当m =50时,选择两种活动费用相同.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x 、y 的二元一次方程组;(2)根据两种活动方案找出w 活动一、w 活动二关于m 的函数关系式.25.(10分)感知:如图①,AD平分∠BAC,∠B+∠C=180°,∠B=90°.判断DB与DC的大小关系并证明.探究:如图②,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,DB与DC的大小关系变吗?请说明理由.应用:如图③,四边形ABDC中,∠B=45°,∠C=135°,DB=DC=a,则AB﹣AC=a.(用含a的代数式表示)【分析】感知:判断出△ADC≌△ADB,即可得出结论;探究:欲证明DB=DC,只要证明△DFC≌△DEB即可.应用:先证明△DFC≌△DEB,再证明△ADF≌△ADE,结合BD=EB即可解决问题.【解答】感知:解:BD=DC,理由:∵AD平分∠BAC,∴∠DAC=∠DAB,∵∠B+∠C=180°,∠B=90°,∴∠C=90°=∠B,在△ADC和△ADB中,,∴△ADC≌△ADB(AAS),∴BD=DC;探究:证明:如图②中,DE⊥AB于E,DF⊥AC于F,∵DA平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,∴∠B=∠FCD,在△DFC和△DEB中,∴△DFC≌△DEB,∴DC=DB;应用:解;如图③连接AD、DE⊥AB于E,DF⊥AC于F,∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,∴∠B=∠FCD,在△DFC和△DEB中,∴△DFC≌△DEB,∴DF=DE,CF=BE,在Rt△ADF和Rt△ADE中,∴Rt△ADF≌Rt△ADE,∴AF=AE,∴AB﹣AC=(AE+BE)﹣(AF﹣CF)=2BE,在Rt△DEB中,∵∠DEB=90°,∠B=∠EDB=45°,BD=a,∴BE=BD=a,∴AB﹣AC=2BE=a.故答案为a.【点评】此题是四边形综合题,主要考查全等三角形的判定和性质、角平分线的性质、等腰直角三角形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形.。
2017—2018学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.若x 是任意实数,下列各式中一定有意义的是 A.x B.2x C. 2x - D .12-x2.有下列二次根式:(1)12;(2)5.1;(3)23;(4)32.其中能与6合并的是 A .(1)和(2) B .(2)和(3) C .(1)和(3) D .(2)和(4)3.下列各组数中不能作为直角三角形的三边长的是A.5 ,5,10B. 9,12,17C. 7,24,25D. 0.6,0.8,14.在下列命题中,该命题的逆命题成立的是A .线段垂直平分线上的点到这条线段两个端点的距离相等B. 等边三角形是锐角三角形C. 如果两个角是直角,那么它们相等D. 如果两个实数相等,那么它们的平方相等5.顺次连接四边形各边中点得到的四边形一定是A.平行四边形B. 矩形C.菱形D.正方形 6.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论中正确的有①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =B D .A. ①②③B. ①②④C. ②③④D. ①③④7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE ∶EC =2∶1,则线段CH 的长是 A.3C.5D.6 8.下列式子中表示y 是x 的正比例函数的是A. 2x y = B. 22y x =C.2y x = D.22y x = 9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是A. y =0.12x ,x >0B. y =60-0.12x ,x >0C. y =0.12x ,0≤x ≤500D. y =60-0.12x ,0≤x ≤50010.下列关于函数32y x =-+的表述中错误的是A. 函数32y x =-+的图象是一条经过点(0,2)的直线B. 函数32y x =-+的图象经过第一、二、四象限C. 函数32y x =-+的y 随x 的增大而增大D. 函数32y x =-+的图象可以由直线3y x =-向上平移2个单位长度而得到11.在期末考试中,某班的数学平均成绩为85分,方差为13.2,如果每名学生都多考5分,下列说法正确的是A.平均分不变,方差不变B. 平均分变大,方差不变C.平均分不变,方差变大D. 平均分变大,方差变大12.若一组数据1x ,2x ,…,n x 的方差是0,则 A.这组数据的中位数为0 B. 1x =2x =…=n x =0 C. 1x =2x =…=n x D. x =0第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.如果a 是7的小数部分,那么代数式542++a a 的值是 .14.已知一个等边三角形的边长是6,则这个三角形的面积是 .15.晨光中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95,90,85.则小桐这学期的体育成绩是 .16.一组数据7,4,x ,8的平均数为5,则这组数据的中位数是 .17.已知直线6y x =-交x 轴于点A ,与直线y kx =(k>0)交于点B ,若以坐标原点O 及 点A 、B 为顶点的三角形的面积是12,则k = .18.直线3y kx =+经过点A (2,1),则不等式3kx +≥0的解集是 .19.以方程236x y -=的解为坐标(x ,y )的所有点组成的图形是函数 的图象.20.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,OE ⊥BC ,垂足为点E ,若菱形ABCD 的面积是24,则OE = ___. 21.如图,在正方形ABCD 的外侧,作等边三角形DCE ,则∠AEB = .22.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为 .三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)23)6229(27168÷---; (2))2520)(5052()52(2-+--.24.要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的5次选拔赛中,他们的成绩如下(单位:环):甲:7 , 8 , 6 , 8 , 9 ; 乙:9 , 7 , 5 , 8 , 6.(1)求甲运动员这5次选拔赛成绩的中位数和众数分别是多少?(2)求乙运动员这5次选拔赛成绩的平均数和方差;(3)若已知甲运动员的选拔赛成绩的方差为 1.04,为了保证稳定发挥,应选哪位运动员参加比赛?25.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.A C D EB O (第20题图) (第21题图) ACDE B (第22题图)F A C D E B PN A C D E B M (第25题图) (第26题图)26.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,A 、C 两点之间的距离是 米;若线段FG ∥x 轴,则此段时间中甲机器人的速度为 米/分;(2)若前3分钟甲机器人的速度保持不变,求线段EF 所在直线的函数解析式.27.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,并且△ACB 的顶点B 在△ECD 的斜边DE 上,连接AE .(1)求证:AE =BD ;(2)若BD =3,BE =15,求BC 的长.28.如图,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,点D 的坐标是(-3,0),点B 的坐标是(1,2),过点A 作直线AE ∥OB 交y 轴于点E .(1)求直线AE 的函数解析式;(2)现将直线AE 沿射线AD 的方向以每秒1个单位长度的速度平移,设平移t 秒时该直线能被矩形ABCD 的边截出线段,则t 的取值范围是 ;(3)在(2)的条件下,求t 取何值时,该线段与矩形的边及线段OB 所围成的四边形恰为菱形?并说明理由.(第28题图) A E xO D C B y A C D E B (第27题图)2017—2018学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.8 ; 14. 15.88.5 ; 16.5.5; 17.2;18.x ≤3; 19.223y x =-; 20. 2.4 ; 21.30°; 22三、解答题:(共74分)23. (1)23)6229(27168÷---=(3- ………………………………………………4分=3; ………………………………………………5分(2))2520)(5052()52(2-+--=72050--() ………………………………………………9分=37-. ………………………………………………10分4分6分 7分9分 10分11分12分∴∠CAD =12CAB ∠, ………………………………………………2分 ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =12CAM ∠, ………………………………………………3分∴∠DAE =∠CAD +∠CAE =12×180°=90°, ……………………5分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE =90°, …………………………………6分 ∴四边形ADCE 为矩形. ………………………………………7分(2)当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形. …………9分 证明:∵AB =AC ,AD ⊥BC ,∴DC =BD , ………………………………………10分又∠BAC =90°∴DC =AD . (11)分由(1)知四边形ADCE 为矩形,∴矩形ADCE 是正方形. ………………………………………12分26. 解:(1)70;490;60; ………………………………………6分(2)由图象可知,前3分钟甲机器人的速度为60+70÷2=95(米/分) ………………………………………7分 ∵(3-2)×(95﹣60)=35,∴点F 的坐标为(3,35), ………………………………………9分 又点E 的坐标为(2,0),设线段EF 所在直线的函数解析式为y =kx +b ,则335,20,k b k b +=⎧⎨+=⎩………………………………………11分 解得 35,70.k b =⎧⎨=-⎩………………………………………12分 ∴线段EF 所在直线的函数解析式为y =35x ﹣70. …………………………13分27. (1)证明:∵∠BCA =∠DCE =90°,∴∠BCA -∠BCE =∠DCE -∠BCE ,即∠ACE =∠DCB , …………………………………2分 又CA =CB ,CE =CD ,∴△ACE ≌△BCD , …………………………………4分 ∴AE =BD ; …………………………………5分(2)∵△ECD 都是等腰直角三角形,∴∠CE D =∠D =45°, …………………………………6分 ∵△ACE ≌△BCD ,∴∠CEA =∠D =45°,8分 ∴∠BEA =∠CED +∠CEA =90°, …………………………………9分又∴22231518AB AE BE =+=+=, …………………………………11分 ∵△ACB 是等腰直角三角形,CA =CB ,∴22222AB AC BC BC =+=, …………………………………12分∴2218BC =, ∴BC =3. …………………………………13分28.解:(1)∵点B 的坐标是(1,2),∴OA =1,AB =2,点A 的坐标是(1,0), …………………………………3分 ∵由题意知,AB ∥OE ,AE ∥OB ,∴四边形ABOE 是平行四边形, …………………………………4分 ∴OE =AB =2,∴点E 的坐标是(0,-2), …………………………………5分 设直线AE 的函数解析式为y =kx +b ,则 0,2,k b b +=⎧⎨=-⎩ ………………………………………6分 解得 2,2.k b =⎧⎨=-⎩ ………………………………………7分∴线段AE所在直线的函数解析式为y=2x﹣2. ………………………………8分(2)0<t <5;………………………………………10分(3)当t 1时,所围成的四边形恰为菱形.…………………………12分理由:∵∠OAB=90°,OA=1,AB=2,∴13分设t 与AD、BC分别交于点E、F,根据题意可知,此时OE OB,且OB∥EF,OE∥BF,∴四边形FBOE是菱形,即t OB所围成的四边形恰为菱形.…………………………14分。
