2018-2019学年八年级第二学期期中考试数学(北师)
- 格式:docx
- 大小:709.66 KB
- 文档页数:10
2018-2019学年度第二学期统考八年级数学试题(本套试卷共25小题,满分120分,答题时间120分钟。
) 一.选择题(每题3分,共30分) 1.在以下”绿色食品、响应环保、可回收物、节水“四个标志图案中,是中心对称图形的是( ) A .B .C .D .2. 若m >n ,下列不等式不一定成立的是( )A .m+2>n+2B .2m >2nC .>D .m 2>n 23.到三角形各顶点距离相等的点是三角形三条( )A.中线的交点B. 三边垂直平分线的交点C. 角平分线的交点D.高线的交点 4.下列从左到右的变形,其中是因式分解的是( ) A .()222a b a b -=- B .()()2111m m m -=+-C .()22121x x x x -+=-+D .()()()()211a a b b a ab b -+=-+ 5.下列命题中错误的是( )A .任何一个命题都有逆命题 B. 一个真命题的逆命题可能是真命题 C .一个定理不一定有逆定理 D. 任何一个定理都没有逆定理 6.不等式组的解集在数轴上可表示为( )A .B .C .D .7. 如图所示,OP 平分∠AOB,PA ⊥OA 于点A,PB ⊥OB 于点B.下列结论中,不一定成立的是( ) A.PA=PB B.PO 平分∠APB C.OA=OB D.AB 垂直平分OP8.如图,把△ABC 绕点C 逆时针旋转90°得到△DCE ,若∠A=35°,则∠ADE 为( )A.35°B.55° C . 135° D.125°9.为有效开展“阳光体育”活动,我校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买( ) A .16个 B .17个 C .33个 D .34个ACB DE10、如图,在正方形ABCD 中,E 为DC 边上的点,连结BE ,将△BCE 绕点C 顺时针方向旋转90°得到△DCF ,连结EF ,若∠BEC=60°,则∠EFD 的度数为( )A 、10°B 、15°C 、20°D 、25°二.填空题(每题3分,共30分)11、 用提公因式法分解因式:232x x x -+ =__________12、 在平面直角坐标系中,把点A (2,3)向左平移一个单位得到点A ′,则点A 的坐标为:______________13、在等腰△ABC 中,AD ⊥BC 交直线BC 于点D,若AD=BC,则△ABC 的顶角的度数为:_________________14、若关于x 的不等式(1-a )x >2可化为x <,则a 的取值范围是 .15、如图,已知BC=EC ,∠BCE=∠ACD ,要使△ABC ≌△DEC ,则应添加的一个条件为 .(不唯一,只需填一个)16、BC 中, DE 垂直平分AC 交AB 于E,∠A=30°,∠ACB=80°,则∠BCE=_________17、不等式组 有5个整数解,则a 的取范围是_______18、如图,Rt △ABC 中,∠C =90°,BC =15,斜边AB 的垂直平分线与∠CAB 的平分线都交BC 于D 点,则点D 到斜边AB 的距离为 .19、若不等式组的解集为,那么的值等于_______.20、如图所示,直线y=x+1(记为l 1)与直线y=mx+n (记为l 2)相交于点P (a ,2),则关于x 的不等式x+1≥mx+n 的解集为_________________三、计算题(每小题6分,共24分)21、解不等式(组)并把解集表示在数轴上(1)4563x x +-≥; (2) 69251332x x x +-+-≤;a-12⎩⎨⎧>-<-3212b x a x 11<<-x )3)(3(+-b a E DCBA(3) (4)四、解答题(共36分)22、(8分)如图所示的直角坐标系中,△ABC 各顶点的坐标分别是A (-2,-4),B (0,-4),C (1,-1).(1)在图中画出△ABC 向左平移3个单位后的△A 1B 1C 1;(2)在图中画出△ABC 绕原点O 逆时针旋转90°后的△A 2B 2C 2.23、(8分)如图,△ABC 中,AB=BC ,BE ⊥AC 于点E ,AD ⊥BC 于点D ,∠BAD=45°,AD 与BE 交于点F ,连接CF . (1)求证:BF=2AE ;(2)若CD=,求AD 的长.9587422133x x x x ++⎧⎪⎨+-⎪⎩<>3(1)511242x x x x -<+⎧⎪⎨-≥-⎪⎩24、(本题8分)已知3x =是关于的不等式22323ax xx +->的解,求的取值范围。
2018-2019学年八年级(下)期中数学试卷一、选择題(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中只有一项是符合題目要求的,把正确的选择填在答题卡中.)1.在中,分式的个数是()A.2B.3C.4D.52.如图所示图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.不等式1+x<0的解集在数轴上表示正确的是()A.B.C.D.4.若a<b,则下列各式中一定成立的是()A.a+2>b+2B.a﹣2>b﹣2C.﹣2a>﹣2b D.>5.在直角坐标系中,点P(﹣2,3)向右平移3个单位长度后的坐标为()A.(﹣2,6)B.(1,3)C.(1,6)D.(﹣5,3)6.下列从左到右的变形是因式分解的是()A.4a2﹣4a+1=4a(a﹣1)+1B.(x+2)(x﹣2)=x2﹣4C.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2﹣4=(x+2)(x﹣2)7.下列计算正确的是()A.B.C.D.8.如图,直线y=kx+b交坐标轴于A(﹣5,0),B(0,7)两点,则不等式kx+b>0的解集是()A.x<﹣5B.x>﹣5C.x>7D.x<﹣79.不等式组有()个整数解.A.2B.3C.4D.510.若x2+mx+n分解因式的结果是(x+2)(x﹣1),则m+n=()A.1B.﹣2C.﹣1D.211.如果不等式组有解,那么m的取值范围是()A.m>7B.m≥7C.m<7D.m≤712.在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4,则以下四个结论中:①△BDE是等边三角形;②AE∥BC;③△ADE的周长是9;④∠ADE=∠BDC.其中正确的序号是()A.②③④B.①③④C.①②④D.①②③二、填空题(本大题共6个小题,每小题4分,共24分)13.x与3的和的一半是负数,用不等式表示为14.因式分解:2a2﹣8=.15.当x=时,分式的值为零.16.若关于x的不等式(1﹣a)x>2可化为x<,则a的取值范围是.17.直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为.18.已知:﹣=2,则的值为.三、解答题(共66分)19.(6分)分解因式:(1)x(x﹣y)﹣y(y﹣x).(2)(a2+1)2﹣4a2.20.(6分).21.(6分)解不等式组:,并把不等式组的解集表示在数轴上.22.(8分)先化简,再找一个你喜欢的数值代入进行计算:÷(x﹣1)23.(8分)直线y=kx+4经过点A(1,6),求关于x的不等式kx+4≤0的解集.24.(10分)给出三个单项式:a2,b2,2ab(1)在上面三个单项式中任选两个相减,并进行因式分解;(2)当a=2018,b=2017时,求代数式a2+b2﹣2ab的值.25.(10分)如图,直线y=kx+2与直线y=x相交于点A(3,1),与x轴交于点B.(1)求B点坐标;(2)根据图象写出不等式组0<kx+2<x的解集.26.(12分)如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC绕原点逆时针旋转90°,得到△A1B1C1,将△A1B1C1向右平移6个单位,再向上平移2个单位得到△A2B2C2.(1)画出△A1B1C1和△A2B2C2;(2)△ABC经旋转、平移后点A的对应点分别为A1、A2,请写出点A1、A2的坐标;(3)P(a,b)是△ABC的边AC上一点,△ABC经旋转、平移后点P的对应点分别为P1,P2,请写出点P1、P2的坐标.27.(12分)甲、乙两家超市以相同的价格出售同样的商品,五一期间,为了吸引顾客,各自推出了不同的优惠方案,在甲超市累计购买商品超出了400元后,超过部分按原价七折优惠;在乙超市购买商品只按原价的八折优惠;设顾客累计购物x元(x>400)在甲,乙两个超市所支付的费用分别为y1元,y2元.(1)写出y1,y2与x之间的关系式.(2)该顾客在甲,乙哪个超市购买所支付的费用较少?.2018-2019学年八年级(下)期中数学试卷参考答案与试题解析一、选择題(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中只有一项是符合題目要求的,把正确的选择填在答题卡中.)1.在中,分式的个数是()A.2B.3C.4D.5【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:在中,分式有,∴分式的个数是3个.故选:B.【点评】本题主要考查分式的定义,注意π不是字母,是常数,所以象不是分式,是整式.2.如图所示图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、既是轴对称图形,又是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.不等式1+x<0的解集在数轴上表示正确的是()A.B.C.D.【分析】移项即可得.【解答】解:移项,得:x<﹣1,故选:A.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4.若a<b,则下列各式中一定成立的是()A.a+2>b+2B.a﹣2>b﹣2C.﹣2a>﹣2b D.>【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【解答】解:A、不等式的两边都加2,不等号的方向不变,故A错误;B、不等式的两边都减2,不等号的方向不变,故B错误;C、不等式的两边都乘以﹣2,不等号的方向改变,故C正确;D、不等式的两边都除以2,不等号的方向不变,故D错误;故选:C.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变.5.在直角坐标系中,点P(﹣2,3)向右平移3个单位长度后的坐标为()A.(﹣2,6)B.(1,3)C.(1,6)D.(﹣5,3)【分析】让点P的横坐标加3,纵坐标不变即可.【解答】解:平移后点P的横坐标为﹣2+3=1,纵坐标不变为3;所以点P(﹣2,3)向右平移3个单位长度后的坐标为(1,3).故选:B.【点评】本题考查了坐标与图形变化﹣平移,平移变换是中考的常考点,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.6.下列从左到右的变形是因式分解的是()A.4a2﹣4a+1=4a(a﹣1)+1B.(x+2)(x﹣2)=x2﹣4C.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2﹣4=(x+2)(x﹣2)【分析】根据因式分解的定义:把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,完全平方公式,对各选项分析判断后利用排除法求解.【解答】解:A、C属于局部分解,不属于因式分解;B、属于整式的乘法;D、属于因式分解.故选:D.【点评】本题考查了因式分解的定义,明确因式分解的结果应是整式的积的形式.运用提公因式法分解因式时,在提取公因式后,不要漏掉另一个因式中商是1的项.7.下列计算正确的是()A.B.C.D.【分析】先通分,然后进行同分母分式加减运算,最后要注意将结果化为最简分式.【解答】解:A、=,故A错误;B、=0,故B正确;C、,故C错误;D、=,故D错误.故选:B.【点评】归纳提炼:分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.8.如图,直线y=kx+b交坐标轴于A(﹣5,0),B(0,7)两点,则不等式kx+b>0的解集是()A.x<﹣5B.x>﹣5C.x>7D.x<﹣7【分析】kx+b>0可看作是函数y=kx+b的函数值大于0,然后观察图象得到图象在x轴上方,对应的自变量的取值范围为x>﹣2,这样即可得到不等式kx+b>0的解集.【解答】解:根据题意,kx+b>0,即函数y=kx+b的函数值大于0,图象在x轴上方,对应的自变量的取值范围为x>﹣5,故不等式kx+b>0的解集是:x>﹣5.故选:B.【点评】本题考查了一次函数与一元一次不等式:对于一次函数y=kx+b,当y>0时对应的自变量的取值范围为不等式kx+b>0的解集.9.不等式组有()个整数解.A.2B.3C.4D.5【分析】求出不等式组的解集,即可确定出整数解.【解答】解:,由①得:x>﹣,由②得:x≤3,∴不等式组的解集为﹣<x≤3,则整数解为0,1,2,3,共4个,故选:C.【点评】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.10.若x2+mx+n分解因式的结果是(x+2)(x﹣1),则m+n=()A.1B.﹣2C.﹣1D.2【分析】根据因式分解的结果,利用多项式乘以多项式法则化简,再利用多项式相等的条件求出m与n的值,即可求出m+n的值.【解答】解:∵x2+mx+n=(x+2)(x﹣1)=x2+x﹣2,∴m=1,n=﹣2,则m+n=1﹣2=﹣1,故选:C.【点评】此题考查了因式分解﹣十字相乘法,熟练掌握因式分解的方法是解本题的关键.11.如果不等式组有解,那么m的取值范围是()A.m>7B.m≥7C.m<7D.m≤7【分析】解出不等式组的解集,与不等式组有解相比较,得到m的取值范围.【解答】解:由(1)得x<7,由(2)得x>m,∵不等式组有解,∴m<x<7;∴m<7,故选:C.【点评】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数.12.在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4,则以下四个结论中:①△BDE是等边三角形;②AE∥BC;③△ADE的周长是9;④∠ADE=∠BDC.其中正确的序号是()A.②③④B.①③④C.①②④D.①②③【分析】先由△BCD绕点B逆时针旋转60°,得到△BAE得到BD=BE,∠DBE=60°,则可判断△BDE是等边三角形;根据等边三角形的性质得BA=BC,∠ABC=∠C=∠BAC=60°,再根据旋转的性质得到∠BAE=∠BCD=60°,∠BCD=∠BAE=60°,所以∠BAE=∠ABC=60°,则根据平行线的判定方法即可得到AE∥BC;根据等边三角形的性质得∠BDE=60°,而∠BDC>60°,则可判断∠ADE≠∠BDC;由△BDE是等边三角形得到DE=BD=4,再利用△BCD绕点B逆时针旋转60°,得到△BAE,则AE=CD,所以△AED的周长=AE+AD+DE=CD+AD+DE =AC+BD.【解答】解:∵△BCD绕点B逆时针旋转60°,得到△BAE,∴BD=BE,∠DBE=60°,∴△BDE是等边三角形,所以①正确;∵△ABC为等边三角形,∴BA=BC,∠ABC=∠C=∠BAC=60°,∵△BCD绕点B逆时针旋转60°,得到△BAE,∴∠BAE=∠BCD=60°,∠BCD=∠BAE=60°,∴∠BAE=∠ABC,∴AE∥BC,所以②正确;∴∠BDE=60°,∵∠BDC=∠BAC+∠ABD>60°,∴∠ADE≠∠BDC,所以④错误;∵△BDE是等边三角形,∴DE=BD=4,而△BCD绕点B逆时针旋转60°,得到△BAE,∴AE=CD,∴△AED的周长=AE+AD+DE=CD+AD+DE=AC+4=5+4=9,所以③正确.故选:D.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质.二、填空题(本大题共6个小题,每小题4分,共24分)13.x与3的和的一半是负数,用不等式表示为(x+3)<0【分析】理解:和的一半,应先和,再一半;负数,即小于0.【解答】解:根据题意,得(x+3)<0.故答案为:(x+3)<0.【点评】考查了由实际问题抽象出一元一次不等式,找准关键字,把文字语言转换为数学语言.14.因式分解:2a2﹣8=2(a+2)(a﹣2).【分析】首先提取公因式2,进而利用平方差公式分解因式即可.【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.15.当x=﹣3时,分式的值为零.【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【解答】解:要使分式由分子x2﹣9=0解得:x=±3.而x=﹣3时,分母x﹣3=﹣6≠0.x=3时分母x﹣3=0,分式没有意义.所以x的值为﹣3.故答案为:﹣3.【点评】本题考查了分式的值为零的条件,分式有意义的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.16.若关于x的不等式(1﹣a)x>2可化为x<,则a的取值范围是a>1.【分析】依据不等式的性质解答即可.【解答】解:∵不等式(1﹣a)x>2可化为x<,∴1﹣a<0,解得:a>1.故答案为:a>1.【点评】本题主要考查的是不等式的性质,掌握不等式的性质是解题的关键.17.直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为x≥1.【分析】首先把P(a,2)坐标代入直线y=x+1,求出a的值,从而得到P点坐标,再根据函数图象可得答案.【解答】解:将点P(a,2)坐标代入直线y=x+1,得a=1,从图中直接看出,当x≥1时,x+1≥mx+n,故答案为:x≥1.【点评】此题主要考查了一次函数与一元一次不等式,关键是求出两函数图象的交点坐标,根据函数图象可得答案.18.已知:﹣=2,则的值为5.【分析】由﹣=2可得a﹣b=﹣2ab,再整体代入计算即可求解.【解答】解:∵﹣=2,∴=2,a﹣b=﹣2ab,∴==5.故答案为:5.【点评】考查了分式的加减法,分式的值,关键是得到a﹣b=﹣2ab,注意整体思想的运用.三、解答题(共66分)19.(6分)分解因式:(1)x(x﹣y)﹣y(y﹣x).(2)(a2+1)2﹣4a2.【分析】(1)首先提取公因式(x﹣y),进而分解因式得出答案;(2)直接利用平方差公式分解因式,再结合完全平方公式分解因式得出答案.【解答】解:(1)x(x﹣y)﹣y(y﹣x)=x(x﹣y)+y(x﹣y)=(x﹣y)(x+y);(2)(a2+1)2﹣4a2.=(a2+1﹣2a)(a2+1+2a)=(a﹣1)2(a+1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.20.(6分).【分析】先通分,再根据同分母的分数相加减的法则进行解答即可.【解答】解:原式=﹣=.【点评】本题考查的是分式的加减法,即同分母的分式想加减,分母不变,把分子相加减.21.(6分)解不等式组:,并把不等式组的解集表示在数轴上.【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集再表示在数轴上即可.【解答】解:解不等式4x>2x﹣6,得:x>﹣3,解不等式≤,得:x≤2,∴不等式组的解集为:﹣3<x≤2,将不等式解集表示在数轴上如图:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.(8分)先化简,再找一个你喜欢的数值代入进行计算:÷(x﹣1)【分析】直接将分式的分子与分母分解因式,进而利用分式的乘除运算法则计算得出答案.【解答】解:原式=××=,当x=0时,原式=.【点评】此题主要考查了分式的乘除,正确分解因式是解题关键.23.(8分)直线y=kx+4经过点A(1,6),求关于x的不等式kx+4≤0的解集.【分析】把(1,6)代入直线的函数关系式y=kx+4中,即可求得k的值,从而得到不等式,再解不等式即可求解.【解答】解:把(1,6)代入直线的函数关系式y=kx+4中,得,6=k+4,解得:k=2,∴直线的函数关系式为y=2x+4.∴2x+4≤0.∴x≤﹣2.【点评】本题考查了待定系数法求函数的解析式,正确确定不等式式是关键.24.(10分)给出三个单项式:a2,b2,2ab(1)在上面三个单项式中任选两个相减,并进行因式分解;(2)当a=2018,b=2017时,求代数式a2+b2﹣2ab的值.【分析】(1)直接选取两个单项式相减再分解因式即可;(2)直接分解因式,再把已知代入求出答案.【解答】解:(1)a2﹣b2=(a+b)(a﹣b);b2﹣a2=(b+a)(b﹣a),a2﹣2ab=a(a﹣2b);2ab﹣a2=a(2b﹣a),b2﹣2ab=b(b﹣2a);2ab﹣b2=b(2a﹣b);(2)a2+b2﹣2ab=(a﹣b)2,当a=2018,b=2017时,原式=(a﹣b)2=(2018﹣2017)2=1.【点评】此题主要考查了公式法分解因式,正确应用公式是解题关键.25.(10分)如图,直线y=kx+2与直线y=x相交于点A(3,1),与x轴交于点B.(1)求B点坐标;(2)根据图象写出不等式组0<kx+2<x的解集.【分析】(1)根据直线y=kx+2与直线y=x相交于点A(3,1),与x轴交于点B可以求得k 的值和点B的坐标;(2)根据函数图象可以直接写出不等式组0<kx+2<x的解集.【解答】解:(1)∵直线y=kx+2与直线y=x相交于点A(3,1),与x轴交于点B,∴3k+2=1,解得k=,∴,当y=0时,,得x=6,∴点B的坐标为(6,0);(2)由图象可知,0<kx+2<x的解集是3<x<6.【点评】本题考查一次函数与一元一次不等式,解题的关键是明确题意,利用数形结合的思想解答问题.26.(12分)如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC绕原点逆时针旋转90°,得到△A1B1C1,将△A1B1C1向右平移6个单位,再向上平移2个单位得到△A2B2C2.(1)画出△A1B1C1和△A2B2C2;(2)△ABC经旋转、平移后点A的对应点分别为A1、A2,请写出点A1、A2的坐标;(3)P(a,b)是△ABC的边AC上一点,△ABC经旋转、平移后点P的对应点分别为P1,P2,请写出点P1、P2的坐标.【分析】(1)利用网格特点、旋转的性质和平移的性质画图;(2)利用所画图形写出点A1、A2的坐标;(3)利用(2)的结论和旋转的性质写出P1的坐标,利用平移的坐标规律写出P2的坐标.【解答】解:(1)如图,△A1B1C1和△A2B2C2为所作;(2)A1(﹣4,﹣3),A2(2,﹣1);(3)P1(﹣b,a);P2(﹣b+6,a+2).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.27.(12分)甲、乙两家超市以相同的价格出售同样的商品,五一期间,为了吸引顾客,各自推出了不同的优惠方案,在甲超市累计购买商品超出了400元后,超过部分按原价七折优惠;在乙超市购买商品只按原价的八折优惠;设顾客累计购物x元(x>400)在甲,乙两个超市所支付的费用分别为y1元,y2元.(1)写出y1,y2与x之间的关系式.(2)该顾客在甲,乙哪个超市购买所支付的费用较少?.【分析】(1)根据超市的销售方式即可用x式表示在甲超市购物所付的费用y1和在乙超市购物所付的费用y2.(2)根据(1)的结论分别讨论当y1<y2,y1=y2,和y1>y2时,三种情况就可以求出结论.【解答】解:(1)y1=400+(x﹣400)×0.7=0.7x+120,y2=0.8x.(2)由y1=y2,即0.7x+120=0.8x,解得x=1200,由y1>y2,即0.7x+120>0.8x,解得x<1200,由y1<y2解得0.7x+120<0.8x,解得x>1200,因为x>400,所以,当x=1200时,甲甲,乙哪个超市购买所支付的费用相同,当400<x<1200时,乙超市购买所支付的费用较少,当x>1200时,甲超市购买所支付的费用较少.【点评】本题考查了销售问题的数量关系的运用,一次函数的运用,方案设计的运用,解答时求出一次函数的解析式是关键,分类讨论是难点.。
2018-2019学年八年级(下)期中数学试卷一、选择题(共12题,每题3分,共36分)1.若把分式中的x和y都扩大到原来的3倍,那么分式的值()A.扩大3倍B.缩小3倍C.缩小6倍D.不变2.若x>y,则下列式子错误的是()A.x﹣1>y﹣1B.﹣3x>﹣3y C.x+1>y+1D.>3.下列式子中,从左到右的变形是因式分解的是()A.(x﹣1)(x﹣2)=x2﹣3x+2B.x2﹣3x+2=(x﹣1)(x﹣2)C.x2+4x+4=x(x﹣4)+4D.x2+y2=(x+y)(x﹣y)4.下列各图是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()A.B.C.D.5.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15B.30C.45D.606.已知a,b,c是三角形的三边,那么代数式(a﹣b)2﹣c2的值()A.大于零B.小于零C.等于零D.不能确定7.对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为()A.B.C.D.﹣8.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.30或39B.30C.39D.以上答案均不对9.如图,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′(点B的对应点是点B',点C 的对应点是点C'),连接BB′,若AC′∥BB′,则∠C'AB′的度数为()A.15°B.30°C.45°D.60°10.若(x+2)是多项式4x2+5x+m的一个因式,则m等于()A.﹣6B.6C.﹣9D.911.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b >kx+4的解集是()A.x>﹣2B.x>0C.x>1D.x<112.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1D.1二、填空题(共4题,每题3分,共12分)13.分解因式:(a﹣b)2﹣4b2=.14.如图所示,∠AOP=∠BOP=15°,PC∥OA交OB于C,PD⊥OA于D,若PC=4,则PD等于.15.已知关于x的分式方程有增根且m≠0,则m=.16.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是.三、解答题.17.(8分)因式分解(1)2x2﹣4x+2(2)(a2+b2)2﹣4a2b218.(8分)分式化简(1)(2)19.(8分)(1)解分式方程:(2)解不等式组:20.(5分)先化简,再求值:,其中x是不等式组的整数解.21.(7分)某汽车站站北广场将于2018年底投入使用,计划在广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)A、B两种花木的数量分别是多少棵.(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务.22.(7分)如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B 沿顺时针方向旋转90°后,得到△CBE.(1)求∠DCE的度数;(2)若AB=4,CD=3AD,求DE的长.23.(9分)运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.(1)如图1,在等腰三角形ABC中,AB=AC,AC边上的高为h,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为h1、h2.请用面积法证明:h1+h2=h;(2)当点M在BC延长线上时,h1、h2、h之间的等量关系式是;(直接写出结论不必证明)(3)如图2在平面直角坐标系中有两条直线l1:y=x+3、l2:y=﹣3x+3,若l2上的一点M到l1的距离是1,请运用(1)、(2)的结论求出点M的坐标.参考答案与试题解析一、选择题(共12题,每题3分,共36分).1.若把分式中的x和y都扩大到原来的3倍,那么分式的值()A.扩大3倍B.缩小3倍C.缩小6倍D.不变【分析】x,y都扩大3倍就是分别变成原来的3倍,变成3x和3y.用3x和3y代替式子中的x 和y,看得到的式子与原来的式子的关系.