2017-2018学年甘肃省武威市八年级(下)期中数学试卷一、选择题(每题只有一个正确答案,每小题3分,共45分)1.下列式子为最简二次根式的是()A.B.C.D.2.满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3B.三边长之比为3:4:5C.三边长分别为1,,D.三边长分别为5,12,143.正方形具有而菱形不一定具有的性质是()A.四边相等B.对角线相等C.对角相等D.对角线互相垂直4.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥5.已知矩形ABCD,AB=2BC,在CD上取点E,使AE=EB,那么∠EBC等于()A.15°B.30°C.45°D.60°6.平行四边形的一条边长是12cm,那么它的两条对角线的长可能是()A.8cm和16cm B.10cm和16cm C.8cm和14cm D.8cm和12cm7.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥AB C.MN=CB D.CM=AC8.下列计算中,正确的是()A.5=B.÷=(a>0,b>0)C.×3=D.×=69.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm10.如图,设M是▱ABCD一边上任意一点,设△AMD的面积为S1,△BMC的面积为S2,△CDM的面积为S,则()A.S=S1+S2B.S>S1+S2C.S<S1+S2D.不能确定11.如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠212.已知n是一个正整数,是整数,则n的最小值是()A.3B.5C.15D.2513.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm14.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF15.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C′处,BC′交AD 于点E,则线段DE的长为()A.3B.C.5D.二、填空题(每小题3分,共15分)16.命题“菱形的四条边都相等”的逆命题是.17.如图,数轴上点A表示的实数是.18.如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=.19.已知a,b是正整数,若+是不大于2的整数,则满足条件的有序数对(a,b)为.20.如图,正方形ABCD的对角线长为8,E为AB上一点,若EF⊥AC于点F,EG⊥BD于点G,则EF+EG =.三、解答题(本大题共8小题,共60分)21.(6分)计算:(1)﹣5+(2)÷﹣×22.(5分)如图,正方形网格中每个小正方形的边长为1,试回答问题:∠BCD是直角吗?说明理由.23.(6分)如图,AC为正方形ABCD的对角线,E为AC上一点,且AB=AE,EF⊥AC,交BC于F,试说明EC=EF=BF.24.(8分)已知x=+1,y=﹣1,求下列各代数式的值:(1)x2y﹣xy2;(2)x2﹣xy+y2.25.(8分)如图,在四边形ABCD中,AB∥CD,AD∥BC,AN=CM.(1)求证:BN=DM;(2)若BC=3,CD=2,∠B=50°,求∠BCD、∠D的度数及四边形ABCD的周长.26.(8分)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,某一时刻,AC=18km,且OA=OC.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为40km/h和30km/h,经过0.2h,轮船甲行驶至B处,轮船乙行驶至D处,求此时B处距离D处多远?27.(9分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.28.(10分)△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.2017-2018学年甘肃省武威市八年级(下)期中数学试卷参考答案与试题解析一、选择题(每题只有一个正确答案,每小题3分,共45分)1.下列式子为最简二次根式的是()A.B.C.D.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数含分母,故D不符合题意;故选:A.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3B.三边长之比为3:4:5C.三边长分别为1,,D.三边长分别为5,12,14【分析】根据三角形内角和公式和勾股定理的逆定理判定是否为直角三角形.【解答】解:A、根据三角形内角和公式,求得各角分别为30°,60°,90°,所以此三角形是直角三角形;B、三边符合勾股定理的逆定理,所以其是直角三角形;C、12+()2=()2,符合勾股定理的逆定理,所以是直角三角形;D、52+122≠142,不符合勾股定理的逆定理,所以不是直角三角形;故选:D.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.正方形具有而菱形不一定具有的性质是()A.四边相等B.对角线相等C.对角相等D.对角线互相垂直【分析】根据正方形的性质和菱形的性质,容易得出结论.【解答】解:正方形的性质有:四条边相等;对角线互相垂直平分且相等;菱形的性质有:四条边相等;对角线互相垂直平分;因此正方形具有而菱形不一定具有的性质是:对角线相等.故选:B.【点评】本题考查了正方形的性质、菱形的性质;熟练掌握正方形和菱形的性质是解决问题的关键.4.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥【分析】由已知得1﹣2a≥0,从而得出a的取值范围即可.【解答】解:∵,∴1﹣2a≥0,解得a≤.故选:B.【点评】本题考查了二次根式的化简与求值,是基础知识要熟练掌握.5.已知矩形ABCD,AB=2BC,在CD上取点E,使AE=EB,那么∠EBC等于()A.15°B.30°C.45°D.60°【分析】根据矩形性质得出∠D=∠ABC=90°,AD=BC,DC∥AB,推出AE=2AD,得出∠DEA=30°=∠EAB,求出∠EBA的度数,即可求出答案.【解答】解:∵四边形ABCD是矩形,∴∠D=∠ABC=90°,AD=BC,DC∥AB.∵AB=AE,AB=2CB,∴AE=2AD.∴∠DEA=30°.∵DC∥AB,∴∠DEA=∠EAB=30°.∵AE=AB,∴∠ABE=∠AEB=(180°﹣∠EAB)=75°.∵∠ABC=90°,∴∠EBC=90°﹣75°=15°.故选:A.【点评】本题考查了矩形性质,三角形的内角和定理,平行线性质,等腰三角形的性质,含30度角的直角三角形性质的应用,解此题的关键是求出∠ABC和∠EBA的度数.6.平行四边形的一条边长是12cm,那么它的两条对角线的长可能是()A.8cm和16cm B.10cm和16cm C.8cm和14cm D.8cm和12cm【分析】根据平行四边形的性质中,两条对角线的一半和一边构成三角形,利用三角形三边关系判断可知.【解答】解:A、4+8=12,不能构成三角形,不满足条件,故A选项错误;B、5+8>12,能构成三角形,满足条件,故B选项正确.C、4+7<12,不能构成三角形,不满足条件,故C选项错误;D、4+6<12,不能构成三角形,不满足条件,故D选项错误.故选:B.【点评】主要考查了平行四边形中两条对角线的一半和一边构成三角形的性质.并结合三角形的性质解题.7.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥AB C.MN=CB D.CM=AC【分析】根据三角形的中位线定理即可判断;【解答】解:∵CM=MA,CNB,∴MN∥AB,MN=AB,∵MN=18m,∴AB=36m,故A、B、D正确,故选:C.【点评】本题考查的是三角形的中位线定理在实际生活中的运用,锻炼了学生利用几何知识解答实际问题的能力.8.下列计算中,正确的是()A.5=B.÷=(a>0,b>0)C.×3=D.×=6【分析】根据二次根式的乘法法则:•=(a≥0,b≥0),二次根式的除法法则:=(a ≥0,b>0)进行计算即可.【解答】解:A、5=,故原题计算错误;B、==(a>0,b>0),故原题计算正确;C、×3=3=,故原题计算错误;D、×=×16=24,故原题计算错误;故选:B.【点评】此题主要考查了二次根式的乘除法,关键是掌握计算法则.9.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm【分析】如图,AC为圆桶底面直径,所以AC=24cm,CB=32cm,那么线段AB的长度就是桶内所能容下的最长木棒的长度,在直角三角形ABC中利用勾股定理可以求出AB,也就求出了桶内所能容下的最长木棒的长度.【解答】解:如图,AC为圆桶底面直径,∴AC=24cm,CB=32cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB==40cm.故桶内所能容下的最长木棒的长度为40cm.故选:C.【点评】此题首先要正确理解题意,把握好题目的数量关系,然后利用勾股定理即可求出结果.10.如图,设M是▱ABCD一边上任意一点,设△AMD的面积为S1,△BMC的面积为S2,△CDM的面积为S,则()A.S=S1+S2B.S>S1+S2C.S<S1+S2D.不能确定【分析】根据平行四边形的性质得到AB=DC,而△CMB的面积为S=CD•高,△ADM的面积为S1=MA•高,△CBM的面积为S2=BM•高,这样得到S1+S2=MA•高+BM•高=(MA+BM)•高=AB•高=S,由此则可以推出S,S1,S2的大小关系.【解答】解:∵四边形ABCD是平行四边形,∴AB=DC,∵△CMB的面积为S=DC•高,△ADM的面积为S1=MA•高,△CBM的面积为S2=BM•高,而它们的高都是等于平行四边形的高,∴S1+S2=AD•高+BM•高=(MA+BM)•高=AB•高=CD•高=S,则S,S1,S2的大小关系是S=S1+S2.故选:A.【点评】本题考查平行四边形的性质对边相等以及三角形的面积计算公式,分别表示出图形面积是解题关键.11.如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠2【分析】利用平行四边形的性质以及全等三角形的判定分别得出三角形全等,再进行选择即可.【解答】解:A、当BE=FD,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;C、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B、当BF=ED,∴BE=DF,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;D、当∠1=∠2,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA),故此选项错误;故选:C.【点评】本题考查了平行四边形的性质以及全等三角形的判定等知识,熟练掌握全等三角形的判定方法是解题关键.12.已知n是一个正整数,是整数,则n的最小值是()A.3B.5C.15D.25【分析】先将中能开方的因数开方,然后再判断n的最小正整数值.【解答】解:∵=3,若是整数,则也是整数;∴n的最小正整数值是15;故选:C.【点评】解答此题的关键是能够正确的对进行开方化简.13.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm【分析】思想两个勾股定理求出菱形的边长,再利用菱形的面积的两种求法构建方程即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4,OB=OD=3,∴AB=5cm,=AC•BD=AB•DH,∴S菱形ABCD∴DH==4.8.故选:A.【点评】此题考查了菱形的性质、勾股定理等知识,解题的关键是记住菱形的性质,学会利用菱形的面积的两种求法,构建方程解决问题,属于中考常考题型.14.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF【分析】根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.【解答】解:∵EF垂直平分BC,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故选项A正确,但不符合题意;当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C正确,但不符合题意;当AC=BF时,无法得出菱形BECF是正方形,故选项D错误,符合题意.故选:D.【点评】本题考查了菱形的判定和性质及中垂线的性质、直角三角形的性质、正方形的判定等知识,熟练掌握正方形的相关的定理是解题关键.15.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C′处,BC′交AD 于点E,则线段DE的长为()A.3B.C.5D.【分析】首先根据题意得到BE=DE,然后根据勾股定理得到关于线段AB、AE、BE的方程,解方程即可解决问题.【解答】解:设ED=x,则AE=6﹣x,∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠DBC;由题意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=9+(6﹣x)2,解得:x=3.75,∴ED=3.75.故选:B.【点评】本题主要考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.二、填空题(每小题3分,共15分)16.命题“菱形的四条边都相等”的逆命题是四条边都相等的四边形是菱形.【分析】根据互逆命题的概念解答.【解答】解:命题“菱形的四条边都相等”的逆命题是四条边都相等的四边形是菱形,故答案为:四条边都相等的四边形是菱形.【点评】本题考查的是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.17.如图,数轴上点A表示的实数是﹣1.【分析】直接利用勾股定理得出三角形斜边长即可得出A点对应的实数.【解答】解:由图形可得:﹣1到A的距离为=,则数轴上点A表示的实数是:﹣1.故答案为:﹣1.【点评】此题主要考查了实数与数轴,正确得出﹣1到A的距离是解题关键.18.如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=5.【分析】根据直角三角形斜边上的中线等于斜边的一半,可得答案.【解答】解:由直角三角形的性质,得CE=AB=5,故答案为:5.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半,利用直角三角形的性质是解题关键.19.已知a,b是正整数,若+是不大于2的整数,则满足条件的有序数对(a,b)为(7,10)或(28,40).【分析】根据二次根式的性质和已知得出即可.【解答】解:∵+是整数,∴a=7,b=10或a=28,b=40,因为当a=7,b=10时,原式=2是整数;当a=28,b=40时,原式=1是整数;即满足条件的有序数对(a,b)为(7,10)或(28,40),故答案为:(7,10)或(28,40).【点评】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.20.如图,正方形ABCD的对角线长为8,E为AB上一点,若EF⊥AC于点F,EG⊥BD于点G,则EF+EG= 4 .【分析】连接EO ,可得S △ABO =S △AEO +S △BEO ,再把AO =BO =4代入可求EF +EG 的值. 【解答】解:连接EO∵ABCD 为正方形∴AC ⊥BD ,AO =BO =CO =DO 且AC =BD =8 ∴AO =CO =BO =4 ∵S △ABO =S △AEO +S △BEO∴+∴EF +EG =4 故答案为4.【点评】本题考查了正方形的性质,本题关键是运用面积法解决问题. 三、解答题(本大题共8小题,共60分) 21.(6分)计算:(1)﹣5+(2)÷﹣× 【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可; (2)根据二次根式的乘除法则运算.【解答】解:(1)原式=2﹣+=;(2)原式=﹣=4﹣.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.(5分)如图,正方形网格中每个小正方形的边长为1,试回答问题:∠BCD是直角吗?说明理由.【分析】连接BD,根据勾股定理可求出BC、CD、BD的值,再由BC2+CD2=BD2利用勾股定理的逆定理,即可证出∠BCD=90°.