【解答】解:用3x和3y代替式子中的x和y得:,则分式的值缩小成原来的,即缩小3倍.故选:B.【点评】解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.2.若x>y,则下列式子错误的是()A.x﹣1>y﹣1B.﹣3x>﹣3y C.x+1>y+1D.>【分析】根据不等式的基本性质进行判断.【解答】解:A、在不等式x>y的两边同时减去1,不等式仍成立,即x﹣1>y﹣1,故本选项不符合题意;B、在不等式x>y的两边同时乘以﹣3,不等号方向发生改变,即﹣3x<﹣3y,故本选项符合题意;C、在不等式x>y的两边同时加上1,不等式仍成立,即x+1>y+1,故本选项不符合题意;D、在不等式x>y的两边同时除以3,不等式仍成立,即>,故本选项不符合题意;故选:B.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变3.下列式子中,从左到右的变形是因式分解的是()A.(x﹣1)(x﹣2)=x2﹣3x+2B.x2﹣3x+2=(x﹣1)(x﹣2)C.x2+4x+4=x(x﹣4)+4D.x2+y2=(x+y)(x﹣y)【分析】因式分解就是要将一个多项式分解为几个整式积的形式.【解答】解:根据因式分解的概念,A,C答案错误;根据平方差公式:(x+y)(x﹣y)=x2﹣y2所以D错误;B答案正确.故选:B.【点评】注意对因式分解概念的理解.4.下列各图是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项正确;C、不是轴对称图形,也不是中心对称图形,故本选项错误;D、是中心对称图形,是轴对称图形,故本选项错误.故选:B.【点评】此题将汽车标志与对称相结合,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.5.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15B.30C.45D.60【分析】判断出AP是∠BAC的平分线,过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解.【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选:B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质以及角平分线的画法,熟记性质是解题的关键.6.已知a,b,c是三角形的三边,那么代数式(a﹣b)2﹣c2的值()A.大于零B.小于零C.等于零D.不能确定【分析】首先利用平方差公式分解因式,进而利用三角形三边关系得出即可.【解答】解:∵(a﹣b)2﹣c2=(a﹣b+c)(a﹣b﹣c),a,b,c是三角形的三边,∴a+c﹣b>0,a﹣b﹣c<0,∴(a﹣b)2﹣c2的值是负数.故选:B.【点评】此题主要考查了因式分解的实际运用,正确应用平方差公式是解题关键.7.对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为()A.B.C.D.﹣【分析】根据题中的新定义化简所求式子,计算即可得到结果.【解答】解:根据题意得:2⊗(2x﹣1)=﹣=1,去分母得:2﹣(2x﹣1)=4x﹣2,去括号得:2﹣2x+1=4x﹣2,移项合并得:6x=5,解得:x=,经检验是分式方程的解.故选:A.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.30或39B.30C.39D.以上答案均不对【分析】根据非负数的性质列式求出x、y的值,再分x是腰长与底边两种情况讨论求解.【解答】解:根据题意得,x﹣7=0,y﹣16=0,解得x=7,y=16,①x=7是腰长时,三角形的三边分别为7、7、16,∵7+7=14,∴7、7、16不能组成三角形,②x=7是底边时,三角形的三边分别为7、16、16,能够组成三角形,周长=7+16+16=39;综上所述,三角形的周长为39.故选:C.【点评】本题考查了等腰三角形的性质,非负数的性质,难点在于分情况讨论并利用三角形的三边关系进行判断.9.如图,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′(点B的对应点是点B',点C 的对应点是点C'),连接BB′,若AC′∥BB′,则∠C'AB′的度数为()A.15°B.30°C.45°D.60°【分析】根据旋转的性质得到∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质易得∠AB′B=30°,再根据平行线的性质即可得∠C′AB′=∠AB′B=30°.【解答】解:∵将△ABC绕点A按逆时针方向旋转l20°得到△AB′C′,∴∠BAB′=∠CAC′=120°,AB=AB′,∴∠AB′B=(180°﹣120°)=30°,∵AC′∥BB′,∴∠C′AB′=∠AB′B=30°,故选:B.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.10.若(x+2)是多项式4x2+5x+m的一个因式,则m等于()A.﹣6B.6C.﹣9D.9【分析】根据因式分解是把一个多项式转化成几个整式积的形式,一个因式(x+2),可得另一个因式,可得答案.【解答】解:∵4x2+5x+m=(x+2)(4x﹣3),可得m=2×(﹣3)=﹣6,故选:A.【点评】本题考查了因式分解的意义,由十字相乘法得因式分解,由因式分解得出m的值.11.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b >kx+4的解集是()A.x>﹣2B.x>0C.x>1D.x<1【分析】观察函数图象得到当x>1时,函数y=x+b的图象都在y=kx+4的图象上方,所以关于x的不等式x+b>kx+4的解集为x>1.【解答】解:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选:C.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x 轴上(或下)方部分所有的点的横坐标所构成的集合.12.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1D.1【分析】连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD﹣C′D计算即可得解.【解答】解:如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故选:C.【点评】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.二、填空题(共4题,每题3分,共12分)13.分解因式:(a﹣b)2﹣4b2=(a+b)(a﹣3b).【分析】直接利用平方差公式分解因式得出即可.【解答】解:(a﹣b)2﹣4b2=(a﹣b+2b)(a﹣b﹣2b)=(a+b)(a﹣3b).故答案为:(a+b)(a﹣3b).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.14.如图所示,∠AOP=∠BOP=15°,PC∥OA交OB于C,PD⊥OA于D,若PC=4,则PD等于2.【分析】过点P作PM⊥OB于M,根据平行线的性质可得到∠BCP的度数,再根据直角三角形的性质可求得PM的长,根据角平分线上的点到角两边的距离相等得到PM=PD,从而求得PD 的长.【解答】解:过点P作PM⊥OB于M,∵PC∥OA,∴∠COP=∠CPO=∠POD=15°,∴∠BCP=30°,∴PM=PC=2,∵PD=PM,∴PD=2.故答案为:2.【点评】本题考查了等腰三角形的性质及含30°角的直角三角形的性质;解决本题的关键就是利用角平分线的性质,把求PD的长的问题进行转化.15.已知关于x的分式方程有增根且m≠0,则m=﹣4.【分析】先将分式方程去分母,转化为整式方程,再将增根代入整式方程,求得m的值并进行判断.【解答】解:去分母,得2x+4+mx=0,∴(2+m)x=﹣4,∵关于x的分式方程有增根,∴x=2或﹣2,当x=2时,(2+m)×2=﹣4,解得m=﹣4,当x=﹣2时,(2+m)×(﹣2)=﹣4,解得m=0,又∵m≠0,∴m的值为﹣4,故答案为:﹣4.【点评】本题主要考查了分式方程的增根,解题的依据是:代入分式方程后分母的值为0或是转化后的整式方程的根恰好是原方程未知数的允许值之外的值的根,叫做原方程的增根.16.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是3.【分析】连接PC.首先依据直角三角形斜边上中线的性质求出PC=2,然后再依据三角形的三边关系可得到PM≤PC+CM,故此可得到PM的最大值为PC+CM.【解答】解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故答案为:3.【点评】本题主要考查的是旋转的性质,直角三角形的性质、三角形的三边关系,掌握本题的辅助线的作法是解题的关键.三、解答题.17.(8分)因式分解(1)2x2﹣4x+2(2)(a2+b2)2﹣4a2b2【分析】(1)根据提公因式法,完全平方公式,可得答案;(2)根据平方差公式,完全平方公式,可得答案.【解答】解:(1)原式=2(x2﹣2x+1)=2(x﹣1)2;(2)原式=[(a2+b2)+2ab][(a2+b2)﹣2ab]=(a+b)2(a﹣b)2.【点评】本题考查了因式分解,一提,二套,三检查,分解要彻底.18.(8分)分式化简(1)(2)【分析】(1)根据分式的加法和除法可以解答本题;(2)根据分式的加法和除法可以解答本题.【解答】解:(1)=a(a+3)=a;(2)===.【点评】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.19.(8分)(1)解分式方程:(2)解不等式组:【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:(1)去分母得:x2+x﹣2x+1=x2﹣1,解得:x=2,经检验x=2是分式方程的解;(2),由①得:x≤1,由②得:x>﹣2,则不等式组的解集为﹣2<x≤1.【点评】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.20.(5分)先化简,再求值:,其中x是不等式组的整数解.【分析】根据分式的加法和乘法可以化简题目中的式子,然后由x是不等式组的整数解,x﹣1≠0,x+2≠0,x≠0可以求得x的值,然后代入化简后的式子即可解答本题.【解答】解:====,由不等式组,得﹣2≤x≤1,∵x是不等式组的整数解,x﹣1≠0,x+2≠0,x≠0,∴x=﹣1,当x=﹣1时,原式==﹣1.【点评】本题考查分式的化简求值、一元一次不等式组的整数解,解答本题的关键是明确分式化简求值的方法.21.(7分)某汽车站站北广场将于2018年底投入使用,计划在广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)A、B两种花木的数量分别是多少棵.(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务.【分析】(1)设A种花木数量x棵,B种花木数量y棵,根据等量关系列出方程即可求出答案.(2)设安排n个人种植A种花木,则安排(26﹣n)个人种植B种花木,根据等量关系列出方程即可求出答案.【解答】解:(1)设A种花木数量x棵,B种花木数量y棵.根据题意可得方程组:将②代入①可得:2y﹣600+y=6600,解得y=2400,代入②可得x=4200,所以原方程组的解为,故A种花木数量是4200棵,B种花木数量是2400棵.(2)设安排n个人种植A种花木,则安排(26﹣n)个人种植B种花木,则由题意可得方程:,化简得,解得:n=14.经检验,n≠0,26﹣n≠0,且符合题意,故n=14是方程的解.故应安排14个人种植A花木,12个人种植B花木.【点评】本题考查学生的应用能力,解题的关键是正确找出题中的等量关系,本题属于中等题型.22.(7分)如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B 沿顺时针方向旋转90°后,得到△CBE.(1)求∠DCE的度数;(2)若AB=4,CD=3AD,求DE的长.【分析】(1)首先由等腰直角三角形的性质求得∠BAD、∠BCD的度数,然后由旋转的性质可求得∠BCE的度数,故此可求得∠DCE的度数;(2)由(1)可知△DCE是直角三角形,先由勾股定理求得AC的长,然后依据比例关系可得到CE和DC的长,最后依据勾股定理求解即可.【解答】解:(1)∵△ABC为等腰直角三角形,∴∠BAD=∠BCD=45°.由旋转的性质可知∠BAD=∠BCE=45°.∴∠DCE=∠BCE+∠BCA=45°+45°=90°.(2)∵BA=BC,∠ABC=90°,∴AC==4.∵CD=3AD,∴AD=,DC=3.由旋转的性质可知:AD=EC=.∴DE==2.【点评】本题主要考查的是旋转的性质、勾股定理的应用、等腰直角三角形的性质,求得∠DCE =90°是解题的关键.23.(9分)运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.(1)如图1,在等腰三角形ABC中,AB=AC,AC边上的高为h,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为h1、h2.请用面积法证明:h1+h2=h;(2)当点M 在BC 延长线上时,h 1、h 2、h 之间的等量关系式是 h 1﹣h 2=h ;(直接写出结论不必证明)(3)如图2在平面直角坐标系中有两条直线l 1:y =x +3、l 2:y =﹣3x +3,若l 2上的一点M 到l 1的距离是1,请运用(1)、(2)的结论求出点M 的坐标.【分析】(1)连接AM ,△ABC 被分成△ABM 和△ACM 两个三角形,根据三角形的面积公式底乘以高除以2分别求解,再根据S △ABC =S △ABM +S △AMC 整理即可得到h 1+h 2=h .(2)根据(1)的方法,利用三角形面积的关系求解即可;(3)先根据直线关系式求出A 、B 、C 三点的坐标利用勾股定理求出AB =AC ,所以△ABC 是等腰三角形,再分点M 在线段BC 上和CB 的延长线上两种情况讨论求解.【解答】解:(1)∵S △ABC =S △ABM +S △AMC ,S △ABM =×AB ×ME =×AB ×h 1,S △AMC =×AC ×MF =×AC ×h 2,又∵S △ABC =×AC ×BD =×AC ×h ,∴×AC ×h =×AB ×h 1+×AC ×h 2,∴h 1+h 2=h .(2)h 1﹣h 2=h .(3)在y =x +3中,令x =0得y =3;令y =0得x =﹣4,则:A (﹣4,0),B (0,3)同理求得C (1,0),AB ==5,AC =5,所以AB =AC ,即△ABC 为等腰三角形.①当点M 在BC 边上时,由h 1+h 2=h 得:1+M y=OB,M y=3﹣1=2,把它代入y=﹣3x+3中求得:M x=,∴M(,2);②当点M在CB延长线上时,由h1﹣h2=h得:M y﹣1=OB,M y=3+1=4,把它代入y=﹣3x+3中求得:M x=﹣,∴M(﹣,4),∴点M的坐标为(,2)或(,4).【点评】解答本题的关键在于利用等腰三角形两边相等的性质和三角形面积的关系,利用面积求解在几何解答题中经常用到,同学们在答题时一定要灵活运用.。