【解答】解:∠BCD是直角,理由如下:连接BD,如图所示.BC==2,CD==,BD==5.∵BC2+CD2=25=BD2,∴∠BCD=90°.【点评】本题考查了勾股定理及勾股定理的逆定理,牢记“如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形”是解题的关键.23.(6分)如图,AC为正方形ABCD的对角线,E为AC上一点,且AB=AE,EF⊥AC,交BC于F,试说明EC=EF=BF.【分析】通过△AEF≌△ABF,可以求证FE=FB,然后证得△CEF为等腰直角三角形即可.【解答】解:在Rt△AEF和Rt△ABF中,,∴Rt△AEF≌Rt△ABF(HL),∴FE=FB.∵正方形ABCD,∴∠ACB=∠BCD=45°,在Rt△CEF中,∵∠ACB=45°,∴∠CFE=45°,∴∠ACB=∠CFE,∴EC=EF,∴FB=EC=EF.【点评】本题考查了全等三角形的证明,考查了等腰直角三角形的判定,本题求证Rt△AEF≌Rt△ABF是解本题的关键.24.(8分)已知x=+1,y=﹣1,求下列各代数式的值:(1)x2y﹣xy2;(2)x2﹣xy+y2.【分析】(1)根据x、y的值可以求得xy和x﹣y的值,从而可以解答本题;(2)根据x、y的值可以求得xy和x﹣y的值,从而可以解答本题.【解答】解:(1)∵x=+1,y=﹣1,∴xy=2﹣1=1,x﹣y=2,∴x2y﹣xy2=xy(x﹣y)=1×2=2;(2))∵x=+1,y=﹣1,∴xy=2﹣1=1,x﹣y=2,∴x2﹣xy+y2=(x﹣y)2+xy=22+1=4+1=5.【点评】本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.25.(8分)如图,在四边形ABCD中,AB∥CD,AD∥BC,AN=CM.(1)求证:BN=DM;(2)若BC=3,CD=2,∠B=50°,求∠BCD、∠D的度数及四边形ABCD的周长.【分析】(1)首先判断四边形ABCD和四边形ANMD为平行四边形,然后由“平行四边形的对边相等”推知AB=CD,AN=CM,由等式的性质证得结论;(2)根据平行四边形的对边平行,平行线的性质以及平行四边形的对角相等进行解答.【解答】(1)证明:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴AB=CD.又∵AN=CM,∴四边形ANMD为平行四边形,∴AN=CM,∴AB﹣AN=CD﹣CM,即BN=DM;(2)∵AB∥CD,∴∠B+∠BCD=180°,∵∠B=50°,∴∠BCD=180°﹣50°=130°.由(1)知,四边形ABCD是平行四边形,∴∠D=∠B=50°,AB=CD,AD=BC.∵BC=3,CD=2,∴四边形ABCD的周长=2(BC+CD)=2×(3+2)=10.【点评】考查了平行四边形的性质,解题的关键是平行四边形的判定,与平行四边形的性质的综合应用.26.(8分)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,某一时刻,AC=18km,且OA=OC.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为40km/h和30km/h,经过0.2h,轮船甲行驶至B处,轮船乙行驶至D处,求此时B处距离D处多远?【分析】在Rt△OBD中,求出OB,OD,再利用勾股定理即可解决问题;【解答】解:在Rt△AOC中,∵OA=OC,AC=18km,∴OA=OC=18(km),∵AB=0.2×40=8(km),CD=0.2×30=6(km),∴OB=10(km),OD=24(km),在Rt△OBD中,BD==26(km).答:此时B处距离D处26km远.【点评】本题考查勾股定理,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.27.(9分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.【分析】从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;∠BCF是120°,所以∠EBC为60°,所以菱形的边长也为4,求出菱形的高面积就可求.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=FE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为2,∴菱形的面积为4×2=8.【点评】本题考查菱形的判定和性质以及三角形中位线定理,以及菱形的面积的计算等知识点.28.(10分)△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.【分析】(1)由于CE平分∠BCA,那么有∠1=∠2,而MN∥BC,利用平行线的性质有∠1=∠3,等量代换有∠2=∠3,于OE=OC,同理OC=OF,于是OE=OF;(2)OA=OC,那么可证四边形AECF是平行四边形,又CE、CF分别是∠BCA及其外角的角平分线,易证∠ECF是90°,从而可证四边形AECF是矩形.【解答】(1)证明•:如图所示:∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO;(2)解:当点O运动到AC中点时,四边形AECF是矩形;理由如下:∵OA=OC,∴四边形AECF是平行四边形,∵CF是∠BCA的外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF是矩形.【点评】本题考查了矩形判定,平行四边形判定,平行线性质,角平分线定义的应用,主要考查学生的推理能力.。
2017-2018学年八年级物理下册第六章测试卷(时间:45分钟满分:100分)一、选择题(共10小题,每小题3分,共30分。
下列各题给出的四个选项中,只有一项是符合题目要求的)1.下列光路图正确的是()2.在探究凸透镜成像的实验中,当烛焰位于凸透镜1倍焦距以内时,眼睛通过透镜观察到的虚像可能是下图所示中的()3.下列关于光的知识应用的说法,不正确的是()A.照相机的原理是利用凸透镜能成正立、缩小的实像B.电视机遥控器是利用红外线实现遥控的C.近视眼镜是利用凹透镜对光的发散作用D.投影仪的原理是利用凸透镜能成倒立、放大的实像4.把一个凸透镜正对着太阳光,在距凸透镜15 cm处得到一个最小最亮的光斑。
将点燃的蜡烛放在离凸透镜14 cm处,经凸透镜所成的像是()A.正立、放大的虚像B.倒立、放大的实像C.倒立、缩小的实像D.正立、放大的实像5.下列关于近视眼和远视眼的说法中正确的是()A.近视眼睫状体调节能力过强,远视眼睫状体对晶状体调节能力减弱B.近视眼使来自于近处物体的光会聚于视网膜前方,远视眼使来自远处物体的光会聚于视网膜后方C.近视眼用发散透镜矫正,远视眼用会聚透镜矫正D.近视眼晶状体太薄,远视眼晶状体太厚;近视眼眼球前后径太短,远视眼眼球前后径太长6.使用显微镜时,下列操作中符合要求的是()7.有一焦距为10 cm的凸透镜,将物体从距凸透镜30 cm处沿主光轴移到距凸透镜12 cm处,这个过程中()A.物距总大于像距B.始终是倒立、放大的实像C.像离凸透镜越来越远,像变大D.像离凸透镜越来越近,像变小8.在探究“凸透镜成像的规律”时,把蜡烛放在凸透镜前30 cm处,光屏上可接收到倒立、缩小清晰的像。
则该凸透镜的焦距可能为()A.10 cmB.15 cmC.20 cmD.30 cm9.如图所示,F和F'为凸透镜的两个焦点,A'B'为物体AB的像,则物体AB在()A.图中Ⅰ区域,比A'B'大,箭头方向向上B.图中Ⅱ区域,比A'B'大,箭头方向向下C.图中Ⅲ区域,比A'B'大,箭头方向向上D.图中Ⅳ区域,比A'B'小,箭头方向向下10.同学们用盛水的矿泉水瓶模拟眼球中的晶状体,来比较正常眼睛、近视眼睛和远视眼睛的焦距大小。
2017—2018学年度第二学期八年级期中测试语文试卷一、积累与运用(27分)1.根据课文默写或写出相应作者、诗题。
(8分)①,鸣之而不能通其意。
(韩愈《马说》)②,非宁静无以致远。
(诸葛亮《》)③夕阳西下,。
(《天净沙秋思》)④浊酒一杯家万里,。
(范仲淹《渔家傲秋思》)⑤《陋室铭》中描写陋室环境清幽的句子是,。
2.根据拼音写汉字。
(3分)①秀qí②旁wù③jiǒng 然不同3.下列句子中加点的词语使用错误的一项是(2分)A.刘谦香港巡演,以别具匠心的出场方式、变化莫测的舞美视觉、神秘十足的音乐伴场,带给“谦迷”无限的疯狂..与猜想。
B.钓鱼岛争端如果持久发酵..,势必造成中日关系处于紧张对峙的长期状态。
C.《舌尖上的中国》以富有草根气息的语调,把中国饮食文化讲述得栩栩如生....,这既让国人兴奋不已,也向世界发出了一张“中国名片”。
D.在微博等网络舆论大力监督下,在有关部门的周密调查下,“表哥”、“房叔”等人光鲜外表下掩藏的腐败本质被暴露得淋漓尽致....。
4.解释下列加点词语。
(4分)①无案牍之劳.形②一狼洞.其中③食.马者不知其能千里而食也④不亦颠.乎5.下列文化、文学常识表述有误的一项是(2分)A.铭,古人刻在器物上用来警戒自己或者称述功德的文字,后来成为一种文体,这种文体一般是用韵的。
B.《海燕》是高尔基写的“幻想曲”《春天的旋律》的结尾部分,原题“海燕之歌”。
C.《河中石兽》选自清代文学家纪昀所著的文言长篇志怪小说集《阅微草堂笔记》,这则故事说明天下事既有一般规律,也有特殊规律,切不可按照常理主观臆断。
D. 《沙漠里的奇怪现象》是一篇科学小品,描述了沙漠千百年以来被视为魔鬼作怪的可怕现象,从科学的角度作出了正确的解释,表明一切怪异的现象都可以用科学道理来说明的真理。
6.下列句子没有语病的一项是(2分)A. 3月18日上午,台湾知名作家李敖因病去世,享年83岁,这位生前语言风格辛辣犀利,处事率真而又狂放不羁的学者的离世让两岸民众深感悲痛与不舍。
2017-2018学年天津市河西区公办校第三学区八年级(下)期中数学试卷一、选择题(本大题共12小题,共36.0分)1.下列二次根式中属于最简二次根式的是()A. B. C. D.2.下列各式中,正确的是()A. B. C. D.3.一个直角三角形的两直角边长分别为3,4,则第三边长是()A. 3B. 4C. 5D. 5或4.使代数式有意义的x的取值范围是()A. B. C. D. 且5.下列各组数据中能作为直角三角形的三边长的是()A. 1,2,2B. 1,1,C. 4,5,6D. 1,,26.如图,在▱ABCD中,AB=4cm,AD=7cm,∠ABC平分线交AD于E,交CD的延长线于点F,则DF=()A. 2cmB. 3cmC. 4cmD. 5cm7.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A. 3:1B. 4:1C. 5:1D. 6:18.若+|y-2|=0,则(x+y)2017的值为()A. B. 1 C. D. 09.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长为()A. 5B. 6C. 7D. 810.在下列命题中,正确的是()A. 一组对边平行的四边形是平行四边形B. 有一组邻边相等的平行四边形是菱形C. 有一个角是直角的四边形是矩形D. 对角线互相垂直平分的四边形是正方形11.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A. 8米B. 10米C. 12米D. 14米12.已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)13.+=______.14.如图,在△ABC中,AB=6,AC=10,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为______.15.矩形ABCD中,AC、BD交于点O,AB=1,∠AOB=60°,则AD=______.16.如图,有一个长为50cm,宽为30cm,高为40cm的长方体木箱,一根长70cm的木棍______放入(填“能”或“不能”).17.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为______.18.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S,则点P到A、B两点距离之和PA+PB的最小值为矩形ABCD______.三、计算题(本大题共1小题,共8.0分)19.计算:(1)-(3+);(2)(+1)(-1)+-()0.四、解答题(本大题共4小题,共38.0分)20.在△ABC中,AB=13,BC=10,BC边上的中线AD=12,求AC长.21.如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC,AC=8,BD=6.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,求▱ABCD的面积.22.如图,在矩形ABCD中,AB=6,AD=8,P是AD上的动点,PE⊥AC,PF⊥BD于F,求PE+PF的值.23.如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.答案和解析1.【答案】A【解析】解:A、被开方数不含分母,被开方数不含开的尽的因数或因式,故A正确;B、被开方数含开的尽的因数或因式,故B错误;C、被开方数含分母,故C错误;D、被开方数含分母,故D错误;故选:A.根据最简二次根式的被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.本题考查了最简二次根式,最简二次根式的被开方数不含分母,被开方数不含开的尽的因数或因式.2.【答案】C【解析】解:A、原式不能合并,故选项错误;B、原式=3,故选项错误;C、原式=-3,故选项正确;D、原式=|-2|=2,故选项错误.故选:C.A、原式不能合并,错误;B、原式利用平方根的定义计算得到结果,即可找出判断;C、原式利用立方根的定义计算得到结果,即可做出判断;D、原式利用二次根式的化简公式计算得到结果,即可做出判断.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.3.【答案】C【解析】解:已知直角三角形的两直角边为3、4,则第三边长为=5,故选:C.已知直角三角形的两条直角边,根据勾股定理即可求第三边长的长度.本题考查了勾股定理在直角三角形中的运用,正确应用勾股定理是解题关键.4.【答案】D【解析】解:由题意得:x-4≠0,且x-3≥0,解得:x≥3且x≠4,故选:D.根据二次根式有意义的条件可得x-3≥0,根据分式有意义条件可得x-4≠0,再解不等式即可.此题主要考查了分式与二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数,分式有意义的条件是分母不等于零.5.【答案】D【解析】解:A、∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;B、∵12+12=2≠()2,∴此组数据不能作为直角三角形的三边长,故本选项错误;C、∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;D、∵12+()2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.故选:D.根据勾股定理的逆定理对各选项进行逐一分析即可.本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.6.【答案】B【解析】解:∵AB∥CD,∴∠F=∠FBA,∵∠ABC平分线为BE,∴∠FBC=∠FBA,∴∠F=∠FBC,∴BC=CF,∴FD=CF-CD=BC-AB=AD-AB=7-4=3cm.故选:B.由AB∥CD可以推出∠F=∠FBA,又∵∠ABC平分线为AE,∴∠FBC=∠FBA,等量代换即可得到∠F=∠FBC,根据等腰三角形的判定知道BC=CF,所以得到FD=CF-CD=BC-AB=AD-AB,由此可以求出DF.本题利用了平行四边形的性质和角的平分线的性质证出△BCF为等腰三角形而求解.7.【答案】C【解析】解:如图所示,根据已知可得到菱形的边长为2cm,从而可得到高所对的角为30°,相邻的角为150°,则该菱形两邻角度数比为5:1.故选:C.根据已知可求得菱形的边长,再根据三角函数可求得其一个内角从而得到另一个内角即可得到该菱形两邻角度数比.此题主要考查的知识点:(1)直角三角形中,30°锐角所对的直角边等于斜边的一半的逆定理;(2)菱形的两个邻角互补.8.【答案】A【解析】解:由题意得,x+3=0,y-2=0,解得x=-3,y=2,所以,(x+y)2017=(-3+2)2017=-1.故选:A.根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.9.【答案】B【解析】解:∵菱形ABCD的周长为48cm,∴AD=12cm,AC⊥BD,∵E是AD的中点,∴OE=AD=6(cm).故选:B.由菱形ABCD的周长为48cm,根据菱形的性质,可求得AD的长,AC⊥BD,又由E是AD的中点,根据直角三角形斜边的中线等于斜边的一半,即可求得线段OE的长.此题考查了菱形的性质以及直角三角形斜边的中线的性质.此题难度不大,注意掌握数形结合思想的应用.10.【答案】B【解析】解:A、一组对边平行且相等的四边形是平行四边形,故A选项错误;B、有一组邻边相等的平行四边形是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项错误;D、对角线互相垂直平分的四边形是菱形,故D选项错误.故选:B.本题可逐个分析各项,利用排除法得出答案.主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.【答案】B【解析】解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB-EB=10-4=6m,在Rt△AEC中,AC==10m,故选:B.根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.12.【答案】C【解析】【分析】此题考查了全等三角形的判定与性质,勾股定理,以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.①由AB=AC,AD=AE,利用等式的性质得到夹角相等,利用SAS得出三角形ABD与三角形ACE全等,由全等三角形的对应边相等得到BD=CE;②由三角形ABD与三角形ACE全等,得到一对角相等,再利用等腰直角三角形的性质及等量代换得到BD垂直于CE;③由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°;④由BD垂直于CE,在直角三角形BDE中,利用勾股定理列出关系式,等量代换即可作出判断.【解答】解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,故①正确;②∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,故②正确;③∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,故③正确;④∵BD⊥CE,∴在Rt△BDE中,利用勾股定理得:BE2=BD2+DE2,∵△ADE为等腰直角三角形,∴DE=AD,即DE2=2AD2,∴BE2=BD2+DE2=BD2+2AD2,而BD2≠2AB2,故④错误,综上,正确的个数为3个.故选:C.13.【答案】4【解析】解:原式=3+=4.故答案为:4.先化简,然后合并同类二次根式.本题考查了二次根式的加减法,掌握二次根式的化简是解答本题的关键.14.【答案】16【解析】解:∵BD=AD,BE=EC,∴DE=AC=5,DE∥AC,∵CF=FA,CE=BE,∴EF=AB=3,EF∥AB,∴四边形ADEF是平行四边形,∴四边形ADEF的周长=2(DE+EF)=16.故答案为16.首先证明四边形ADEF是平行四边形,根据三角形中位线定理求出DE、EF即可解决问题.本题考查三角形中位线定理、平行四边形的判定和性质等知识,解题的关键是出现中点想到三角形中位线定理,记住三角形中位线平行于第三边且等于第三边的一半,属于中考常考题型.15.【答案】【解析】解:∵矩形ABCD,∴AC=BC,AO=CO,BO=DO,∠BAD=90°,∴AO=BO,∵∠AOB=60°,∴AO=BO=AB=1,∴BD=2,∴AD===,故答案为:.根据矩形的性质证得AO=CO=BO=DO,∠BAD=90°,由等边三角形的判定得到AO=BO=AB=1,即BD=2,由勾股定理求得结论.本题主要考查了矩形的性质,等边三角形的判定和性质,勾股定理,证得△ABO是等边三角形是解决问题的关键.16.【答案】能【解析】解:可设放入长方体盒子中的最大长度是xcm,根据题意,得x2=502+402+302=5000,702=4900,因为4900<5000,所以能放进去.故答案是:能.在长方体的盒子中,一角的顶点与斜对的不共面的顶点的距离最大,根据木箱的长,宽,高可求出最大距离,然后和木棒的长度进行比较.本题考查了勾股定理的应用.解题的关键是求出木箱内木棒的最大长度.17.【答案】(-,1)【解析】解:如图作AF⊥x轴于F,CE⊥x轴于E.∵四边形ABCD是正方形,∴OA=OC,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF,在△COE和△OAF中,,∴△COE≌△OAF,∴CE=OF,OE=AF,∵A(1,),∴CE=OF=1,OE=AF=,∴点C坐标(-,1),故答案为(-,1).如图作AF⊥x轴于F,CE⊥x轴于E,先证明△COE≌△OAF,推出CE=OF,OE=AF,由此即可解决问题.本题考查正方形的性质、坐标与图形的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.18.【答案】【解析】解:设△ABP中AB边上的高是h.∵S△PAB=S,矩形ABCD∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l 的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+PB的最小值为.故答案为:.,得出动点P在与AB平行且与AB的距离是2首先由S△PAB=S矩形ABCD的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.本题考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.19.【答案】解:(1)原式=--=-;(2)原式=3-1+2-1=1+2.【解析】(1)先把各二次根式化简为最简二次根式,然后去括号后合并即可;(2)利用平方差公式和零指数幂的意义计算.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.【答案】解:∵AD是中线,AB=13,BC=10,∴BD=BC=5.∵52+122=132,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC,又∵BD=CD,∴AC=AB=13.【解析】在△ABD中,根据勾股定理的逆定理即可判断AD⊥BC,然后根据线段的垂直平分线的性质,即可得到AC=AB,从而求解.本题主要考查了勾股定理的逆定理与线段的垂直平分线的性质,关键是利用勾股定理的逆定理证得AD⊥BC.21.【答案】解:(1)∵O是AC的中点,∴OA=OC,∵AD∥BC,∴∠ADO=∠CBO,在△AOD和△COB中,,∴△AOD≌△COB,∴OD=OB,∴四边形ABCD是平行四边形;(2)∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,∴▱ABCD的面积=AC•BD=24.【解析】(1)由已知条件易证△AOD≌△COB,由此可得OD=OB,进而可证明四边形ABCD是平行四边形;(2)由(1)和已知条件可证明四边形ABCD是菱形,由菱形的面积公式即可得解.此题主要考查平行四边形的判定和菱形的判断和性质.熟练掌握各种特殊四边形的性质定理和判定定理是解题的关键.22.【答案】解:连接OP,∵四边形ABCD是矩形,∴∠DAB=90°,AC=2AO=2OC,BD=2BO=2DO,AC=BD,∴OA=OD=OC=OB,∴S△AOD=S△DOC=S△AOB=S△BOC=S矩形ABCD=×6×8=12,在Rt△BAD中,由勾股定理得:BD==10,∴AO=OD=5,∵S△APO+S△DPO=S△AOD,∴×AO×PE+×DO×PF=12,∴5PE+5PF=24,∴PE+PF=,【解析】根据矩形的性质和三角形的面积求出S△AOD=S△DOC=S△AOB=S△BOC=S矩形=×6×8=12,根据勾股定理求出BD,求出AO、DO、根据三角形面积公ABCD式求出即可.本题考查了三角形面积,矩形的性质,勾股定理的应用,注意:矩形的对角线互相平分且相等,等底等高的三角形面积相等.23.【答案】(1)证明:∵折叠纸片使B点落在边AD上的E处,折痕为PQ,∴点B与点E关于PQ对称,∴PB=PE,BF=EF,∠BPF=∠EPF,又∵EF∥AB,∴∠BPF=∠EFP,∴∠EPF=∠EFP,∴EP=EF,∴BP=BF=EF=EP,∴四边形BFEP为菱形;(2)解:①∵四边形ABCD是矩形,∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,∵点B与点E关于PQ对称,∴CE=BC=5cm,在Rt△CDE中,DE==4cm,∴AE=AD-DE=5cm-4cm=1cm;在Rt△APE中,AE=1,AP=3-PB=3-PE,∴EP2=12+(3-EP)2,解得:EP=cm,∴菱形BFEP的边长为cm;②当点Q与点C重合时,如图2:点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,如图3所示:点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,∴点E在边AD上移动的最大距离为2cm.【解析】(1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论;(2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对称的性质得出CE=BC=5cm,在Rt△CDE中,由勾股定理求出DE=4cm,得出AE=AD-DE=1cm;在Rt△APE中,由勾股定理得出方程,解方程得出EP=cm 即可;②当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案.本题是四边形综合题目,考查了矩形的性质、折叠的性质、菱形的判定、平行线的性质、等腰三角形的判定、勾股定理、正方形的性质等知识;本题综合性强,有一定难度.。
江西省高安市2017-2018学年八年级语文下学期期中试题注:本卷共四大题,23小题,总分120分,考试时间为150分钟;答案请写在答题卡上。
一、语言知识及其运用(10分)1. 下列字形和加点字的注音全部正确....的一项是()(2分)A.沙砾.(shuó)窜掇纠葛.(gě)销声匿迹B.磅礴.(pó)羁绊怅惘.(wǎng)人情事故C.欺侮.(wǔ)追溯缄.默(jiān)草长莺飞D.陨.石(yǔn)战粟龟.裂(guī)悄怆幽遂2. 下列各句中加点的词语使用正确的一项是()(2分)A.作为中学生,我们要能够目空一切....地专注于学业,不能分散自己的注意力。
B.一场地震,让这个昔日被称为“花园城市”的地方海枯石烂....,面目全非。
C.这里的人家,早在几百年前就销声匿迹了.....。
D.此前,火箭队一直高歌猛进,但是今天他们竟然输了,连胜的脚步就此戛然而止....。
3.下列句子没有语病的一项是()(2分)A.恐龙灭绝事件认为是由约6600万年前的一颗陨石撞击地球所导致。
B.父母过于溺爱孩子,这对孩子的成长极为不利。
C.能否养成读书的好习惯,是能否学好语文的关键。
D.老师为了培养我们,可真是废寝忘食,处心积虑。
4.下列句子中组成语段顺序排列正确的一项是()(2分)①关于它的起源,最初是祛除暑热疫病、禳灾止恶的活动。
②逐渐形成了缅怀先贤、忠君爱国的传统。
③经过几千年的文化积累和节俗传承,吃粽子、赛龙舟、纪念屈原已经成为当今流传范围最广的端午节俗活动,融进了世代中华儿女的生活记忆。
.④端午节,是人夏后的第一个重要节日,也是我国首个人选世界非物质文化遗产的传统节日。
⑤汉魏以后,被附加了纪念屈原、伍子胥等历史人物的内涵。
A.④①⑤②③ B.⑤②③④① C.④①②⑤③ D.②③④⑤①5.下列填入语段横线处最能表现同学大吃一惊,同时语气最强烈的一项是()(2分)铃声一响,全班42双黑眼睛一齐望向教室门。