北师大版八年级下学期期中考试数学试题一、单选题(共30分)1.(本题3分)(2019·酒泉市第二中学八年级期中)在平面直角坐标系中,将点P (2,3)绕原点O 顺时针旋转90°后得到点P′,则点P′的坐标是( )A .(-2,3)B .(3-,2)C .(2,-3)D .(3,-2)2.(本题3分)(2019·山东德州市·)如果a >b ,c <0,那么下列不等式成立的是( ).A . a +c >b +c ;B . c -a >c -b ;C . ac >bc ;D .a b c c>. 3.(本题3分)(2020·浙江杭州市·杭州英特外国语学校八年级期中)若不等式组213x x a ->⎧⎨≤⎩的整数解共有三个,则a 的取值范围是( )A .56a ≤<B .56a <≤C .56a <<D .56a ≤≤4.(本题3分)(2020·无锡市第一女子中学八年级期中)如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,BF平分∠ABC ,过点C 作CF ⊥BF 于F 点,过A 作AD ⊥BF 于D 点.AC 与BF 交于E 点,下列四个结论:①BE=2CF ;②AD =DF ;③AD +DE =12BE ;④AB +BC =2AE .其中正确结论的序号是( )A .只有①②③B .只有②③C .只有①②④D .只有①④5.(本题3分)(2020·深圳龙城初级中学八年级期中)如图,在△ABC 中,AD 为∠BAC 的平分线,BM ⊥AD,垂足为M,且AB=5,BM=2,AC=9,则∠ABC 与∠C 的关系为( )A .∠ABC=2∠CB .∠ABC=52∠C C .14∠ABC=∠CD .∠ABC=3∠C6.(本题3分)(2020·武城县实验中学八年级期中)如图,在Rt ABC ∆中,90BAC ∠=︒,45C ∠=︒,AD BC ⊥于点D ,ABC ∠的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接EN ,下列结论:①AFE ∆为等腰三角形;②DF DN =;③AN BF =;④EN NC ⊥.其中正确的结论有( )A .1个B .2个C .3个D .4个7.(本题3分)(2020·湖北鄂州市·八年级期中)如图,AD 为等腰△ABC 的高,其中∠ACB =50°,AC =BC ,E ,F 分别为线段AD ,AC 上的动点,且 AE =CF , 当 BF +CE 取最小值时,∠AFB 的度数为( )A .75°B .90°C .95°D .105°8.(本题3分)(2020·渠县崇德实验学校八年级期中)如果将点P 绕顶点M 旋转1800后与点Q 重合,那么称点P 与点Q 关于点M 对称,定点M 叫作对称中心,此时,点M 是线段PQ 的中点,如图,在平面直角坐标系中,ABO 的顶点A ,B ,O 的坐标分别为(1,0),(0,1),(0,0),点1P ,2P ,3P ,…中相邻两点都关于ABO 的一个顶点对称,点1P 与点2P 关于点A 对称,点2P 与点3P 关于点B 对称,点3P 与点4P 关于点O 对称,点4P 与点5P 关于点A 对称,点5P 与点6P 关于点B 对称,点6P 与点7P 关于点O 对称,…对称中心分别是A ,B ,C ,A ,B ,C ,…且这些对称中心依次循环,已知1P 的坐标是(1,1) .则点100P 的坐标是( )A .(1,-1)B .(1,-3)C .(-1,3)D .(1,1)9.(本题3分)(2020·西华县教研室八年级期中)如图,在平面直角坐标系中,点A ,B 分别在y 轴和x 轴上,60ABO ∠=︒,在坐标轴上找一点P ,使得PAB ∆是等腰三角形,则符合条件的P 点的个数是( )A .5B .6C .7D .810.(本题3分)(2020·江苏泰州市·昭阳湖初中八年级期中)如图,在ABC 中,点D 是BC 边上一点,已知DAC α∠=,αDAB 902∠=︒-,CE 平分ACB ∠交AB 于点E ,连接DE ,则DEC ∠的度数为( )A .α3B .α2C .α302︒-D .45α︒-二、填空题(共24分)11.(本题3分)(2020·广西百色市·七年级期中)已知不等式组2145x x x m->+⎧⎨>⎩无解,则m 的取值范围是________.12.(本题3分)(2020·成都市锦江区四川师大附属第一实验中学七年级期中)在ABC ∆中,3,ABC C AD ∠=∠是BAC ∠的角平分线,BE AD ⊥于E ,若4,BE =5,BD =9CD =,则ABC ∆的周长是_______________.13.(本题3分)(2020·常州市第二十四中学七年级期中)已知两个完全相同的直角三角形纸片△ABC 、△DEF ,如图1放置,点B 、D 重合,点F 在BC 上,AB 与EF 交于点G .∠C=∠EFB=90°,∠E=∠ABC=30°,现将图1中的△ABC 绕点F 按每秒10°的速度沿逆时针方向旋转180°,在旋转的过程中,△ABC 恰有一边与DE 平行的时间为___________s14.(本题3分)(2019·江西省宜春实验中学八年级期中)如图,AD BC ⊥于点D 且CD BD =,已知6AC =,75ACB ∠=︒,M 、N 是AD 、AB 上的动点,则BM MN +的最小值为______.15.(本题3分)(2020·江西宜春市·宜春九中八年级期中)如图,在ABC ∆中,BD 、BE 分别是高和角平分线,点F 在CA 的延长线上,FH ⊥BE 交BD 于G ,交BC 于H ,下列结论:①∠DBE=∠F ;②2∠BEF=∠BAF+∠C ;③()12F BAC B ∠=∠-∠;④∠BGH=∠ABE+∠C .其中正确的是_________ .16.(本题3分)(2021·宁波市鄞州蓝青学校八年级期中)如图,在直角坐标系中,直线34y x =+分别与x 轴,y 轴交于M 、N ,点A 、B 分别在y 轴、x 轴上,且30A ∠=︒,2AO =.将ABO 绕O 顺时针转动一周,当AB 与直线MN 垂直时,点A 坐标为__________.17.(本题3分)(2020·湖州市第四中学教育集团七年级期中)一个长方形ABCD 在数轴上的位置如图所示,AB =3,AD =2,若此长方形绕着顶点按照顺时针方向在数轴上连续翻转,翻转1次后,点A 所对应的数为1,求翻转2018次后,点B 所对应的数_________.18.(本题3分)(2020·四川成都市·北师大锦江区海威教育培训中心八年级期中)如图,直线OD 与x 轴所夹的锐角为30°,1OA 的长为2,121A A B 、232A A B △、3431n n n A A B A A B +⋅⋅⋅△△均为等边三边形,点1A 、2A 、31n A A -⋅⋅⋅在x 轴正半轴上依次排列,点1B 、2B 、3n B B ⋅⋅⋅在直线OD 上依次排列,那么点2B 的坐标为______,点n B 的坐标为______.三、解答题(共46分)19.(本题9分)(2020·四川省成都美视国际学校八年级期中)如图,在平面直角坐标系中,Rt ABC ∆的三个顶点分别是(4,2)A -、(0,4)B 、(0,2)C .(1)画出ABC ∆关于点C 成中心对称的△11A B C ;平移ABC ∆,若点A 的对应点2A 的坐标为(0,4)-,画出平移后对应的△222A B C ;(2)△11A B C 和△222A B C 关于某一点成中心对称,则对称中心的坐标为 .20.(本题9分)(2020·成都市棕北中学七年级期中)“共享单车”已经成为城市的一道风景,由于其符合低碳出行,绿色出行的理念,为市民带来了极大便利,也越来越引起大家的重视.已知某“共享单车”企业拟采用的收费方式如下: 每月用车时间(小时)单价(元/小时) 不超过10的部分2 超过10不超过20的部分1.5 超过20的部分 1(1)甲一月份用车28小时,则甲该月车费多少元?(2)乙二月份的车费平均每小时是1.5元,则乙二月车费是多少元?(3)丙一、二月份共用车31小时(二月份比1月份多),共用车费54元,试求丙一、二月份各用车多少小时?21.(本题9分)(2020·河南濮阳市·油田十中八年级期中)如图,ABC 中,90ACB ∠=︒,5cm AB =,4cm BC =,若点P 从点A 出发,以每秒2cm 的速度沿折线A B C A ---运动,设运动时间为t (0t >)秒.(1)AC =______cm ;(2)当点P 在边AC 上且恰好又在ABC ∠的角平分线上时,求此时t 的值;(3)在运动过程中,当t 为多少秒时,ACP △为等腰三角形(直接写出结果).22.(本题9分)(2020·靖江市靖城中学八年级期中)如图1,△ABC 中,CD ⊥AB 于点D ,且BD :AD :CD =2:3:4,(1)试说明△ABC是等腰三角形;(2)已知S△ABC=90cm2,如图2,动点P从点B出发以每秒1cm的速度沿线段BA向点A 运动,同时动点Q从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.设点P运动的时间为t(秒),①若△DPQ的边与BC平行,求t的值;②若点E是边AC的中点,问在点P运动的过程中,△PDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.23.(本题10分)(2020·温岭市实验学校八年级期中)如图1,在Rt ABC中,∠C=90°,AD平分∠BAC,BE平分∠ABC,AD、BC相交于点F.(1)求∠AFE的度数;(2)如图2,过点F作FP⊥BE交AB于点P,求证:EF=FP;(3)如图3,在(2)的条件下,连接DE,过点F作FN⊥AB于点N,并延长NF交DE于点M,试判断DM与EM的数量关系,并说明理由.答案与解析一、单选题(共30分)1.(本题3分)(2019·酒泉市第二中学八年级期中)在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°后得到点P′,则点P′的坐标是()A.(-2,3)B.(3-,2)C.(2,-3)D.(3,-2)【答案】D【分析】如图,过P、P′两点分别作x轴,y轴的垂线,垂足为A、B,由旋转90°可知,△OPA≌△OP′B,则P′B=PA=3,BO=OA=2,由此确定点P′的坐标.【详解】如图,过P、P′两点分别作x轴,y轴的垂线,垂足为A、B,∵线段OP绕点O顺时针旋转90°,∴∠POP′=∠AOB=90°,∴∠AOP=∠P′OB,且OP=OP′,∠PAO=∠P′BO=90°,∴△OAP≌△OBP′,即P′B=PA=3,BO=OA=2,∴P′(3,-2).故选D.【点睛】本题考查了点的坐标与旋转变换的关系.关键是根据旋转的条件,确定全等三角形.2.(本题3分)(2019·山东德州市·)如果a>b,c<0,那么下列不等式成立的是().A.a+c>b+c;B.c-a>c-b;C.ac>bc;D.a bc c >.【答案】A【解析】根据不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.一个个筛选即可得到答案.解答:解:A ,∵a >b ,∴a+c >b+c ,故此选项正确;B ,∵a >b ,∴-a <-b ,∴-a+c <-b+c ,故此选项错误;C ,∵a >b ,c <0,∴ac <bc ,故此选项错误;D ,∵a >b ,c <0, ∴a b c c<, 故此选项错误;故选A .3.(本题3分)(2020·浙江杭州市·杭州英特外国语学校八年级期中)若不等式组213x x a ->⎧⎨≤⎩的整数解共有三个,则a 的取值范围是( )A .56a ≤<B .56a <≤C .56a <<D .56a ≤≤【答案】A【分析】首先确定不等式组的解集,利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解不等式2x-1>3,得:x >2,∵不等式组整数解共有三个,∴不等式组的整数解为3、4、5,则56a ≤<,故选A .【点睛】本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a 的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 4.(本题3分)(2020·无锡市第一女子中学八年级期中)如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,BF 平分∠ABC ,过点C 作CF ⊥BF 于F 点,过A 作AD ⊥BF 于D 点.AC 与BF 交于E 点,下列四个结论:①BE =2CF ;②AD =DF ;③AD +DE =12BE ;④AB +BC =2AE .其中正确结论的序号是( )A .只有①②③B .只有②③C .只有①②④D .只有①④【答案】A【分析】 适当做辅助线,构建三角形.延长CF 并交BA 延长线于H①证明△ABE≌△ACH,得到BE=CH ,又可证CH=2CF ,故可得BE =2CF②若要得到AD =DF ,则需要证明△ADF 为等腰直角三角形,需要证明∠DAF 为45°即可 ③过E 作EM AF ⊥交AF 于点M ,证明△EMF 为等腰直角三角形,EM MF =12AD DE AM EM AM MF AF CF BE +=+=+=== ④过E 作EN BC ⊥于点N ,证明2AE AE EN AE EC AC =+<+=,得到22AB BC AE BC AE +>+>,即可证明④错误.