2017-2018学年八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.在二次根式中,字母x的取值范围是()A. B. C. D.2.若x=1是方程x2-ax+3=0的一个根,那么a值为()A. 4B. 5C.D.3.下列计算正确的是()A. B. C. D.4.A. 14,13B. 15,13C. 14,14D. 14,155.一个n边形的内角和等于它的外角和,则n=()A. 3B. 4C. 5D. 66.某厂一月份生产某机器100台,计划二、三月份共生产280台.设二、三月份每月的平均增长率为x,根据题意列出的方程是()A. B.C. D.7.如图O是边长为9的等边三角形ABC内的任意一点,且OD∥BC,交AB于点D,OF∥AB,交AC于点F,OE∥AC,交BC于点E,则OD+OE+OF的值为()A. 3B. 6C. 8D. 98.关于x的方程(a-6)x2-8x+6=0有实数根,则a的取值范围是()A. 且B. 且C.D. 且9.如图,在平面直角坐标系中,OABC的顶点A在x轴上,定点B的坐标为(6,4),若直线经过定点(1,0),且将平行四边形OABC分割成面积相等的两部分,则直线的表达式()A. B. C. D.10.如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CEF其中正确的是()A. ①②③B. ①②④C. ②③④D. ①②③④二、填空题(本大题共6小题,共24.0分)11.标本-1,-2,0,1,2,方差是______.12.若整数满足,则的值为________.13.若x=-2是关于x的方程x2-2ax+8=0的一个根,则方程的另一个根为______.14.已知m是一元二次方程x2-9x+1=0的解,则=______.15.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为______m.16.如图在△ABC中,∠BAC=30°,AB=AC=6,M为AC边上一动点(不与A,C重合),以MA、MB为一组邻边作平行四边形MADB,则平行四边形MADB的对角线MD的最小值是______.三、计算题(本大题共1小题,共8.0分)17.(1)已知x=2+,y=2-,求(+)(-)的值.(2)若的整数部分为a,小数部分为b,写出a,b的值并计算-ab的值.四、解答题(本大题共6小题,共58.0分)18.解方程:(1)2x2-x=0(2)(x-1)(2x+3)=1.19.某校初三对某班最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如图的频数分布直方图,请结合直方图提供的信息,回答下列问题:(1)该班共有______名同学参加这次测验;(2)这次测验成绩的中位数落在______分数段内;(3)若该校一共有800名初三学生参加这次测验,成绩80分以上(不含80分)为优秀,估计该校这次数学测验的优秀人数是多少人?20.如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=AC•BD.(1)写出正确结论的序号;(2)证明所有正确的结论.21.银隆百货大楼服装柜在销售中发现:“COCOTREE”牌童装每件成本60元,现以每件100元销售,平均每天可售出20件.为了迎接“五•一”劳动节,商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多销售2件.(1)要想平均每天销售这种童装盈利1200元,请你帮商场算一算,每件童装应定价多少元?(2)这次降价活动中,1200元是最高日利润吗?若是,请说明理由;若不是,请试求最高利润值.22.如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形.(1)请你只用无刻度的直尺在图中画出∠AOB的平分线.(保留作图痕迹,不要求写作法)(2)如图2,请再说出两种画角平分线的方法(要求画出图形,并说明你使用的工具和依据)23.如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动,设动点运动时间为t秒.(1)求AD的长.(2)当P、C两点的距离为时,求t的值.(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在时刻t,使得S△PMD=S△ABC?若存在,请求出t的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:二次根式中,字母x的取值范围是:x-3>0,解得:x>3.故选:B.直接利用二次根式的性质分析得出答案.此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.2.【答案】A【解析】解:把x=1代入x2-ax+3=0得1-a+3=0,解得a=4.故选:A.根据一元二次方程的解的定义把x=1代入x2-ax+3=0中得到关于a的方程,然后解关于a的一次方程即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.【答案】A【解析】解:A、-=2-=,故本选项正确.B、+≠,故本选项错误;C、×=,故本选项错误;D、÷==2,故本选项错误.故选:A.根据二次根式的加法及乘法法则进行计算,然后判断各选项即可得出答案.本题考查了二次根式的混合运算,难度不大,解答本题一定要掌握二次根式的混合运算的法则.4.【答案】A【解析】解:将这组数据按大小顺序,中间一个数为13,则这组数据的中位数是13;=(24+15+13+10+8)÷5=14.故选:A.根据中位数和平均数的定义求解即可.本题为统计题,考查平均数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.【答案】B【解析】解:由题可知(n-2)•180=360,所以n-2=2,n=4.故选:B.利用等量关系式以及多边形内角和公式解答.根据题意列出方程即可.本题主要考查的是多边形的内角和与外角和,熟练掌握多边形的内角和与外角和公式是解题的关键.6.【答案】B【解析】【分析】主要考查增长率问题,一般用"增长后的量=增长前的量×(1+增长率)",如果设二、三月份每月的平均增长率为x,根据“计划二、三月份共生产280台”,即可列出方程.本题可根据增长率的一般规律找到关键描述语,列出方程;平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.【解析】解:设二、三月份每月的平均增长率为x,则二月份生产机器为:100(1+x),三月份生产机器为:100(1+x)2;又知二、三月份共生产280台;所以,可列方程:100(1+x)+100(1+x)2=280.故选B.7.【答案】D【解析】【分析】根据等边三角形,平行线的性质,和平行四边形的判定,并根据等腰梯形性质求解.本题考查了等边三角形的性质,关键是利用了:1、等腰三角形的性质和判定:三边相等,三角均为60度,有两角相等且为60度的三角形是等边三角形;2、平行四边形的判定的性质;3、等腰梯形的判定和性质.【解答】解:延长OD交AC于点G,∵OE∥CG,OG∥CE,∴四边形OGCE是平行四边形,有OE=CG,∠OGF=∠C=60°,∵OF∥AB,∴∠OFG=∠A=60°,∴OF=OG,∴△OGF是等边三角形,∴OF=FG,∵OD∥BC,∴∠ADO=∠B=60°∴梯形OFAD是等腰梯形,有OD=AF,即OD+OE+OF=AF+FG+CG=AC=9.8.【答案】C【解析】解:当a-6=0时,原方程为-8x+6=0,解得:x=,∴a=6符合题意;当a-6≠0时,有,解得:a≤且a≠6.综上所述,a的取值范围为:a≤.故选:C.分a-6=0和a-6≠0两种情况考虑:当a-6=0时,通过解一元一次方程可得出原方程有解,进而可得出a=6符合题意(此时已经可以确定答案了);当a-6≠0时,由二次项系数非零及根的判别式△≥0,即可得出关于a的一元一次不等式组,解之即可得出a的取值范围.综上即可得出结论.本题考查了根的判别式、一元二次方程的定义以及解一元一次方程,分a-6=0和a-6≠0两种情况考虑是解题的关键.9.【答案】C【解析】解:∵点B的坐标为(6,4),∴平行四边形的中心坐标为(3,2),设直线l的函数解析式为y=kx+b,则,解得,所以直线l的解析式为y=x-1.根据过平行四边形的中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形中心的坐标,再利用待定系数法求一次函数解析式解答即可.本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.10.【答案】B【解析】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAD=∠AEB,又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,∵AB=AE,∴△ABE是等边三角形;②符合题意;在∴△ABC≌△EAD(SAS);①符合题意;∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),∴S△FCD=S△ABC,又∵△AEC与△DEC同底等高,∴S△AEC=S△DEC,∴S△ABE=S△CEF;④符合题意.若AD与AF相等,即∠AFD=∠ADF=∠DEC即EC=CD=BE即BC=2CD,题中未限定这一条件∴③不符合题意;∴①②④符合题意,故选:B.由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△FCD与△ABD等底(AB=CD)等高(AB与CD间的距离相等),得出S△FCD=S△ABD,由△AEC与△DEC同底等高,所以S△AEC=S△DEC,得出S△ABE=S△CEF.④正确.此题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.11.【答案】2【解析】解:∵==0,∴方差S2=×[(1-0)2+(2-0)2+(0-0)2+(-1-0)2+(-2-0)2]=2.故答案为:2.先计算出平均数,再根据方差的公式计算.本题考查方差的定义:一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2=[(x 1-)2+(x2-)2+…+(x n-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.【答案】4【解析】解:∵2=,3=,∴整数n满足2<n<3,则n的值为=4.故答案为4.直接得出n最接近的二次根式,进而得出答案.此题主要考查了估算无理数的大小,正确将原数转化是解题关键.13.【答案】-4【解析】解:设方程的另一个根为x1,根据根与系数的关系有:-2x1=8,解得x1=-4.故答案为:-4.设出方程的另一个根,利用根与系数关系中的两根之积可以求出方程的另一个根.本题考查的是一元二次方程的解,知道方程的一个根,用根与系数关系中的两根的积可以求出方程的另一个根.14.【答案】17【解析】解:∵m是一元二次方程x2-9x+1=0的解,∴m2-9m+1=0,∴m2-7m=2m-1,m2+1=9m,∴=2m-1+=2(m+)-1,∵m2-9m+1=0,∴m≠0,在方程两边同时除以m,得m-9+=0,即m+=9,∴=2(m+)-1=2×9-1=17.故答案是:17.将x=m代入该方程,得m2-9m+1=0,通过变形得到m2-7m=2m-1,m2+1=9m;然后在方程m2-9m+1=0两边同时除以m,得到m+=9,代入即可求得所求代数式的值.此题主要考查了方程解的定义.此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.15.【答案】2【解析】解:设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30-3x)m,宽为(24-2x)m,由已知得:(30-3x)•(24-2x)=480,整理得:x2-22x+40=0,解得:x1=2,x2=20,当x=20时,30-3x=-30,24-2x=-16,不符合题意舍去,即x=2.答:人行通道的宽度为2米.故答案为2.设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30-3x)m,宽为(24-2x)m,根据矩形绿地的面积为480m2,即可列出关于x的一元二次方程,解方程即可得出x的值,经检验后得出x=20不符合题意,此题得解.本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.16.【答案】3【解析】解:如图,作BH⊥AC于H.在Rt△ABH中,∵AB=6,∠BHA=90°,∠BAH=30°,∴BH=AB=3,∵四边形ADBM是平行四边形,∴BD∥AC,∴当DM⊥AC时,DM的值最小,此时DM=BH=3,故答案为3.如图,作BH⊥AC于H.因为四边形ADBM是平行四边形,所以BD∥AC,所以当DM⊥AC时,DM的值最小,此时DM=BH.本题考查直角三角形30度角性质、等腰三角形的性质、平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【答案】解:(1)原式=-==,∵x=2+,y=2-,∴x+y=4、y-x=-2、xy=1,则原式==-8;(2)∵2<<3,∴a=2、b=-2,∴-ab=-2(-2)=+2-2+4=6-.【解析】(1)将原式变形为,再根据x、y的值计算出y+x、y-x、xy的值,继而代入可得;(2)由题意得出a、b的值,代入计算可得.本题主要考查二次根式的化简求值,解题的关键是掌握二次根式混合运算顺序和运算法则.18.【答案】解:(1)2x2-x=0,x(2x-)=0,则x=0或2x-=0,解得x1=0,x2=;(2)(x-1)(2x+3)=1,2x2+x-4=0,解得:x1=,x2=.【解析】(1)提取公因式x,即可得到x(2x-)=0,再解两个一元一次方程即可;(2)先转化为一般式方程,然后利用因式分解法解方程.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.19.【答案】40;70.5~80.5【解析】解:(1)根据题意得:该班参加这次测验的学生共有:2+9+10+14+5=40(名);故答案为:40;(2)因为共有40个数,所以中位数是第20和21个数的平均数,所以这次测验成绩的中位数落在落70.5~80.5分数段内;故答案为:70.5~80.5;(3)根据题意得:该校这次数学测验的优秀人数是800×=380(人).(1)把各分段的人数加起来就是总数;(2)根据中位数的定义得出中位数就是第20个和第21个的平均数,从而得出答案;(3)先算出40人中80分以上的人的优秀率,再乘以总人数即可.本题考查了频数分布直方图,解题的关键是能读懂统计图,从图中获得必要的信息,用到的知识点是中位数、频数、频率.20.【答案】解:(1)正确结论是①④,(2)①在△ABC和△ADC中,∵ ,∴△ABC≌△ADC(SSS),∴∠ABC=∠ADC,故①结论正确;②∵△ABC≌△ADC,∴∠BAC=∠DAC,∵AB=AD,∴OB=OD,AC⊥BD,而AB与BC不一定相等,所以AO与OC不一定相等,故②结论不正确;③由②可知:AC平分四边形ABCD的∠BAD、∠BCD,而AB与BC不一定相等,所以BD不一定平分四边形ABCD的对角;故③结论不正确;④∵AC⊥BD,∴四边形ABCD的面积S=S△ABD+S△BCD=BD•AO+BD•CO=BD•(AO+CO)=AC•BD.故④结论正确;【解析】①证明△ABC≌△ADC,可作判断;②③由于AB与BC不一定相等,则可知此两个选项不一定正确;④根据面积和求四边形的面积即可.本题考查了全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定方法是解题的关键,结论①可以利用等边对等角,由等量加等量和相等来解决.21.【答案】解:(1)设每件童装应降价x元,由题意得:(100-60-x)(20+2x)=1200,解得:x1=10,x2=20,因要减少库存,故取x=20,答:每件童装应定价80元.(2)1200不是最高利润,y=(100-60-x)(20+2x)=-2x 2+60x+800=-2(x-15)2+1250故当降价15元,即以85元销售时,最高利润值达1250元.【解析】(1)首先设每件降价x元,则每件实际盈利为(100-60-x)元,销售量为(20+2x)件,用每件盈利×销售量=每天盈利,列方程求解.为了扩大销售量,x应取较大值.(2)设每天销售这种童装利润为y,利用(1)中的关系列出函数关系式,利用配方法解决问题.此题考查了二次函数的应用以及一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售这种童装利润,进而列方程与函数关系解决实际问题.22.【答案】解:(1)如图2,OP为所作;(2)方法一:如图1,利用有刻度的直尺画出AB的中点M,则OM为∠AOB的平分线;方法二:如图3,利用圆规和直尺作∠AOB的平分线ON,【解析】(1)利用AB、EF,填空相交于点P,如图2,利用平行四边形的性质得到PA=PB,然后根据等腰三角形的性质可判断OP平分∠AOB;(2)方法一:如图1,利用有刻度的直尺和腰三角形的性质画图;方法二:如图3,利用圆规和直尺,根据基本作图作∠AOB的平分线ON.本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的性质和等腰三角形的性质.23.【答案】解:(1)∵AB=AC=13,AD⊥BC,∴BD=CD=5cm,且∠ADB=90°,∴AD2=AC2-CD2∴AD=12cm.(2)AP=t,∴PD=12-t,在Rt△PDC中,PC=,CD=5,根据勾股定理得,PC2=CD2+PD2,∴29=52+(12-t)2,∴t=10或t=14(舍).即:t的值为10s;(3)假设存在t,使得S△PMD=S△ABC.∵BC=10,AD=12,∴S△ABC=BC×AD=60,①若点M在线段CD上,即0≤t<时,PD=12-t,DM=5-2t,由S△PMD=S△ABC,即(12-t)(5-2t)=,2t2-29t+43=0解得t1=(舍去),t2=②若点M在射线DB上,即<t<12.由S△PMD=S△ABC得(12-t)(2t-5)=,2t2-29t+77=0解得t=11或t=综上,存在t的值为s或 11s或s,使得S△PMD=S△ABC.【解析】(1)根据等腰三角形性质和勾股定理解答即可;(2)根据勾股定理建立方程求解即可;(3)根据题意列出PD、MD的表达式解方程组,由于M在D点左右两侧情况不同,所以进行分段讨论即可,注意约束条件.此题是三角形综合题,主要考查了等腰三角形的性质,勾股定理,三角形的面积公式,解本题的关键为利用三角形性质勾股定理以及分段讨论,在解方程时,注意解是否符合约束条件.。
浙江杭州西湖区保俶塔实验中学2017-2018学年八年级上学期期中科学试题(无答案)杭州市保俶塔实验学校2017学年第一学期八年级期中考试科学试卷(问卷)命题人:楼婷婷审查人:翟心文考生须知:1.本试卷分试题卷和答题卷两部分.满分为150分,考试时间为120分钟.2.所有答题都一定写在答题卷标定的地点上,务必注意试题序号和答题序号相对应.一、选择题(每题只有一个选项切合题意,每题3分,共72分)1.假如没有大气层,以下现象仍旧能发生的是()A.阳光普照大地B.湛蓝色天空C.流星划破夜空D.建筑风力发电站2.理论上电解水时发生氢气和氧气的体积比是2:1,但实验所得氢气和氧气的体积比略大于2:1.针对这一发现,你以为以下做法中不行取的是().频频多次实验查找原由.实验所得数据与理论值相差不多,能够以为实验已经成功C.提出假定:氧气比氢气易溶于水.检查实验装置能否漏气3.2017年夏季,我国多个省市出现严重洪涝灾祸,长江流域部分地域农业遇到特别大的影响,长江三峡紧急放水泄洪.以下说法正确的选项是().我国水资源的空间散布特色是东多西少,北多南少.从地球水体分类和比率来看,陆地水资源中比率最大的是河流水C.我们能够利用冰进行人工降雨来缓解局部干旱问题D.从水循环角度来讲,“长江三峡紧迫放水”是对地表径流这一环节施加影响4.以下现象中不可以说明大气压存在的是().堵上茶壶盖上的小孔茶壶里的水不简单被倒出来.用抽气机抽出灯泡里的空气C.医生提起针管里的活塞,使药液经过针头进入针管.吸盘挂钩能够紧贴在圆滑的玻璃砖上5.以下混淆物能够用降温结晶法分别是()A.分别泥沙和食盐的混淆物B.在混有少许食盐的硝酸钾中分别出硝酸钾C.分别乙醇和水的混淆物D.从食盐溶液中把实验分别出来6.自然界中的水都不是纯净物,以下方法能获取纯净水的是()A.吸附B.积淀C.过滤D.蒸馏7.对于大气层的剖析和理解,错误的选项是().大气层的主要依照是大气在垂直方向上的温度变化.雷电等主要的天气现象都发生在平流层C.对流层最明显的特色是有激烈的对流运动.对流层大气的热量直接来自地表辐射,其厚度随纬度而变化8.如图为竖直搁置的“口”字形管子,管内装有酒精,让管中的酒精发生对流且沿逆时针方向流动,最好将冰块放在()1/9浙江杭州西湖区保俶塔实验中学2017-2018学年八年级上学期期中科学试题(无答案)A.A处B.B处C.C处D.D处9.假如把笼盖着地球的大气层比作浩大的大海,我们人类就生活在这“大气大海”的底部,蒙受着大气对我们的压强——大气压.以下相关表达中不正确的选项是().马德堡半球实考证了然大气压的存在且很大.液体沸点与气压相关,高压锅是利用增大锅内气压来提升液体沸点的C.大气压的大小与大气的密度相关,离地面越高的地方,大气压也越大.人的心情往常跟晴日和阴雨天大气压的高低变化相关,低气压多阴雨天气10.在野外和灾区可用以下几个步骤将河水净化为生活用水,常有的净水操作有:①甲明矾吸附,②消毒杀菌(用漂白粉),③过滤,④蒸馏.以上办理过程最合理的次序是()A.③①②④B.①③②④C.①③②D.①③④11.以下图,已知未点燃的蜡烛的下端插入一根小铁钉,使蜡烛能直立飘荡在水面上,露出长度为L,当把蜡烛水面以上部分截掉后节余部分()A.还会从头露出水面B.不会从头露出水面C.以上两种可能都有D.没法判断能否会从头露出水面12.如图是中国航母“辽宁号”训练时舰载飞机飞翔的图片.以下说法中正确的选项是().飞机在腾飞过程中,惯性将消逝.飞机在航母甲板上加快飞翔时,遇到均衡力C.飞机飞离航母前后,航母一直飘荡,航母所受浮力的大小不变.飞机飞翔时能获取向上的压强差,是由于机翼上方空气流速大于机翼下方空气流速13.对于物体沉浮条件及应用的实例,以下剖析合理的是()A.轮船从长江驶入东海,吃水深度变大B.同一密度计在不一样液体中飘荡时,所受浮力大小同样C.橡皮泥捏成小船后能够飘荡在水面,是经过改变自己重力实现的D.潜水艇靠改变排开水的体积来改变浮力,进而实现上调和下沉14.以下相关溶液的表达正确的选项是()①饱和溶液必定是浓溶液,不饱和溶液必定是稀溶液.20C时,若100克食盐饱和溶液中含有10克食盐,则20C时食盐的溶解度是10克.③20C时,硫酸铜饱和溶液的质量分数必定比不饱和溶液的质量分数大.④20C时,A物质在100克水中最多可溶解50克,70C时B物质在100克水中溶解了181克恰好饱和,则B2/9物质的溶解度大于A物质的溶解度.A.②B.②③C.②④D.①②15.在tC时将无水硫酸铜粉末投入到必定量tC的硫酸铜饱和溶液中,则必定量饱和硫酸铜溶液中的()A.溶质增添,溶剂不变B.溶质减少,溶剂不变C.溶质、溶剂、饱和溶液的质量都减少D.溶液中溶质的质量分数变大,溶解度增大16.以下说法正确的选项是().溶液必定是均一、稳固、无色、透明的混淆物.均一、稳固的液体必定是溶液C.溶液是指澄清、透明的液体.若条件不改变,则溶液一直不会发生变化17.如图甲所示,边长为10cm的正立方体木块A经过细线与圆柱形容器底部相连,容器中液面与A上表面齐平.从翻开容器底部的抽液机匀速向外排液开始计时,细线中拉力F随时间t的变化图像如图乙所示.木块密度0.5 103kg/m3,容器底部面积为200cm2,g取10N/kg.以下说法中正确的选项是()A.抽液机每秒钟排出液体的质量是10g B.容器中的液体是酒精C.第5s时,细线所受的拉力为D.跟着液体的排出,木块遇到的浮力不停减小18.如图是对20C必定质量的甲的溶液进行恒温蒸发结晶的实验过程,以下说法正确的选项是()A.蒸发前原溶液是饱和溶液B.n的数值是12C.甲物质在20C时溶解度是50gD.甲物质的溶解度随温度的高升而增大19.以下图,将苹果和梨子放入水中后,苹果飘荡,梨子沉底.若苹果的质量、体积及遇到的浮力为m1、V1和F1,梨子的质量、体积及遇到的浮力为m2、V2和F2,现有以下判断()(1)若m1 m2,则F1必定小于F2(2)若m1m2,则F1必定大于F23/9(3)若V1V2,则F1必定小于F2(4)若V1V2,则F1必定大于F2A.(1)(3)B.(1)(4)C.(2)(3)D.(2)(4)20.在配制必定质量分数的氯化钠溶液时,以下出现的操作失误,会惹起所配溶液的溶质质量分数降低的是().用托盘天平称量氯化钠时,将砝码放在左盘,但未使用游码.将配好的氯化钠溶液转移到细口瓶中时,不慎洒出部分溶液C.用量筒量取蒸馏水读数时,仰望凹液面的最低处.将量筒中的水倒入烧杯时,有水洒出21.甲、乙两种物质的溶解度曲线以下图,以下表达正确的选项是()A.t1C时,甲和乙溶液中溶质的质量分数必定相等B.将甲、乙饱和溶液从t2C降到t1C,析出甲的质量大C.将甲、乙饱和溶液从t1C升温至t2C,甲溶液中溶质质量分数比乙大D.t1C时,甲和乙的饱和溶液各100g,其溶质的质量必定相等22.一枚重量为G的鸡蛋悬浮在不饱和食盐水中,以下图.往盐水中持续平均迟缓加食盐,鸡蛋所受浮力F随时间t变化的图象可能是()A.B.C.D.23.以下四幅图中,正确表示冷锋天气的是()A.B.C.D.24.以下图,天平左盘放一装满水的溢水杯.当日平均衡时,在杯中放入质量为m1的木块,木块排出水的质量为m2,则()4/9A.m1m2,左盘降落B.m1m2,右盘降落C.m1m2,天平仍保持均衡D.没法判断二、填空题(本大题共39分)25.(4分)用如图装置进行水的电解实验:1)在水中加入稀硫酸或氢氧化钠,其作用是__________.2)开始反响前a、b两管内都充满溶液,封闭活塞,接通电源一段时间后,两管产生的气体以下图,写出电解水的文字表达式__________;可推得水是由__________构成的.(3)若实验顶用4%的氢氧化钠溶液100g,通电一段时间后,氢氧化钠溶液溶质质量分数变为 6.25%,则分解水的质量为__________g.26.(3分)将少许的①橄榄油,②白酒,③味精,④肥皂,⑤粉笔灰,⑥血液,分别加入水中,充足振荡后,此中__________形成悬浊液,__________形成溶液,__________形成乳浊液.(填编号)27.(2分)如图是大海和陆地之间的水循环运动过程框图,图中A至E代表了水循环中各个环节的名称,请写出C和E所代表的环节名称:C.__________;E.__________.28.(4分)20C时,将不一样质量的氯化钠(NaCl)晶体分别加入100g水中,充足溶解后所得溶液质量与加入氯化钠晶体质量的对应关系以下表:组别A B C D E氯化钠晶体质量/g515203040所得溶液质量/g105115X130136请回答以下问题:(1)A组的溶液为__________(填“饱和”或“不饱和”)溶液.5/92)C 组X 的值为__________.(3)如图为氯化钠的溶解度曲线图,图上a 点纵坐标的值为__________.(4)氢氧化钙的溶解度温度变化的趋向与相反,则室温时,向饱和石灰水加入少许生石灰(生石灰与水反应生成氢氧化钙),并恢复到室温,此时溶液中溶质的质量__________(填“”、“ ”或“”)原溶液中溶质的质量.29.(12分)以下图是 a 、b 、c 三种物质的溶解度曲线,a 与c 的溶解度曲线订交于P 点.据图回答:(1)要使t 1C 时C 的不饱和溶液变为饱和溶液,可采纳的方法是__________,__________(填两种方法).(2)t 1C 时,a 、b 、c 三种物质的饱和溶液的温度均高升到t 2C ,三种溶液溶质的质量分数大小关系是__________.A .cab B .abc C .ab c D .ba c3)某同学在t 1C 时,称量10克a ,加入50克水,搅拌却发现烧杯中仍有少许固体不溶.可能惹起该现象的操作是:__________.A .用量筒取50毫升水时俯视读数B .用量筒取50毫升水时仰望读数C .称量a 物体时将砝码放在左盘(1克以下用游码)D .向烧杯中倾倒水时,有水溅出(4)如上图装置试管中加入硝酸铵固体片晌后,U 型管左边液面将__________(填“上涨”、“降落”或“不变”).若加入__________固体,现象则相反.30.(6分)向100g 水中不停加入固体A 或改变温度,获取相应的溶液①~ ⑤.加入A加入A升温加入A降温25C100g 水①②③④ ⑤至60C10g至50C右表为A 在不一样温度下的溶解度,在编号①~⑤的溶液中(以下小题填序号):6/9温度/C2030405060溶解度/g1)属于饱和溶液的是溶液__________.2)溶液的溶质质量分数最大的溶液是__________.3)溶液中没有晶体析出的是__________.31.(8分)(1)以以下图所示,三个同样的轻质弹簧、一端固定在容器底部,另一端分别与三个体积同样的实心球相连.向容器内倒入某种液体,待液体和球都稳固后,察看到以下图的状况,乙球下方弹簧长度等于原长,这三个球遇到浮力的大小关系是__________(选填字母).A.F甲F乙F丙B.F甲F乙F丙C.F甲F乙F丙这三个球的密度大小关系__________(选填字母).A.甲乙丙B.甲乙丙C.甲乙丙此中__________球(选填“甲”“乙”“丙”)的密度与液体密度同样.(2)一个底面积为50cm2的烧杯中装有某种液体,将一个小木块放入烧杯的液体中,木块静止时液体深h110cm,如图甲所示;把一个小石块放在木块上,液体深h216cm,如图乙所示;若将小石块放入液体中,液体深h312cm,如右图丙所示,石块对杯底的压力F.则小石块的密度石为__________kg/m3.三、实验研究题(每空2分,共22分)32.(10分)某科学兴趣小组的的同学做粗盐(含有难溶性杂质)提纯实验,并用所得的精盐配制50g5%的氯化钠溶液.以以下图是同学们做粗盐提纯实验的操作表示图.请回答以下问题:1)操作⑥中的错误是__________,纠正错误后,经过两次过滤,滤液仍旧污浊.其原由可能是__________.2)粗盐提纯实验的操作次序为(填操作序号)__________、称量精盐并计算.3)操作④中,当察看到__________时,停止加热.(4)实验结束后称量并计算精盐的制得率,发现制得率较低,其可能原由是__________(填序号).A.食盐没有所有溶解即过滤B.蒸发时食盐飞溅激烈C.蒸发后,所得精盐很湿润D.器皿上沾有的精盐没所有转移到称量纸上33.(12分)小强同学利用注射器、弹簧测力计和刻度尺估测大气压的值.(1)实验时,第一把注射器的活塞推至注射器筒的底端,用橡皮帽封住注射器的小孔,这样做的目的是__________.7/9(2)以下图,水平向右慢慢地拉动注射器筒,当注射器中的活塞刚开始滑动时,记下弹簧测力计的示数F,注射器容积为 V,用刻度尺测出注射器所有刻度的长度L.则大气压的值能够表示为p__________.(3)实验过程中注射器筒内漏进了少许空气,则测得的大气压值__________(填“偏大”、“偏小”或“不变”).(4)实验室有甲、乙两个注射器.活塞的横截面积分别为2和2cm2.若弹簧测力计量程为10N,实验时应采用__________(选填“甲”或“乙”)注射器,原由是__________.(5)同学们发现实验偏差较大,请剖析该实验过程中致使偏差的原由(请写出两条)__________.四、剖析、计算题(33题5分,34题6分,35题6分,共17分)34.(5分)为了测出一般玻璃的密度,小明同学利用了一个一般玻璃制成的小瓶、一个量筒和适当的水,做了以下实验:1)在量筒内倒入50立方厘米的水.2)让小瓶口向上飘荡在量筒内陆水面上(有一小部分露出水面),此时水面与80立方厘米刻度线相平.(3)让小瓶口向上淹没在水中,这时水面与62立方厘米刻度线相平.依据以上测出的数据进行计算:(g取10牛/千克)①小瓶浮在水面时,它排开水的体积是V排.②制造小瓶的玻璃的密度.35.(6分)如图高压锅的表示图,锅盖上有一个竖直空心柱为排气孔,空心柱上配有一个限压阀,当内的气体压强超出安全值时,锅内的气体就会冲开限压阀.放出一部分水蒸气,使锅内气体压强减小.现有一个直径为22cm,空心柱小孔的横截面积为10mm2,限压阀的质量为100g的,用它来烧饭,若当时的大气压为1105Pa.问:(1)该锅内气体的最大压强是多少.(2)经商质量量检测部门检测,此气体的最大压强不可以超出105Pa,要使此能持续安全使用,本来的限压阀还可以使用吗?若不可以,应再配一个质量为多少的限压阀.(g取10N/kg)36.(6分)某同学在实验室进行相关浓硫酸的实验,察看到瓶上的标签以下表所示.他从瓶中倒出200毫8/9升用于配制稀硫酸.求:(1)这200毫升浓硫酸的质量是多少克.(2)现将200毫升浓硫酸加水稀释,可配置质量分数为19.6%的稀硫酸(密度为克/厘米3)多少毫升?需要水多少毫升.浓硫酸500毫升溶质的质量分数98%密度克/厘米3强腐化性,阴冷,密闭储蓄9/9。