【详解】①延长BA 、CF ,交于点H ,∵,BF CH CBF HBF ⊥∠=∠∴BCH H ∠=∠∴BC BH =∴2CH CF =∵90ABE AEB ∠+∠=︒ 90FCE FEC ∠+∠=︒ AEB FEC ∠=∠∴ABF ACF ∠=∠∵90BAF CAH ∠=∠=︒ AB AC =∴BAE CAH ≌∴,2BE CH BE CF ==②由①知,F 为CH 中点,又CAH 为直角三角形 故12AF CH CF HF === ∴H FAH ∠=∠∵,45BC BH HBC =∠=︒∴67.5H FAH ∠=∠=︒∵90HAC ∠=︒∴22.5FAC ∠=︒又BF 为HBC ∠的平分线∴22.5HBF ∠=︒∴67.5BAD ∠=︒∴9067.522.5CAD ∠=︒-︒=︒45FAD FAC DAC ∠=∠+∠=︒在RT ADF 中,45DAF DFA ∠=∠=︒∴AD DF =③过E 作EM AF ⊥交AF 于点M ,由②知,CA 为∠DAF 的平分线∴,DE EM AD AM ==△EMF 为等腰直角三角形∴EM MF = ∴12AD DE AM EM AM MF AF CF BE +=+=+===④过E 作EN BC ⊥于点N ,可知AE EN =在RT ENC 中,EN EC <∴2AE AE EN AE EC AC =+<+=即2AE AC <,而AC AB =∴2AE AB <故22AB BC AE BC AE +>+>∴2AB BC AE +≠,故④错误,本题答案选A.【点睛】本题主要考查三角形辅助线的作法,要考虑题目的含义适当的作辅助线构建全等三角形.本题属于拔高题,熟练作辅助线证全等是本题解题的关键所在.5.(本题3分)(2020·深圳龙城初级中学八年级期中)如图,在△ABC 中,AD 为∠BAC 的平分线,BM ⊥AD,垂足为M,且AB=5,BM=2,AC=9,则∠ABC 与∠C 的关系为( )A.∠ABC=2∠C B.∠ABC=52∠C C.14∠ABC=∠C D.∠ABC=3∠C【答案】D【分析】延长BM到E,证明△ABF≌△AEM,利用线段长度推出△BCE是等腰三角形,再根据角度转换求出即可. 【详解】证明:延长BM,交AC于E,∵AD平分∠BAC,BM⊥AD,∴∠BAM=∠EAM,∠AMB=∠AME又∵AM=AM,∴△ABM≌△AEM,∴BM=ME,AE=AB,∠AEB=∠ABE,∴BE=BM+ME=4,AE=AB=5,∴CE=AC-AE=9-5=4,∴CE=BE,∴△BCE是等腰三角形,∴∠EBC=∠C,又∵∠ABE=∠AEB=∠C+∠EBC.∴∠ABE=2∠C,∴∠ABC=∠ABE+∠EBC=3∠C.故选D.【点睛】本题考查三角形综合题型,关键在于作出合理的辅助线.6.(本题3分)(2020·武城县实验中学八年级期中)如图,在Rt ABC ∆中,90BAC ∠=︒,45C ∠=︒,AD BC ⊥于点D ,ABC ∠的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接EN ,下列结论:①AFE ∆为等腰三角形;②DF DN =;③AN BF =;④EN NC ⊥.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】D【分析】 ①由等腰直角三角形的性质得∠BAD =∠CAD =∠C =45°,再根据三角形外角性质可得到∠AEF =∠AFE ,可判断△AEF 为等腰三角形,于是可对①进行判断;求出BD=AD ,∠DBF =∠DAN ,∠BDF =∠ADN ,证△DFB ≌△DAN ,即可判断②③;连接EN ,只要证明△ABE ≌△NBE ,即可推出∠ENB =∠EAB =90°,由此可知判断④.【详解】解:∵等腰Rt △AB C 中,∠BAC =90°,AD ⊥BC ,∴∠BAD =∠CAD =∠C =45°,BD=AD , ∵BE 平分∠ABC ,∴∠ABE =∠CBE =12∠ABC =22.5°, ∴∠AEF =∠CBE +∠C =22.5°+45°=67.5°,∠AFE =∠FBA +∠BAF =22.5°+45°=67.5°,∴∠AEF =∠AFE ,∴AF =AE ,即△AEF 为等腰三角形,所以①正确;∵M 为EF 的中点,∴AM ⊥BE ,∴∠AMF =∠AME =90°,∴∠DAN =90°−67.5°=22.5°=∠MBN , 在△FBD 和△NAD 中FBD NAD BD ADBDF ADN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△FBD ≌△NAD (ASA ),∴DF=DN ,AN=BF ,所以②③正确;∵AM ⊥EF ,∴∠BMA =∠BMN =90°,∵BM =BM ,∠MBA =∠MBN ,∴△MBA ≌△MBN ,∴AM =MN ,∴BE 垂直平分线段AN ,∴AB =BN ,EA =EN ,∵BE=BE ,∴△ABE ≌△NBE ,∴∠ENB =∠EAB =90°,∴EN ⊥NC ,故④正确,故选:D .【点睛】本题考查了全等三角形的判定与性质、三角形外角性质、三角形内角和定理、垂直平分线的性质,能正确证明推出两个三角形全等是解此题的关键,主要考查学生的推理能力.7.(本题3分)(2020·湖北鄂州市·八年级期中)如图,AD 为等腰△ABC 的高,其中∠ACB =50°,AC =BC ,E ,F 分别为线段AD ,AC 上的动点,且 AE =CF , 当 BF +CE 取最小值时,∠AFB 的度数为( )A .75°B .90°C .95°D .105°【答案】C【分析】先构造△CFH全等于△AEC,得到△BCH是等腰直角三角形且FH=CE,当FH+BF最小时,即是BF+CE最小时,此时求出∠AFB的度数即可.【详解】解:如图,作CH⊥BC,且CH=BC,连接HB,交AC于F,此时△BCH是等腰直角三角形且FH+BF最小,∵AC=BC,∴CH=AC,∵∠HCB=90°,AD⊥BC,∴AD//CH,∵∠ACB=50°,∴∠ACH=∠CAE=40°,∴△CFH≌△AEC,∴FH=CE,∴FH+BF=CE+BF最小,此时∠AFB=∠ACB+∠HBC=50°+45°=95°.故选:C.【点睛】本题考查全等三角形的性质和判定、等腰三角形的性质、最短路径问题,关键是作出辅助线,有一定难度.8.(本题3分)(2020·渠县崇德实验学校八年级期中)如果将点P绕顶点M旋转1800后与点Q重合,那么称点P与点Q关于点M对称,定点M叫作对称中心,此时,点M是线段PQ的中点,如图,在平面直角坐标系中,ABO的顶点A,B,O的坐标分别为(1,0),(0,1),(0,0),点1P,2P,3P,…中相邻两点都关于ABO的一个顶点对称,点1P与点2P关于点A对称,点2P与点3P关于点B对称,点3P与点4P关于点O 对称,点4P 与点5P 关于点A 对称,点5P 与点6P 关于点B 对称,点6P 与点7P 关于点O 对称,…对称中心分别是A ,B ,C ,A ,B ,C ,…且这些对称中心依次循环,已知1P 的坐标是(1,1) .则点100P 的坐标是( )A .(1,-1)B .(1,-3)C .(-1,3)D .(1,1)【答案】B【分析】 先利用对称中心的定义分别确定P 1、P 2、P 3、P 4、P 5、P 6、P 7的坐标,发现点P 7的坐标和点P 1的坐标相同,即这些点的坐标以6个为一组进行循环,由此可确定点P 100的坐标和点P 4的坐标相同.【详解】解:如图:∵点P 1的坐标是(1,1),A (1,0),而点P 1与点P 2关于点A 对称,∴点P 2的坐标为(1,-1),同理得到点P 3的坐标为(-1,3),点P 4的坐标为(1,-3),点P 5的坐标为(1,3),点P 6的坐标为(-1,-1),点P 7的坐标为(1,1),如图,∴点P 7的坐标和点P 1的坐标相同,∵100=16×6+4, ∴点P 100的坐标和点P 4的坐标相同,即为(1,-3).故选:B .【点睛】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.注意从特殊情形中找规律. 9.(本题3分)(2020·西华县教研室八年级期中)如图,在平面直角坐标系中,点A ,B 分别在y 轴和x 轴上,60ABO ∠=︒,在坐标轴上找一点P ,使得PAB ∆是等腰三角形,则符合条件的P 点的个数是( )A .5B .6C .7D .8【答案】B【分析】 分类讨论:作AB 的垂直平分线和坐标轴的交点,以A 为圆心AB 为半径作圆和坐标轴的交点,以B 为圆心AB 为半径作圆和坐标轴的交点,根据两边相等的三角形是等腰三角形,可得答案.【详解】作AB 的垂直平分线和坐标轴的交点,得到P5,此时AP=BP ;以A 为圆心AB 为半径作圆和坐标轴的交点,得到P2和P6,此时AB=AP ;以B 为圆心AB 为半径作圆和坐标轴的交点,得到P1、P3和P4,此时BP=BA ;综上所述:符合条件的点P 共有6个.故选B .【点睛】本题考查了等腰三角形的判定和性质,把所有可能的情况都找出来,不遗漏掉任何一种情况是本题的关键. 10.(本题3分)(2020·江苏泰州市·昭阳湖初中八年级期中)如图,在ABC 中,点D 是BC 边上一点,已知DAC α∠=,αDAB 902∠=︒-,CE 平分ACB ∠交AB 于点E ,连接DE ,则DEC ∠的度数为( )A .α3B .α2C .α302︒-D .45α︒-【答案】B【分析】过点E 作EM AC ⊥于M ,EN AD ⊥于N ,EH BC ⊥于H ,如图,先计算出EAM ∠,则AE 平分MAD ∠,根据角平分线的性质得EM EN =,再由CE 平分ACB ∠得到EM EH =,则EN EH =,于是根据角平分线定理的逆定理可判断DE 平分ADB ∠,再根据三角形外角性质解答即可. 【详解】解:过点E 作EM AC ⊥于M ,EN AD ⊥于N ,EH BC ⊥于H ,如图,DAC α∠=,αDAB 902∠=︒-,αEAM 902∠∴=︒-, AE ∴平分MAD ∠,EM EN ∴=,CE 平分ACB ∠,EM EH ∴=,EN EH ∴=,DE ∴平分ADB ∠, 11ADB 2∠∠∴=, 由三角形外角可得:1DEC 2∠∠∠=+,12ACB 2∠∠=,11DEC ACB 2∠∠∠∴=+, 而ADB DAC ACB ∠∠∠=+, 11DEC DAC α22∠∠∴==, 故选:B .【点睛】本题考查了角平分线的性质和判定定理,三角形的外角性质定理,解决本题的关键是运用角平分线定理的逆定理证明DE 平分ADB ∠.二、填空题(共24分)11.(本题3分)(2020·广西百色市·七年级期中)已知不等式组2145x x x m->+⎧⎨>⎩无解,则m 的取值范围是________.【答案】m≥-3【分析】先求出每个不等式的解集,再根据已知得出关于a 的不等式,求出不等式的解集即可.【详解】解:2145x x x m ->+⎧⎨>⎩①②, ∵不等式①的解集是x <−3,不等式②的解集是x >m ,又∵不等式组2145x x x m ->+⎧⎨>⎩无解, ∴m≥−3,故答案为:m≥−3.【点睛】本题考查了解一元一次不等式和解一元一次不等式组的应用,解此题的关键是能根据找不等式的解集和已知得出关于m 的不等式组.12.(本题3分)(2020·成都市锦江区四川师大附属第一实验中学七年级期中)在ABC ∆中,3,ABC C AD ∠=∠是BAC ∠的角平分线,BE AD ⊥于E ,若4,BE =5,BD =9CD =,则ABC ∆的周长是_______________.【答案】42【分析】延长BE 交AC 于F ,根据ASA 证明AEB AEF ∆≅∆,根据全等三角形的性质得到BE=EF ,进而得到BF=8,根据三角形的外角性质和等边对等角得到ABE FBC C ∠=∠+∠,进而得到FBC C ∠=∠,根据等角对等边得到FB=FC=8,然后根据ABD S ∆和ADC S ∆的面积比得到AB=10,进一步得到18AC AB FC =+=,然后根据三角形周长公式求解即可.【详解】延长BE 交AC 于,FAD 平分,BAC ∠,BAD CAD ∴∠=∠,BE AD ⊥,AEB AEF ∴∠=∠在AEB ∆和AEF ∆中,BAE FAE AE AEAEB AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩,AEB AEF ∆≅∆∴,,BE EF AB AF ABE AFE ∴==∠=∠,4,BE =.4,8,EF BF BE EF ==+=,AFE FBC C ∠=∠+∠,ABE FBC C ∴∠=∠+∠23,ABC ABE FBC FBC C C ∠=∠+∠=∠+∠=∠,FBC C ∴∠=∠8,FB FC ∴== AD 是BAC ∠的角平分线,59ABD ADC S BD AB S CD AC ∆∆∴=== 59AB AB FC ∴=+ 10,AB ∴=18,AC AB FC ∴=+=ABC C AB AC BC ∆∴=++101859=+++42=.故答案为42.【点睛】本题考查了三角形全等判定和性质,三角形外角的性质,等腰三角形的性质,综合考查了三角形的相关知识,熟练掌握各部分知识点是本题的关键.13.(本题3分)(2020·常州市第二十四中学七年级期中)已知两个完全相同的直角三角形纸片△ABC、△DEF,如图1放置,点B、D重合,点F在BC上,AB与EF交于点G.∠C=∠EFB=90°,∠E=∠ABC=30°,现将图1中的△ABC绕点F按每秒10°的速度沿逆时针方向旋转180°,在旋转的过程中,△ABC恰有一边与DE平行的时间为___________s【答案】3秒或12秒或15秒【详解】①如图(2),当AC∥DE时,∵AC∥DE,∴∠ACB=∠CHD=90°.∵∠E=30°,∴∠D=60°,∴∠HFD=90°-60°=30°,∴t=30°÷10°=3.②如图3,当BC∥DE时,∵BC∥ED,∴∠BFE=∠E=30°,∴∠BFD=30°+90°=120°,∴t=120°÷10=12.③如图4,当BA ∥ED 时,延长DF 交DA 于G .∵∠E=30°,∴∠D=60°,∵BA ∥ED ,∴∠BGD=180°-∠D=120° ∴∠BFD=∠B+∠BGF=30°+120°=150°,∴t=150°÷10°=15.故答案为3秒或12秒或15秒【点睛】本题主要考查平行线的性质.分三种不同的情况讨论,解题的关键是画出三种情况的图形.14.(本题3分)(2019·江西省宜春实验中学八年级期中)如图,AD BC ⊥于点D 且CD BD =,已知6AC =,75ACB ∠=︒,M 、N 是AD 、AB 上的动点,则BM MN +的最小值为______.【答案】3【分析】设N 关于AD 的对称点为R ,由图可知△ABC 是锐角三角形,则R 必在AC 上,作AC 边上的高BE ,E 在线段AC 上,连接BR 交AD 于点M ,根据题意可知△ABC 是等腰三角形,根据等腰三角形的角平分线的性质可得MN MR =,等量代换可得BM MN BR +=,在Rt △BER 中,BR 是斜边,BE 是直角边,所以BR 的最小值是与BE 重合,即△ABC 的BC 边上的高,求出BE 的长即可.【详解】解:如图,设N 关于AD 的对称点为R ,由图可知△ABC 是锐角三角形,则R 必在AC 上,作AC 边上的高BE ,E 在线段AC 上,连接BR 交AD 于点M .∵AD BC ⊥于点D 且CD BD =,∴△ABC 是等腰三角形,∴MN MR BM MN BM MR BR =∴+=+=,,∴当BR ⊥AC 时有最小值,即BE∵∠ACB=∠ABC=75°,∴∠CAB=30°,又∵∠AEB=90°,∴∠EBA=60°,∵:2:1AB BE =,∵6AC AB ==,∴3BE =.故答案为3.【点睛】本题主要考查了轴对称—最短线路问题,解题的关键是正确作出对称点和利用垂直平分线的性质证明BM MN +的最小值为三角形某一边上的高.15.(本题3分)(2020·江西宜春市·宜春九中八年级期中)如图,在ABC ∆中,BD 、BE 分别是高和角平分线,点F 在CA 的延长线上,FH ⊥BE 交BD 于G ,交BC 于H ,下列结论:①∠DBE=∠F ;②2∠BEF=∠BAF+∠C ;③()12F BAC B ∠=∠-∠;④∠BGH=∠ABE+∠C .其中正确的是_________ .【答案】①②③④【分析】根据等角的余角相等证明结论①,根据角平分线的性质证明结论②,证明∠DBE=∠BAC-∠C-∠DBE ,再结合①的结论可得结论③,证明∠AEB=∠ABE+∠C ,再由BD ⊥FC ,FH ⊥BE ,可以证明结论④.【详解】①∵BD ⊥FD ,∴∠FGD+∠F=90°,∵FH ⊥BE ,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH ,∴∠DBE=∠F ,故①正确;②∵BE 平分∠ABC ,∴∠ABE=∠CBE ,∠BEF=∠CBE+∠C ,∴2∠BEF=∠ABC+2∠C ,∠BAF=∠ABC+∠C ,∴2∠BEF=∠BAF+∠C ,故②正确;③∠ABD=90°-∠BAC ,∠DBE=∠ABE-∠ABD=∠ABE-90°+∠BAC=∠CBD-∠DBE-90°+∠BAC , ∵∠CBD=90°-∠C , ∴∠DBE=∠BAC-∠C-∠DBE ,由①得,∠DBE=∠F ,∴∠F=∠BAC-∠C-∠DBE ,∴∠F=12(∠BAC ﹣∠C ),故③正确; ④∵∠AEB=∠EBC+∠C ,∵∠ABE=∠CBE ,∴∠AEB=∠ABE+∠C , ∵BD ⊥FC ,FH ⊥BE ,∴∠FGD=∠FEB ,∴∠BGH=∠ABE+∠C ,故④正确.故答案是:①②③④.【点睛】本题考查角度的证明,解题的关键是掌握角度之间关系的证明方法.16.(本题3分)(2021·宁波市鄞州蓝青学校八年级期中)如图,在直角坐标系中,直线34y x =-+分别与x 轴,y 轴交于M 、N ,点A 、B 分别在y 轴、x 轴上,且30A ∠=︒,2AO =.将ABO 绕O 顺时针转动一周,当AB 与直线MN 垂直时,点A 坐标为__________.【答案】(3或(1,3--【分析】计算出OM=33,ON=4,即可确定∠NMO=60°,然后利用AB 与直线MN 垂直画出图形,直线AB 交y 轴于点C ,作AD ⊥x 轴于H ,则∠OCB=60°,再解直角三角形求AD 、OD ,从而确定A 点坐标.【详解】当0x =时,344y x =+=,则()0,4N ,当0y =时,430x +=,解得43x =,则43 ,0M ⎛⎫ ⎪ ⎪⎝⎭. 在Rt OMN △中,224383433MN ⎛⎫=+= ⎪ ⎪⎝⎭, ∵12OM ON =,∴30∠=︒ONM ,∴60NMO ∠=︒, 在Rt ABO △中,∵30A ∠=︒,2AO =,∴60OBA ∠=︒,∴233OB =, ∵AB 与直线MN 垂直,∴直线AB 与x 轴的夹角为60︒,如图1,直线AB 交y 轴于点C ,交MN 于G ,作AD x ⊥轴于D ,⊥GH x 轴于H ,图1∴30MGH ∠=︒,∴60BGH ∠=︒,∴60OCB ∠=︒,∵60OBA ∠=︒,∴OBC 是等边三角形,∴60BOC ∠=︒,∴30AOC ∠=︒,∴60AOD ∠=︒,在Rt OAD △中,112OD OA ==,332AD == ∴A 点坐标为(3,如图2,直线AB 交y 轴于点C ,作AD x ⊥轴于D .图2同理:60OCB ∠=︒,∵ABO 60∠=,∴60COB ∠=︒,∴30AOC ∠=︒,∴60AOD ∠=︒,在Rt OAD △中, 112OD OA ==,332AD OA ==, ∴A 点坐标为()1,3--,综上所述,A 点坐标为()1,3或()1,3--.故答案为:()1,3或()1,3--. 【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.解决本题的关键是正确画出旋转后的图形.17.(本题3分)(2020·湖州市第四中学教育集团七年级期中)一个长方形ABCD 在数轴上的位置如图所示,AB =3,AD =2,若此长方形绕着顶点按照顺时针方向在数轴上连续翻转,翻转1次后,点A 所对应的数为1,求翻转2018次后,点B 所对应的数_________.【答案】5044【分析】翻转两次后点B 落在数轴上,根据翻转4次为一个周期循环,依据翻转总次数得出翻转几个周期循环,确定点B 落在数轴上推算出移动的距离得出结果.【详解】如图,翻转两次后点B 落在数轴上,以后翻转4次为一个周期,且长方形的周长=2(2+3)=10, ∴一个周期后右边的点移动10个单位长度,∵20164504÷=,∴翻转2018次后,点B 落在数轴上,点B 所对应的数是50410515044⨯+-=,故答案为:5044.【点睛】此题考查旋转的性质,长方形的性质,图形规律类运算探究,根据图形得到变化的规律是解题的关键. 18.(本题3分)(2020·四川成都市·北师大锦江区海威教育培训中心八年级期中)如图,直线OD 与x 轴所夹的锐角为30°,1OA 的长为2,121A A B 、232A A B △、3431n n n A A B A A B +⋅⋅⋅△△均为等边三边形,点1A 、2A 、31n A A -⋅⋅⋅在x 轴正半轴上依次排列,点1B 、2B 、3n B B ⋅⋅⋅在直线OD 上依次排列,那么点2B 的坐标为______,点n B 的坐标为______.【答案】(6,3 ()113232n n --⨯. 【分析】 根据等边三角形的性质和∠B 1OA 2=30°,可求得∠B 1OA 2=∠A 1B 1O=30°,可求得OA 2=2OA 1=4,同理可求得OA n =2n ,再结合含30°角的直角三角形的性质可求得△A n B n A n+1的边长,进一步可求得点B n 的坐标.【详解】解:∵112A B A △为等边三角形,∴11260∠=︒B A A ,∵1230B OA ∠=︒,∴121130B OA A B O ∠=∠=︒,可求得2124OA OA ==,同理可求得2n n OA =,∵130n n B OA +∠=︒,160n n n B A A +∠=︒,∴2n n n n B A OA ==,即1n n n A B A +△的边长为2n ,则可求得其高为132322n n -⨯=⨯, ∴点n B 的横坐标为:132223222n n n n ⨯+=⨯=⨯, ∴点n B 的坐标为()1132,32n n --⨯⨯,点2B 的坐标为()6,23.故答案为:()6,23;()1132,32n n --⨯⨯. 【点睛】 本题属于规律型问题,考查点的坐标,掌握等边三角形的性质为解题关键.三、解答题(共46分)19.(本题9分)(2020·四川省成都美视国际学校八年级期中)如图,在平面直角坐标系中,Rt ABC ∆的三个顶点分别是(4,2)A -、(0,4)B 、(0,2)C .(1)画出ABC ∆关于点C 成中心对称的△11A B C ;平移ABC ∆,若点A 的对应点2A 的坐标为(0,4)-,画出平移后对应的△222A B C ;(2)△11A B C 和△222A B C 关于某一点成中心对称,则对称中心的坐标为 .【答案】(1)画图见解析;(2)(2,-1).【解析】试题分析:(1)、根据网格结构找出点A 、B 关于点C 成中心对称的点A 1、B 1的位置,再与点A 顺次连接即可;根据网格结构找出点A 、B 、C 平移后的对应点A 2、B 2、C 2的位置,然后顺次连接即可;(2)、根据中心对称的性质,连接两组对应点的交点即为对称中心.试题解析:(1)、△A 1B 1C 如图所示, △A 2B 2C 2如图所示; (2)、如图,对称中心为(2,﹣1).考点:(1)、作图-旋转变换;(2)、作图-平移变换.20.(本题9分)(2020·成都市棕北中学七年级期中)“共享单车”已经成为城市的一道风景,由于其符合低碳出行,绿色出行的理念,为市民带来了极大便利,也越来越引起大家的重视.已知某“共享单车”企业拟采用的收费方式如下: 每月用车时间(小时)单价(元/小时) 不超过10的部分2 超过10不超过20的部分1.5 超过20的部分 1(1)甲一月份用车28小时,则甲该月车费多少元?(2)乙二月份的车费平均每小时是1.5元,则乙二月车费是多少元?(3)丙一、二月份共用车31小时(二月份比1月份多),共用车费54元,试求丙一、二月份各用车多少小时?【答案】(1)43元;(2)45元;(3)丙一月份用车8小时,二月份用车23小时【分析】(1)分段计算,10小时内一部分车费,11至20小时内一部分车费,超过20小时的一部分车费,三者之和即为所求;(2)设总里程为x ,且x>20,根据题意得到:10小时内车费+11至20小时内车费+,超过20小时车费=1.5⨯总里程,列出方程求解即可;(3)设丙一月份用车x 小时,则二月份用车()31x -小时,根据题意得到015.5x ≤<,分为三种情况讨论:①一月份不超过10小时,②一月份超过10小时,不超过15.5小时且二月不超过20小时,③一月份超过10小时,不超过15.5小时且二月超过20小时,列出方程求解即可.【详解】(1)甲该月车费:()10210 1.52820143⨯+⨯+-⨯=(元).(2)设乙二月份用车x 小时,由题意可知:20x >,∴()10210 1.5201 1.5x x ⨯+⨯+-⨯=,解得:30x =,∴乙二月份车费是:30 1.545⨯=(元).(3)设丙一月份用车x 小时,则二月份用车()31x -小时.由题意可知:015.5x ≤<,①若010x ≤≤,则213131x ≤-≤,∴()2210 1.5101312054x x +⨯+⨯+⨯--=,解得:8x =(满足题意),则3123x -=,∴丙一月份用车8小时,二月份用车23小时.②若1015.5x <<,则15.53121x <-<.1°.若15.53120x <-≤,则:()()210 1.510210 1.5311054x x ⨯+-+⨯+--=,此时,上述方程无解,舍去.2°.若203121x <-<,则:()()210 1.510210 1.510312054x x ⨯+-+⨯+⨯+--=,解得:6x =,312521x -=>(舍)∴综上可知,丙一月份用车8小时,二月份用车23小时.【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,重点是根据题意列出不等式,分情况讨论是本题的关键.21.(本题9分)(2020·河南濮阳市·油田十中八年级期中)如图,ABC 中,90ACB ∠=︒,5cm AB =,4cm BC =,若点P 从点A 出发,以每秒2cm 的速度沿折线A B C A ---运动,设运动时间为t (0t >)秒.。
2018-2019学年下学期八年级数学《因式分解》培优检测试题姓名:班级:______________________ 考号:一、单选题(共10题;共30分)1.下列多项式中能用平方差公式分解因式的是( )A. a2+ (-b) 2 ।B. 5m2-20mn 9.-x2-y2 । D. -x2+92.下列多项式能因式分解的是( )A. x2-yB. x2+1C. x2+xy+y2D. x2-4x+43.因式分解2x2-8的结果是( )A. (2x+4) (x-4) FB. (x+2) ( x-2)C. 2 (x+2) ( x-2) 卜D. 2 (x+4) (x-4)4.下列因式分解中正确的是( )-J 1 1 1A.串—8工+16=B.-仃2+口-彳三=三(2仃-1),C. x ( a- b) - y (b - a) = (a- b) ( x - y)D. b" = ।fr > )5.把代数式ab:- 6ab十9n分解因式,下列结果中正确的是A. B. C'-Q T■-「I; .,) C.,屋8 T厂 D.6.下列各式中,不能用完全平方公式分解的个数为( )① x2-10x+25;② 4a2+4a - 1 ;③ x2-2x-1;④-m2+m-;;⑤ 4x4-x2+1 .A. 1个B. 2个C. 3个D. 4个7.若X-+tm-15=,,则mn 的值为()A. 5B. -5C. 10D. -108.若a , b , c是三角形的三边之长,则代数式a; -2ac+c二-b2的值()A.小于0B.大于0C.等于0 "D.以上三种情况均有可能9.下列多项式中能用提公因式法分解的是( )A. x2+y2B. x 2-y2C. x2+2x+1D. x 2+2x10.已知:a=2014x+2015, b=2014x+2016 , c=2014x+2017 ,则a2+b2+c2-ab- ac- bc 的值是( )A. 0B. 1C. 2D. 3二、填空题(共8题;共24分)11.因式分解:一疝一/4忸一〃)=12.已知x- 2y= - 5, xy= — 2,贝U 2x2y - 4xy2= .13.分解因式:a3 - 4a2+4a=.14.若屋_a + l = U,那么屋叫1 一屋飒十型颊二.15.如果x+y=5 , xy=2 ,贝U x2y+xy 2=.16.已知= 而=2,求;门取岫'的值为17.多项式2ax2-12axy中,应提取的公因式是18.若x+y= 1,贝U x4+5x3y+x2y+8x2y2+xy2+5xy 3+y4的值等于。