2017-2018学年湖北省武汉市汉阳区八年级(下)期中数学试卷一.选择题x的取值范围是()1.A. x>2B. x>3C. x≥2D. x<2【答案】C【解析】【分析】根据二次根式有意义的条件:被开方数为非负数,可得x的取值范围.【详解】解:∴x-2≥0,∴x≥2.故选:C.【点睛】本题考查了二次根式有意义的条件,解答本题的关键是掌握二次根式有意义:被开方数为非负数.2.下列式子中,是最简二次根式的是().【答案】C【解析】【详解】解:A=B=CD=故选C.3.下列计算正确的是()A. ==C. ==【解析】 【分析】根据二次根式的计算法则分别计算可得出正确选项.【详解】解:A. 18=,故A 选项错误;B.B 选项错误;C. 不是同类项,不能合并,故C 选项错误;D.=,故D 选项正确. 故选D【点睛】本题考查了二次根式的加减乘除四则运算,熟练掌握运算法则是解题关键. 4.在以下列线段a 、b 、c 的长为边的三角形中,不能构成直角三角形的是( )A. a =9 b =41 c =40B. a =b =5 c =C. a :b :c =3:4:5D. a =11 b =12 c =15【答案】D 【解析】 【分析】根据直角三角形的判定,符合a 2+b 2=c 2即可;反之不符合的不能构成直角三角形. 【详解】解:A 、因为92+402=412,故能构成直角三角形;B 、因为52+52=(2,故能构成直角三角形;C 、因为32+42=52,故能构成直角三角形;D 、因为112+122≠152,故不能构成直角三角形; 故选D .【点睛】本题考查的是勾股定理的逆定理,当三角形中三边满足222a b c +=关系时,则三角形为直角三角形.5.关于▱ABCD 的叙述,正确的是( ) A. 若AB ⊥BC ,则▱ABCD 是菱形 B. 若AC ⊥BD ,则▱ABCD 是正方形 C. 若AC=BD ,则▱ABCD 是矩形 D. 若AB=AD ,则▱ABCD 是正方形 【答案】C选项C中,满足矩形的判定定理:对角线相等的平行四边形是矩形,所以选C.6.如图,一根长5米的竹竿斜靠在一竖直的墙AO上,这时AO为4米.如果竹竿的顶端A沿墙下滑1米,竹竿底端B外移的距离BD()A. 等于1米B. 大于1米C. 小于1米D. 以上都不对【答案】A【解析】【分析】根据题意要求出下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得BO和DO的长即可.【详解】解:由题意得:在Rt△AOB中,OA=4米,AB=5米,∴OB=22-=3米,AB OA在Rt△COD中,OC=3米,CD=5米,∴OD=22-=4米,CD OC∴AC=OD-OB=1米.故选A.【点睛】本题考查了勾股定理的应用,注意此题中梯子的长度是不变的.熟练运用勾股定理是解题的关键.7.已知,顺次连接矩形各边的中点,得到一个菱形,如图①;再顺次连接菱形各边中点,得到一个新的矩形,如图②;然后顺次连接新的矩形各边中点,得到一个新的菱形,如图3.如此反复操作下去,则第2018个图形中直角三角形的个数有()A. 2018个B. 4043个C. 4036个D. 6042个【答案】C【解析】【分析】写出前几个图形中的直角三角形的个数,并找出规律,当n 为奇数时,三角形的个数是2(n+1),当n 为偶数时,三角形的个数是2n ,根据此规律求解即可. 【详解】解:第1个图形,有4个直角三角形, 第2个图形,有4个直角三角形, 第3个图形,有8个直角三角形, 第4个图形,有8个直角三角形, …,依此类推,当n 为奇数时,三角形的个数是2(n+1),当n 为偶数时,三角形的个数是2n 个, 所以,第2018个图形中直角三角形的个数是2×2018=4036. 故选:C .【点睛】本题考查了规律型—图形类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.8.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A. 3B. 4C. 5D. 6【答案】C 【解析】【详解】如图所示,∵(a+b )2=21 ∴a 2+2ab+b 2=21,∵大正方形面积为13,2ab=21﹣13=8, ∴小正方形的面积为13﹣8=5. 故选C .考点:勾股定理的证明.9.若01x <<221144x x x x ⎛⎫⎛⎫-++-= ⎪ ⎪⎝⎭⎝⎭( ).A.2xB. 2x-C. 2x -D. 2x【答案】D 【解析】 【分析】根据二次根式的意义先化简各项,再进行分式的加减运算可得出解. 【详解】解:∵0<x <1, ∴0<x <1<1x, ∴10x x +>,10x x-<. 原式=2211()()x x x x+--=11x x x x +-- =11x x x x++- =2x . 故选D .点睛:本题考查了二次根式的性质和绝对值化简,也考查了分式的加减.10.如图,已知PA=PB=PC=2,∠BPC=120°,PA ∥BC .以AB 、PB 为边作平行四边形ABPD ,连接CD ,则CD 的长为( )A. 22B. 233+1 6+1【答案】A 【解析】 【分析】连接BD 交AP 于O ,作PE ⊥BC 于E ,连接OE ,由等腰三角形的性质得出∠PBE=30°,BE=CE ,由直角三角形的性质得出PE=12PB=1,由平行四边形的性质得出OP=OA=1,OB=OD ,得出OE 是△BCD 的中位线,得出CD=2OE,由勾股定理得:OE=22OP PE+=2,即可得出结果.【详解】解:连接BD交AP于O,作PE⊥BC于E,连接OE,如图所示:∵PB=PC=2,∠BPC=120°,PE⊥BC,∴∠PBE=30°,BE=CE,∴PE=12PB=1,∵四边形ABPD是平行四边形,∴OP=OA=1,OB=OD,∴OE是△BCD的中位线,∴CD=2OE,∵PA//BC,∴PA⊥PE,∴∠APE=90°,由勾股定理得:22OP PE+2∴2故选:A.【点睛】本题考查了平行四边形的性质、等腰三角形的性质、勾股定理、三角形中位线定理、直角三角形的性质等知识;熟练掌握平行四边形的性质,正确作出辅助线是解题的关键.二.填空题11.若x>02x______.【答案】x【解析】【分析】利用二次根式的性质进行化简即可.【详解】解:∵0x>,2x.故答案为:x.【点睛】本题主要考查了二次根式的性质与化简,解题的关键是利用二次根式的性质进行化简.12.在平行四边形ABCD中,∠A:∠B=3:2,则∠C=______度,∠D=______度.【答案】(1). 108 (2). 72【解析】【分析】由平行四边形ABCD,可知∠A+∠B=180°,而∠A:∠B=3:2,所以∠A=108°,∠B=72°,又因为∠A=∠C,∠B=∠D,所以∠C=108°,∠D=72°.【详解】解:如图,∵平行四边形ABCD,∴∠A+∠B=180°,∵∠A:∠B=3:2,∴∠A=108°,∠B=72°,∵∠A=∠C,∠B=∠D,∴∠C=108°,∠D=72°.故答案为:108,72【点睛】本题考查了平行四边形的性质,熟练掌握平行四边行的性质是解答本题的关键.平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.13.一个三角形的两边的长分别是3和5,要使这个三角形为直角三角形,则第三条边的长为_____.【答案】434【解析】【详解】解:①当第三边是斜边时,第三边的长的平方是:32+52=34;②当第三边是直角边时,第三边长的平方是:52-32=25-9=16=42,故答案是:43414.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S222222 1[()] 42a b ca b+--现已知△ABC 的三边长分别为2,3,4,则△ABC 的面积为________.【答案】3154【解析】 【分析】根据题目中的面积公式可以求得△ABC 的三边长分别为2,3,4的面积,从而可以解答本题.【详解】:∵S=222222142a b c a b ⎡⎤⎛⎫+-⎢⎥- ⎪⎢⎥⎝⎭⎣⎦, ∴△ABC 的三边长分别为2,3,4,则△ABC 的面积为:S=222222123431523()42⎡⎤+-⨯-=⎢⎥⎣⎦, 故答案为315. 【点睛】本题考查了二次根式的应用,解题的关键是明确题意,利用题目中的面积公式解答. 15.已知菱形的周长为45,两条对角线的和为6,则菱形的面积为___________ 【答案】4 【解析】 【分析】由菱形的性质和勾股定理得出AO+BO=3,AO 2+BO 2=AB 2,(AO+BO )2=9,求出2AO•BO=4,即可得出答案.【详解】解:如图四边形ABCD 是菱形,AC+BD=6,∴5AC ⊥BD ,AO=12AC ,BO=12BD , ∴AO+BO=3,∴AO2+BO2=AB2,(AO+BO)2=9,即AO2+BO2=5,AO2+2AO•BO+BO2=9,∴2AO•BO=4,∴菱形的面积=12AC•BD=2AO•BO=4;故答案为4.【点睛】本题考查了菱形的性质、勾股定理;解题的关键是记住菱形的面积公式,掌握菱形的对角线互相垂直.16.如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD,CD于点G,F两点,若M,N分别是DG,CE的中点,则MN的长是_____.13【解析】【分析】作辅助线,构建矩形MHPK和直角三角形NMH,利用平行线分线段成比例定理或中位线定理得:MK=FK =1,NP=3,PF=2,利用勾股定理可得MN的长.详解】过M作MK⊥CD于K,过N作NP⊥CD于P,过M作MH⊥PN于H,则MK∥EF∥NP,∵∠MKP=∠MHP=∠HPK=90°,∴四边形MHPK是矩形,∴MK=PH,MH=KP,∵NP∥EF,N是EC的中点,∴11,22 CP NP PN CNCF EF EF CE====∴PF=12FC=12BE=2,NP=12EF=3,同理得:FK=DK=1,∵四边形ABCD为正方形,∴∠BDC=45°,∴△MKD是等腰直角三角形,∴MK=DK=1,NH=NP﹣HP=3﹣1=2,∴MH=2+1=3,在Rt△MNH中,由勾股定理得:MN=222313+=故答案为13.【点睛】本题考查了正方形的性质、等腰直角三角形的性质和判定、直角三角形的性质、勾股定理、平行线的性质等知识;本题的关键是构造直角三角形MNH,根据勾股定理计算.三.解答题17.计算:(1) 27123(2) (248327)6【答案】(1)0;(2)22 -.【解析】【分析】(1) 先把各二次根式化为最简二次根式,然后合并即可;(2) 根据二次根式的乘除法则运算.【详解】(1)原式333;(2)原式=(33÷63÷62【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.18.先化简,再求值:455205xxx,其中x=10.355x x x-22-【解析】【分析】先根据二次根式的性质化简,再把x=10代入计算即可. 【详解】解:55x -20x +45x =5x -25x +35x =355x x x -,当10x =时,原式=-72. 【点睛】本题考查了二次根式的性质,熟练掌握二次根式的性质是解题的关键.19.如图,四边形ABCD 是正方形,E ,F 分别是边AB ,AD 上的一点,且BF⊥CE,垂足为G ,求证:AF =BE.【答案】证明见解析 【解析】试题分析:直接利用已知得出∠BCE=∠ABF ,进而利用全等三角形的判定与性质得出AF=BE .试题解析:∵四边形ABCD 是正方形,∴AB=BC ,∠A=∠CBE=90°,∵BF ⊥CE ,∴∠BCE+∠CBG=90°,∵∠ABF+∠CBG=90°,∴∠BCE=∠ABF ,在△BCE 和△ABF 中,∵∠BCE=∠ABF ,BC=AB ,∠CBE=∠A ,∴△BCE ≌△ABF (ASA ),∴BE=AF .考点:正方形的性质;全等三角形的判定与性质.20.如图, 在8×8的正方形网格中,△ABC 的顶点在边长为1的小正方形的顶点上(1) 填空∠ABC =___________(2) 若点A 在网格所在的坐标平面内的坐标为(1,-2),请建立平面直角坐标系,D 是平面直角坐标系中一点,并作出以A 、B 、C 、D 四个点为顶点的平行四边形,直接写出满足条件的D 点的坐标 【答案】(1)∠ABC=135°;(2)(7,-4)或(3,-4)或(-1,0) 【解析】 【分析】(1)直接利用网格得出:∠ABC 的度数,再利用勾股定理得出BC 的长; (2)利用平行四边形的性质得出D 点位置即可. 【详解】解:(1)由图形可得:∠ABC=45°+90°=135°; 故答案为135°;(2)∵点A 在网格所在的坐标平面里的坐标为(1,-2),∴坐标系如图所示:满足条件的D 点共有3个,以A 、B 、C 、D 四个点为顶点的平行四边形分别是▱ABCD 1、▱ABD 2C 和▱AD 3BC .则点D 的坐标为:D 1(3,-4)或D 2(7,-4)或D 3(-1,0).【点睛】本题考查了平行四边形的判定、正方形的性质、勾股定理;注意不要漏解. 21.如图,在正方形网格中,每个小方格的边长为1(1)从A 点出发画线段AB 、AC 、BC ,使AB=5,AC=22,BC=17,且使B 、C 两点也在格点上; (2)比较两个数5和22的大小; (3)求点A 到BC 的距离.