2018-2019学年山东省青岛市市南区东片联考八年级(下)期中数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)若m>n,则下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.﹣>﹣D.m2>n22.(3分)下列银行标志图中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)如图所示,在方格纸上建立的平面直角坐标系中,将△ABO绕点O按顺时针方向旋转90°,得到△A′B′O,则点B′的坐标为()A.(2,1)B.(1,2)C.(2,﹣1)D.(2,0)4.(3分)不等式组的解集在数轴上可表示为()A.B.C.D.5.(3分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个6.(3分)如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处7.(3分)如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D.如果EC=4cm,则AE等于()A.10cm B.8cm C.6cm D.5cm8.(3分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x>0的解集为()A.x<﹣1B.x>﹣1C.x>0D.﹣1<x<0二、填空题(每题3分,满分24分,将答案填在答题纸上)9.(3分)如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转次,每次旋转度形成的.10.(3分)如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(﹣4,2)、(﹣2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是.11.(3分)如图,已知一次函数y=kx+b的图象与x轴交于点(3,0),与y轴交于点(0,2),不等式kx+b≥2解集是.12.(3分)已知关于x的不等式组无解,则a的取值范围是.13.(3分)如图,在△ABC中,AB=6,BC=9,∠B=60°,将△ABC沿射线BC的方向平移3个单位后,得到△A'B'C',连接A'C.则△A'B'C的周长为.14.(3分)不等式组有5个整数解,则a的取范围是15.(3分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积为50和39,则△EDF的面积为.16.(3分)在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是.三、作图题(本题满分0分)用圆规、直尺作图,不写作法,但要保留作图痕迹.17.已知线段a,求作△ABC,使AB=BC=AC=a.四、解答题(共7小题)18.解不等式(组)(1)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.(2),并写出不等式组的整数解.19.如图所示∠A=∠D=90°,AB=DC,点E,F在BC上且BE=CF.(1)求证:AF=DE.(2)若PO⊥EF,求证:OP平分∠EOF.20.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E.DF⊥AC 于点F.求证:AD是BC的垂直平分线.21.如图,在由边长为1的小正方形组成的方格纸中,有两个全等的三角形,即△A1B1C1和△A2B2C2.(1)请你指出在方格纸内如何运用平移、旋转变换,将△A1B1C1重合到△A2B2C2上;(2)在方格纸中将△A1B1C1经过怎样的变换后可以与△A2B2C2成中心对称图形,画出变换后的三角形并标出对称中心.22.某餐厅计划购买12张餐桌和一批椅子(不少于12把),现从甲、乙两商场了解到同一型号的餐桌报价都为每张200元,餐椅报价都为每把50元.甲商场规定:每购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌、餐椅均按报价的八五折销售,那么,什么情况下到甲商场购买更优惠.23.某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台)75每台日产量(个)10060(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种购买方案?24.问题的提出:如果点P是锐角△ABC内一动点,如何确定一个位置,使点P到△ABC的三顶点的距离之和P A+PB+PC的值为最小?问题的转化:把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,这样就把确定P A+PB+PC 的最小值的问题转化成确定BP+PP′+P′C′的最小值的问题了,请你利用图1证明:P A+PB+PC=BP+PP′+P′C′.问题的解决:当点P到锐角△ABC的三顶点的距离之和P A+PB+PC的值为最小时,请你用一定的数量关系刻画此时的点P的位置.问题的延伸:如图2是有一个锐角为30°的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.2018-2019学年山东省青岛市市南区东片联考八年级(下)期中数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)若m>n,则下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.﹣>﹣D.m2>n2【分析】根据不等式的性质,可得答案.【解答】解:A、两边都加2,不等号的方向不变,故A成立,B、两边都乘2,不等号的方向不变,故B成立;C、两边都除以﹣2,不等号的方向改变,故C不成立;D、当m>n>1时,m2>n2成立,当0<m<1,n<﹣1时,m2<n2,故D不一定成立,故选:D.【点评】本题考查了不等式的性质,利用不等式的性质是解题关键.2.(3分)下列银行标志图中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、不是轴对称图形,不是中心对称图形,故此选项错误;故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)如图所示,在方格纸上建立的平面直角坐标系中,将△ABO绕点O按顺时针方向旋转90°,得到△A′B′O,则点B′的坐标为()A.(2,1)B.(1,2)C.(2,﹣1)D.(2,0)【分析】根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B′的坐标即可.【解答】解:△A′B′O如图所示,点B′(2,1).故选A.【点评】本题考查了坐标与图形变化,是基础题,熟练掌握网格结构,作出图形是解题的关键.4.(3分)不等式组的解集在数轴上可表示为()A.B.C.D.【分析】本题应该先对不等式组进行化简,然后在数轴上分别表示出x的取值范围,它们相交的地方就是不等式组的解集.【解答】解:不等式可化为:在数轴上可表示为:故选:C.【点评】本题考查不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个【分析】设买篮球m个,则买足球(50﹣m)个,根据购买足球和篮球的总费用不超过3000元建立不等式求出其解即可.【解答】解:设买篮球m个,则买足球(50﹣m)个,根据题意得:80m+50(50﹣m)≤3000,解得:m≤16,∵m为整数,∴m最大取16,∴最多可以买16个篮球.故选:A.【点评】本题考查了列一元一次不等式解实际问题的运用,解答本题时找到建立不等式的不等关系是解答本题的关键.6.(3分)如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处【分析】根据角平分线上的点到角的两边的距离相等解答即可.【解答】解:根据角平分线的性质,集贸市场应建在∠A、∠B两内角平分线的交点处.故选:C.【点评】本题主要考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.7.(3分)如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D.如果EC=4cm,则AE等于()A.10cm B.8cm C.6cm D.5cm【分析】根据线段垂直平分线的性质得到AE=BE,推出∠A=∠1=∠2=30°,求出DE=CE=4cm,根据含30度角的直角三角形性质求出即可.【解答】解:∵DE垂直平分AB,∴AE=BE,∴∠2=∠A,∵∠1=∠2,∴∠A=∠1=∠2,∵∠C=90°,∴∠A=∠1=∠2=30°,∵∠1=∠2,ED⊥AB,∠C=90°,∴CE=DE=4cm,在Rt△ADE中,∠ADE=90°,∠A=30°,∴AE=2DE=8cm,故选:B.【点评】本题考查了垂直平分线性质,角平分线性质,等腰三角形性质,含30度角的直角三角形性质的应用,关键是求出∠A=30°和得出DE的长.8.(3分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x>0的解集为()A.x<﹣1B.x>﹣1C.x>0D.﹣1<x<0【分析】利用函数图象,写出在x轴上方,直线l1在直线l2上方所对应的自变量的范围即可.【解答】解:结合图象,当﹣1<x<0时,k1x+b>k2x>0,所以k1x+b>k2x>0的解集为﹣1<x<0.故选:D.【点评】本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线y =kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合,运用数形结合的思想解决此类问题.二、填空题(每题3分,满分24分,将答案填在答题纸上)9.(3分)如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转7次,每次旋转45度形成的.【分析】利用旋转中的三个要素(①旋转中心;②旋转方向;③旋转角度)设计图案,进而判断出基本图形和旋转次数与角度.【解答】解:如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转7次,每次旋转45度形成的,故答案为:7;45.【点评】本题主要考查利用旋转设计图案,关键是掌握把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.10.(3分)如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(﹣4,2)、(﹣2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是(5,4).【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:∵两眼间的距离为2,且平行于x轴,∴右图案中右眼的横坐标为(3+2).则右图案中右眼的坐标是(5,4).故答案为:(5,4).【点评】此题主要考查图形的平移及平移特征.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.11.(3分)如图,已知一次函数y=kx+b的图象与x轴交于点(3,0),与y轴交于点(0,2),不等式kx+b≥2解集是x≤0.【分析】由一次函数y=kx+b的图象过点(0,2),且y随x的增大而减小,从而得出不等式kx+b≥2的解集.【解答】解:由一次函数的图象可知,此函数是减函数,即y随x的增大而减小,∵一次函数y=kx+b的图象与y轴交于点(0,2),∴当x≤0时,有kx+b≥2.故答案为x≤0【点评】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的解集是解答此题的关键.12.(3分)已知关于x的不等式组无解,则a的取值范围是a≥10.【分析】根据不等式组无解,可得出a≥10.【解答】解:∵关于x的不等式组无解,∴根据大大小小找不到(无解)的法则,可得出a≥10.故答案为a≥10.【点评】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).13.(3分)如图,在△ABC中,AB=6,BC=9,∠B=60°,将△ABC沿射线BC的方向平移3个单位后,得到△A'B'C',连接A'C.则△A'B'C的周长为18.【分析】根据平移性质,判定△A′B′C为等边三角形,然后求解.【解答】解:由题意,得BB′=3,∴B′C=BC﹣BB′=6.由平移性质,可知A′B′=AB=6,∠A′B′C=∠B=60°,∴A′B′=B′C且∠A′B′C=60°,∴△A′B′C为等边三角形,∴△A′B′C的周长=3A′B′=18.故答案为:18.【点评】本题考查的是平移的性质,熟知图形平移后新图形与原图形的形状和大小完全相同是解答此题的关键.14.(3分)不等式组有5个整数解,则a的取范围是﹣4<a≤﹣3【分析】首先解不等式组求得解集,然后根据不等式组只有两个整数解,确定整数解,则可以得到a的范围.【解答】解:由不等式x﹣a≥0,得:x≥a,∵不等式组有5个整数解,∴这5个整数解为1、0、﹣1、﹣2、﹣3,则﹣4<a≤﹣3,故答案为:﹣4<a≤﹣3.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.(3分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积为50和39,则△EDF的面积为 5.5.【分析】作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为三角形DNM的面积来求.