【答案】(117;(2)225 (3617【解析】 【分析】(1)根据勾股定理,找出满足题意得B 与C 的位置,连接AB ,AC ,BC ; (2)根据实数的大小比较方法即可判断;(3)作AD ⊥BC 于D ,先用割补法求出△ABC 的面积,然后利用等积法求出即可. 【详解】解:(1)如图所示,AB=2221+=5,AC=2222+=22,BC=2214+=17; (2)∵85>, ∴22>5; (3)作AD ⊥BC 于D , ∵S △ABC =2×4-12×2×1-12×2×2-12×4×1=3, ∴132BC AD ⋅=, ∴AD=17=617 即点A 到BC 的距离为617. 【点睛】此题考查了作图-应用与设计、勾股定理,熟练掌握勾股定理是解本题的关键,学会利用数形结合的思想思考问题.22.在△ABC 中,BD 、CE 分别是边AC 、AB 上的中线,BD 与CE 交于点O . (1)如图1,若M 、N 分别是OB 、OC 的中点,求证:OB=2OD ; (2)如图2,若BD ⊥CE ,AB=8,BC=6,求AC 的长.【答案】(1)证明见解析;(2)229 【解析】 【分析】(1)依据三角形中位线定理,即可得到DE ∥BC ,DE=12BC ,再根据相似三角形的性质即可得到结论; (2)依据AB=8,BC=6,点D ,点E 分别是AC ,AB 的中点,即可得出BE=4,DE=3,再根据勾股定理即可得到DE 2+BC 2=BE 2+BC 2,进而得到AC 的长.【详解】解:(1)∵BD 、CE 分别是边AC 、AB 上的中线, ∴点D ,点E 分别是AC ,AB 的中点, ∴DE 是△ABC 的中位线, ∴DE//BC ,DE=12BC , 同理可证:MN//BC ,MN=12BC , ∴四边形DEMN 是平行四边形, ∴OD=OM , ∵OB=2OM , ∴OB=2OD ;(2)∵AB=8,BC=6,点D ,点E 分别是AC ,AB 的中点, ∴BE=4, DE=3, 又∵BD ⊥CE ,∴DE 2=DO 2+EO 2,BC 2=BO 2+CO 2, BE 2=BO 2+EO 2,CD 2=DO 2+CO 2, ∴DE 2+BC 2=BE 2+CD 2, 即32+62=42+CD 2, 解得, ∴AC=2CD=【点睛】本题主要考查了三角形的中线,平行四边形的判定与性质,三角形中位线定理,以及勾股定理的运用,熟练掌握三角形中位线定理及勾股定理是解答本题的关键,三角形的中位线平行于第三边,并且等于第三边的一半.23.如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,D 、E 分别是AB 和BC 上的点.把△ABC 沿着直线DE 折叠,顶点B 对应点是点B′(1)如图1,点B′恰好落在线段AC 的中点处,求CE 的长; (2)如图2,点B′落在线段AC 上,当BD=BE 时,求B′C 的长; (3)如图3,E 是BC 的中点,直接写出AB′的最小值.【答案】(1)53;(2)3;(3)733【解析】【分析】(1)设CE=x,则BE=6-x;在Rt△B'CE中,根据勾股定理列出关于x的方程,解方程即可解决问题.(2)如图2中,作B′H⊥AB于H.连接BB′.首先证明B′C=B′H,设B′C=B′H=x,构建方程即可解决问题.(3)如图3中,连接AE,EB′,AB′.在△AB′E中,利用三角形长三边关系即可解决问题.【详解】解:(1)如图1中,∵点B′落在AC的中点,∴CB′=12AC=4,设CE=x,则BE=6-x,由折叠得:B'E=BE=8-x,在Rt△B'CE中,由勾股定理得x2+42=(6-x)2解得:x=53,即CE的长为53.(2)如图2中,作B′H⊥AB于H.连接BB′.∵EB=EB′,DB=DB′,BE=BD,∴BE=EB′=B′D=DB,∴四边形BEB′D是菱形,∴∠B′BD=∠B′BE,∵B′C⊥BC,B′H⊥AB,∴B′C=B′H,设B′C=B′H=x.在Rt△ABC中,∵BC=6,AC=8,∴AB=2268+=10,∵S△ABC=S△BCB′+S△ABB′,∴12•AC•BC=12•BC•x+12×AB×x,∴x=3,∴CB′=3.(3)如图3中,连接AE,EB′,AB′.在Rt△ACE中,∵AC=8,EC=3,∴2283+73∵EB=EC=EB′=3,∴AB′≥AE-BE′,∴73,∴AB′的最小值为73-3.【点睛】本题属于几何变换综合题,考查了勾股定理,菱形的判定与性质,角平分线的性质,三角形三边的关系,以及翻折变换的性质及其应用,解题的关键是灵活运用翻折变换的性质,找出图形中隐含的等量关系,借助勾股定理列方程进行解答.24.如图,已知平行四边形OACB的顶点O、A、B的坐标分别是(0,0)、(0,a),(b,0),且a、b满足2(28)0-+-=a b a(1)如图1,求点C的坐标;(2)如图2,点P为边OB上一动点,作等腰Rt△APD,且∠APD=90°.当点P从O运动到点B的过程中,求点D运动路程的长度;(3)如图3,在(2)的条件下,作等腰Rt△BED,且∠DBE=90°,再作等腰Rt△ECF,且∠ECF=90°,直线FE分别交AC、OB于点M、N,求证:FM=EN.【答案】(1)C(4,4);(2)42(3)证明见解析【解析】【分析】-2=0可知2a-8=0,解得a=4,a=b,则b=4,A(0,4),B(4,0),可知OA=OB,四(1a b边形OACB为平行四边形,∠AOB=90°,则四边形OACB为正方形,可得C(4,4).(2)点P的运动轨迹为一条线段,则点D的运动轨迹也为一条线段,当点P与点O重合时,点D与点B 重合,当点P与点B重合时,点D的位置如图1所示,点D的运动路径为BD,算出2(3)由(2)点D的运动路径可知点D在∠OBC的外角平分线上,过点F作FG垂直AC于点G,过E作EH垂直AC于点H,已知△FCE为等腰直角三角形,可推出△FGC≌△CHE(AAS),过点E作EQ垂直OB于点Q,可推出△FGM≌△ENQ(AAS),可得FM=EN.【详解】解:(1)∵a b +(2a-8)2=0 ∴2a-8=0,解得a=4, ∵a=b ,∴b=4,∴A(0,4),B(4,0), ∴OA=OB ,∵四边形OACB 为平行四边形,∠AOB=90°, ∴四边形OACB 为正方形, ∴C(4,4). (2)如图1所示,∵点P 的运动轨迹为一条线段,则点D 的运动轨迹也为一条线段,当点P 与点O 重合时,点D 与点B 重合,当点P 与点B 重合时,因为△APD 是等腰直角三角形,所以A 、C 、D 三点共线,点D 的位置如图1所示,此时△BCD 是等腰直角三角形,∴点D 的运动路径为BD , ∴BD=42. (3)如图2所示,由(2)点D 的运动路径可知点D 在∠OBC 的外角平分线上,∴∠DBC=∠EBC=∠EBO=45°,∴ED//OB,过点F作FG垂直AC于点G,过E作EH垂直AC于点H,∴∠FGC=∠EHC=90°,∵△FCE为等腰直角三角形,∴FC=EC,∠FCE=90°,∵∠ACB=90°,∴∠FCG=∠ECB=∠CEH,∴△FGC≌△CHE(AAS),∴CH=FG,过点E作EQ垂直OB于点Q,则BQ=EQ=CH=FG,∵∠FGM=∠EQN=90°,∠FMG=∠ENQ,∴△FGM≌△ENQ(AAS),∴FM=EN.【点睛】此题考查了非负数的性质,正方形的判定和性质,勾股定理,全等三角形的判定和性质,找到点D 的运动路径为解题关键.新人教部编版初中数学“活力课堂”精编试题。
2017—2018学年八年级科学第二学期期中试卷
班级姓名座号有关元素的相对原子量:O=16;H=1;C=12;N=14;Mg=24
一、选择题:(每题2分,共40分)
1、下列关于符号的说法不正确的是()
A、符号必须用文字表达,而且全世界通用
B、符号可避免由于事物外形不同和表达的文字不同而引起的混乱
C、符号能表示某种特定的含义
D、符号能简单明了地表示事物
2、以下几种物质是按氯元素的化合价变化规律排列的:KCl、( )、HClO、KClO
3、HClO4,你认为括号内应是哪种物质?()
A、NaCl
B、NaClO
C、Cl2
D、 HClO3
3、下列离子符号的书写不符合它的名称的是()
A、氢氧根离子OH-
B、硫酸根离子SO42-
C、铵根离子NH3-
D、碳酸氢根离子HCO3-
4、炒菜锅中的油着火,熄灭的最好方法是()
A、放水
B、撒沙土
C、盖上锅盖
D、使用灭火器
5、随着现代工业的发展,燃烧矿物燃料越来越多,使城市空气中含有大量的有毒气体。
为了控制城市空气污染,下列措施不可行的是()
A、开发氢能源
B、使用电动自行车
C、增加绿化的面积
D、戴防毒面罩
6、元素符号“Fe”()
A、只表示铁元素
B、只表示一个原子
C、只表示一个铁分子
D、既表示铁元素,也表示一个铁
原子
7、下列微粒中,能保持氧气化学性质的微粒是()
A、O
B、2O
C、O2--
D、O2
8、蒸馏水不能养金鱼,是由于蒸馏水中几乎不含()
A、氧元素
B、氧分子
C、氧原子
D、水分子
9、在Fe3O4分子中铁原子和氧原子的个数比是()
A、3:4
B、4:3
C、8:21
D、21:8
10、实验室用加热高锰酸钾的方法制取氧气有下列步骤:①将高锰酸钾装入试管中,塞紧塞子,并固定在铁架台上;②点燃洒精灯,给试管加热,用排水法收集氧气;③检查装置的气密性;④熄灭洒精灯;⑤将导管从水槽中取出。
正确的操作顺序是()
A、①②③④⑤
B、①③②⑤④
C、③①②④⑤
D、③①②⑤④
11、下列反应中,既属于化合反应,又属于氧化反应的是 ( )
A 、甲烷+氧气 二氧化碳 + 水
B 、水 氢气 + 氧水
C 、锌 + 稀硫酸 硫酸锌 + 氢气
D 、铁 + 氧气
四氧化三铁
12、山西云冈石窑有很多佛像雕刻,原来栩栩如生的雕刻已经变得模糊不清,有的表面还出现了斑点,造成这种现象的原因之一是酸雨。
下列气体中能形成酸雨的是( )
A 、O 2
B 、CO
C 、SO 2
D 、N 2
13、硒(Se )是一种非金属元素,含适量硒的矿泉水对人体有益,在H 2SeO 4这种化合物中Se 的化合价为了( )
A 、+2价
B 、+4 价
C 、--2价
D 、+6价
14、过氧化氢(俗称双氧水)的分子式H 2O 2,它可发生下列变化: 2H 2O 2 MnO 2 2H 2O + O 2↑。
下面是关于过氧化氢的叙述,正确的是( )
B 、每个过氧化氢分子由2个氢原子和2个氧原子构成
C 、由2个氢元素和2个氧元素组成
D 、由1个水分子和1个氧原子构成
15、关于植物的呼吸作用和光合作用,下列说法正确的是( )
A 、 呼吸作用只在黑暗的地方进行
B 、光合作用只在光照的条件下进行
C 、呼吸作用和光合作用不可能同时进行
D 、呼吸作用和光合作用没有关系
16、不属于空气污染指数项目的是( )
A 、臭氧
B 、二氧化碳
C 、二氧化硫
D 一氧化碳
17、淀粉遇碘( )
A 、变成红色
B 、不变色
C 、变成绿色
D 、变成蓝色
18、2.4克镁条完全燃烧后,生成氧化镁的质量一定 ( )
A 、大于2.4克
B 、小于2.4克
C 、等于2.4克
D 、无法确定
19、硫在氧气中燃烧的现象是( )
A 、发出耀眼的强光
B 、剧烈燃烧,火星四射
C 、发出暗弱的淡蓝色火焰
D 、发出明亮的蓝紫色火焰
点燃 通电
点燃
20、对于质量守恒定律的解释,正确的是()
A、化学反应前后原子种类不变,原子数目改变
B、化学反应前后原子种类改变,原子个数不变
C、在一切化学反应里,反应前后原子种类没有变,原子数目也没有
改变
D、在化学反应中的反应物的分子数等于生成物的分子数
二、简答题:(每空1分,共12分)
1、用元素符号或化学式表示下列粒子。
3个二氧化碳分子_____________;2个钠原子_____________。
2、3个SO2分子中的氧原子个数与______个SO3中氧原子的个数相同。
3、澄清的石灰水露置在空气中会逐渐变浑浊,说明空气中有___________存在。
4、空气中体积分数最大的气体是________,其
次是____________。
5、右图是实验室制取二氧化碳的装置图,
(1)请填上编号的实验器材的名称:
①_________________②_______________
③_________________
(2)集气瓶如此放置的理由是__________________________________。
6、近百年来,温室效应加剧的主要原因是大量燃烧__________和_________等燃料,导致森林面积的急剧减少,造成空气中CO2的含量增加。
三、写出下列反应的化学方程式并配平(每小题3分,共18分)
1、磷中空气中燃烧
2、人用管向澄清的石灰水中吹气,石灰水变浑浊
3、铁在氧气中燃烧,生成黑色的固体。
4、高锰酸钾受热分解
5、硫在氧气中燃烧
6、二氧化碳溶于水生成碳酸
四、实验探究题(本题共3小题,第1小题3分,第2、3小题每空3分,共18分)
1、2003年12月23日,重庆川东北某天然气井发生井喷事故,高压天
然气携带一种有臭鸡蛋气味的剧毒气体从地下喷出,向四周扩散,所到之处,牲畜、飞鸟和没撤离的人员大量死亡,水源被严重污染。
抢救队和救援队迅速进入事故地点,并点燃了喷出的气体,切断了有毒气体的来源。
救援队员发现,低洼地的人、畜死亡率高,但是有一位老人摔在水田边,头埋在潮湿的草丛里,而幸免于难。
根据上述材料回答下列问题:
(1)该气体在空气中燃烧,生成二氧化硫和水。
则可以推测此气体中一定含有和元素。
(2)请推测这种气体具有的性质。
(3)根据该气体的性质,说明老人幸免于难的原因。
2、用如图所示的实验装置来研究植物的呼吸作用,A瓶中加入30粒小麦种子,B瓶中不加,取两张湿润的蓝色石蕊试纸,然后将其分别放入A、B两瓶,使其挂在瓶中,两瓶均用瓶盖盖住。
(1)实验设计B瓶的作用是。
(2)将实验装置放置在25℃条件下一段时间,
瓶的试纸呈红色。
(3)从实验现象可以得出:。
3、小明同学设计了如下实验:
银边天竺葵叶的边缘是白色的,如图所示,其余部分是绿色的。
先把银边天竺葵放在暗处24小时,再把银边天竺葵放在阳光下,照射几个小时,然后摘下一片叶,用酒精脱去叶绿素,滴上碘液。
(1)你认为这一实验要检验的假设是:
(2)请你预测实验结果:
第3题第2题
五、计算题(12分)
1、已知尿素的化学式为CO(NH2)2,计算
(1)相对分子质量。
(2分)
(2)各元素的质量比(C:H:N)。
(2分)
(3)氮元素的质量分数(3分)
2.某实验室若用1.8克水电解制取氧气,可得氧气和氢气多少克?(5分)
答案:
一、选择题
1、2、3、4、5、6、7、8、9、10、11、12、13、14、
15、16、17、18、19、20、
A C C C D D D
B A D D
C
D B B
B D A D C
二、简答题
1、3CO2 2Na
2、2
3、二氧化碳
4、N2(氮气)O2(氧气)
5、(1)①长颈漏斗②锥形瓶③集气瓶子(2)CO2密度比空气大
6、煤、石油
三、化学方程式
略
四、实验探究题
1、
(1)硫氢
(2)有毒,密度比空气大,能溶于水,可以燃烧
(3)大量有毒气体被草上的水吸收
2、
(1)对照
(2)A
(3)植物的呼吸作用产生二氧化碳
3、
(1)光合作用可能需要叶绿素
(2)叶片绿色部分滴上碘液显蓝色,银色部分滴上碘液不变蓝五、
1、
(1)CO(NH2)2相对分子质量=12+16+(14+2)*2=60
(2)C:H:N=12:4:28=3:1:7
(3)46.7% 2. 1.6克0.2克。