【解答】解:作DM=DE交AC于M,作DN⊥AC,∵DE=DG,DM=DE,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,∴△DEF≌△DNM(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,S△DNM=S△DEF=S△MDG==5.5故答案为:5.5.【点评】本题考查了角平分线的性质及全等三角形的判定及性质,解题的关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求.16.(3分)在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).【分析】首先根据△OA1B1是边长为2的等边三角形,可得A1的坐标为(1,),B1的坐标为(2,0);然后根据中心对称的性质,分别求出点A2、A3、A4的坐标各是多少;最后总结出A n的坐标的规律,求出A2n+1的坐标是多少即可.【解答】解:∵△OA1B1是边长为2的等边三角形,∴A1的坐标为(1,),B1的坐标为(2,0),∵△B2A2B1与△OA1B1关于点B1成中心对称,∴点A2与点A1关于点B1成中心对称,∵2×2﹣1=3,2×0﹣=﹣,∴点A2的坐标是(3,﹣),∵△B2A3B3与△B2A2B1关于点B2成中心对称,∴点A3与点A2关于点B2成中心对称,∵2×4﹣3=5,2×0﹣(﹣)=,∴点A3的坐标是(5,),∵△B3A4B4与△B3A3B2关于点B3成中心对称,∴点A4与点A3关于点B3成中心对称,∵2×6﹣5=7,2×0﹣=﹣,∴点A4的坐标是(7,﹣),…,∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×4﹣1,…,∴A n的横坐标是2n﹣1,A2n+1的横坐标是2(2n+1)﹣1=4n+1,∵当n为奇数时,A n的纵坐标是,当n为偶数时,A n的纵坐标是﹣,∴顶点A2n+1的纵坐标是,∴△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).故答案为:(4n+1,).【点评】此题主要考查了坐标与图形变化﹣旋转问题,要熟练掌握,解答此题的关键是分别判断出A n的横坐标、纵坐标各是多少.三、作图题(本题满分0分)用圆规、直尺作图,不写作法,但要保留作图痕迹.17.已知线段a,求作△ABC,使AB=BC=AC=a.【分析】首先作射线AO,并在AO上取线段AB=a,再分别以A、B为圆心,a为半径画弧,两弧交于点C,然后连接AC、BC,即可得到△ABC.【解答】解:如图所示:△ABC即为所求.【点评】此题主要考查了复杂作图,关键是掌握做一条线段等于已知线段的方法.四、解答题(共7小题)18.解不等式(组)(1)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.(2),并写出不等式组的整数解.【分析】(1)不等式去括号、移项合并、系数化为1即可求出不等式的解集,再在数轴上表示出不等式的解集即可.(2)先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:(1)去括号,得2x+2﹣1≥3x+2,移项,得2x﹣3x≥2﹣2+1,合并同类项,得﹣x≥1,系数化为1,得x≤﹣1,这个不等式的解集在数轴上表示为:;(2)由①得x≥﹣1,由②得x<3,所以不等式组的解集是﹣1≤x<3,则整数解是﹣1,0,1,2.【点评】考查不等式(组)的解法;求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.如图所示∠A=∠D=90°,AB=DC,点E,F在BC上且BE=CF.(1)求证:AF=DE.(2)若PO⊥EF,求证:OP平分∠EOF.【分析】(1)由于△ABF与△DCE是直角三角形,根据直角三角形全等的判定和性质即可证明;(2)先根据三角形全等的性质得出∠AFB=∠DEC,再根据等腰三角形的性质得出结论.【解答】证明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE,∵∠A=∠D=90°,∴△ABF与△DCE都为直角三角形,在Rt△ABF和Rt△DCE中,,∴Rt△ABF≌Rt△DCE(HL),∴AF=DE;(2)∵Rt△ABF≌Rt△DCE(已证),∴∠AFB=∠DEC,∴OE=OF,∵OP⊥EF,∴OP平分∠EOF.【点评】本题主要考查了直角三角形全等的判定和性质及等腰三角形的性质,解题关键是由BE=CF通过等量代换得到BF=CE.20.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E.DF⊥AC 于点F.求证:AD是BC的垂直平分线.【分析】证明Rt△AED≌Rt△AFD(HL),得出∠ADE=∠ADF,证明Rt△BED≌△Rt △CFD(HL),得出∠BDE=∠CDF,则可得出结论.【解答】证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△AED和△RtAFD中,,∴Rt△AED≌Rt△AFD(HL),∴∠ADE=∠ADF,∵点D是BC的中点,∴BD=CD,在Rt△BED和Rt△CFD中,,∴Rt△BED≌△Rt△CFD(HL),∴∠BDE=∠CDF,∴∠ADB=∠ADC,即AD⊥BC,∴AD是BC的垂直平分线.【点评】本题考查全等三角形的判定与性质、角平分线的性质、垂直平分线的判定,解答本题的关键是熟练掌握全等三角形的判定与性质.21.如图,在由边长为1的小正方形组成的方格纸中,有两个全等的三角形,即△A1B1C1和△A2B2C2.(1)请你指出在方格纸内如何运用平移、旋转变换,将△A1B1C1重合到△A2B2C2上;(2)在方格纸中将△A1B1C1经过怎样的变换后可以与△A2B2C2成中心对称图形,画出变换后的三角形并标出对称中心.【分析】(1)将△A1B1C1先向上平移4个单位,再向右平移3个单位后绕点C1顺时针旋转90°即可得到△A2B2C2;(2)对称中心就是对称点连线的交点,据此即可作出.【解答】解:(1)将△A1B1C1先向上平移4个单位,再向右平移3个单位后绕点C1顺时针旋转90度即可得到△A2B2C2.(2)把△A1B1C1绕点C1逆时针旋转90度即可得到△A2B2C2成中心对称的位置,对称中心为P.【点评】本题考查的是平移变换与旋转变换作图.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.作旋转后的图形的依据是旋转的性质,基本作法是①先确定图形的关键点;②利用旋转性质作出关键点的对应点;③按原图形中的方式顺次连接对应点.要注意旋转中心,旋转方向和角度.中心对称是旋转180度时的特殊情况.22.某餐厅计划购买12张餐桌和一批椅子(不少于12把),现从甲、乙两商场了解到同一型号的餐桌报价都为每张200元,餐椅报价都为每把50元.甲商场规定:每购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌、餐椅均按报价的八五折销售,那么,什么情况下到甲商场购买更优惠.【分析】本题中去甲商场购买所花的费用=餐桌的单价×购买的餐桌的数量+餐椅的单价×实际购买的餐椅的数量(注意要减去赠送的椅子的数量).去乙商场购买所花的费用=(购买的餐桌花的钱+购买餐椅花的钱)×8.5折.如果设餐椅的数量为x,那么可用x 表示出到甲、乙两商场购买所需要费用.然后根据“甲商场购买更优惠”,让甲的费用小于乙的费用,得出不等式求出x的取值范围,然后得出符合条件的值.【解答】解:设学校计划购买x把餐椅,到甲、乙两商场购买所需要费用分别为y甲、y,乙y甲=200×12+50(x﹣12),即:y甲=1800+50x;y乙=(200×12+50x)×85%,即y乙=2040+x;当y甲<y乙时,1800+50x<2040+x,∴x<32,又根据题意可得:x≥12,∴12≤x<32,综上所述,当购买的餐椅大于等于12少于32把时,到甲商场购买更优惠.【点评】本题考查了一元一次方程的应用和一元一次不等式的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出不等式,求出所要求的值.23.某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台)75每台日产量(个)10060(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种购买方案?【分析】(1)设购买甲种机器x台(x≥0),则购买乙种机器(6﹣x)台,根据买机器所耗资金不能超过34万元,即购买甲种机器的钱数+购买乙种机器的钱数≤34万元.就可以得到关于x的不等式,就可以求出x的范围.(2)该公司购进的6台机器的日生产能力不能低于380个,就是已知不等关系:甲种机器生产的零件数+乙种机器生产的零件数≤380件.根据(1)中的三种方案,可以计算出每种方案的需要资金,从而选择出合适的方案.【解答】解:(1)设购买甲种机器x台(x≥0),则购买乙种机器(6﹣x)台.依题意,得7x+5×(6﹣x)≤34.解这个不等式,得x≤2,即x可取0,1,2三个值.∴该公司按要求可以有以下三种购买方案:方案一:不购买甲种机器,购买乙种机器6台.方案二:购买甲种机器1台,购买乙种机器5台.方案三:购买甲种机器2台,购买乙种机器4台.(2)根据题意,100x+60(6﹣x)≥380,解之,可得:x≥,由上题解得:x≤2,即≤x≤2,∴x可取1,2两个值,即有以下两种购买方案:方案一购买甲种机器1台,购买乙种机器5台,所耗资金为1×7+5×5=32万元;方案二购买甲种机器2台,购买乙种机器4台,所耗资金为2×7+4×5=34万元.∴为了节约资金应选择方案一.故应选择方案一.【点评】解决本题的关键是读懂题意,找到符合题意的不等关系式,正确确定各种情况,确定各种方案是解决本题的关键.24.问题的提出:如果点P是锐角△ABC内一动点,如何确定一个位置,使点P到△ABC的三顶点的距离之和P A+PB+PC的值为最小?问题的转化:把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,这样就把确定P A+PB+PC 的最小值的问题转化成确定BP+PP′+P′C′的最小值的问题了,请你利用图1证明:P A+PB+PC=BP+PP′+P′C′.问题的解决:当点P到锐角△ABC的三顶点的距离之和P A+PB+PC的值为最小时,请你用一定的数量关系刻画此时的点P的位置∠APB=∠APC=120°.问题的延伸:如图2是有一个锐角为30°的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.【分析】(1)问题的转化:根据旋转的性质证明△APP'是等边三角形,则PP'=P A,可得结论;(2)问题的解决:运用类比的思想,把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,由“问题的转化”可知:当B、P、P'、C'在同一直线上时,P A+PB+PC的值为最小,确定当:∠APB=∠APC=120°时,满足三点共线;(3)问题的延伸:如图3,作辅助线,构建直角△ABC',利用勾股定理求AC'的长,即是点P到这个三角形各顶点的距离之和的最小值.【解答】解:问题的转化:如图1,由旋转得:∠P AP'=60°,P A=P'A,∴△APP'是等边三角形,∴PP'=P A,∵PC=P'C,∴P A+PB+PC=BP+PP′+P′C′.问题的解决:满足:∠APB=∠APC=120°时,P A+PB+PC的值为最小;理由是:如图2,把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,由“问题的转化”可知:当B、P、P'、C'在同一直线上时,P A+PB+PC的值为最小,∵∠APB=120°,∠APP'=60°,∴∠APB+∠APP'=180°,∴B、P、P'在同一直线上,由旋转得:∠AP'C'=∠APC=120°,∵∠AP'P=60°,∴∠AP'C'+∠AP'P=180°,∴P、P'、C'在同一直线上,∴B、P、P'、C'在同一直线上,∴此时P A+PB+PC的值为最小,故答案为:∠APB=∠APC=120°;问题的延伸:如图3,Rt△ACB中,∵AB=2,∠ABC=30°,∴AC=1,BC=,把△BPC绕点B逆时针旋转60度得到△BP′C′,连接PP′,当A、P、P'、C'在同一直线上时,P A+PB+PC的值为最小,由旋转得:BP=BP',∠PBP'=60°,PC=P'C',BC=BC',∴△BPP′是等边三角形,∴PP'=PB,∵∠ABC=∠APB+∠CBP=∠APB+∠C'BP'=30°,∴∠ABC'=90°,由勾股定理得:AC'===,∴P A+PB+PC=P A+PP'+P'C'=AC'=,则点P到这个三角形各顶点的距离之和的最小值为.【点评】本题主要考查三角形的旋转变换的性质、勾股定理、等边三角形的判定与性质等知识点,将待求线段的和通过旋转变换转化为同一直线上的线段来求是解题的关键.。
北师大版八年级下册数学等腰三角形专项训练(原创) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,等腰三角形ABC 中,,AB AC =延长BC 至点,D 恰好使得,CA CD =若84BAD ∠=︒,则B 为( )A .32B .48C .52D .64 2.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A .20°B .35°C .40°D .70° 3.一个等腰三角形的三边长分别为21x -、1x +、32x -,该等腰三角形的周长是( ) A .10或4 B .10或7 C .4或7 D .10或4或7 4.若等腰三角形的一个内角为80°,则这个等腰三角形的底角为( )A .80°B .50°C .80°或50°D .80°或20° 5.如图,在Rt △ABC 中,∠ACB=90°,AB=2BC ,在直线BC 或AC 上取一点P ,使得△PAB 为等腰三角形,则符合条件的点P 共有( )A .4个B .5个C .6个D .7个6.已知等腰三角形的两边长x ,y 满足2|4|(8)0x y -+-=,则这个等腰三角形的周长为( )A .16B .20C .16或20D .以上都不对 7.如图,已知 AB =AC =BD ,则∠1与∠2的关系是( )A .3∠1﹣∠2=180°B .2∠1+∠2=180°C .∠1+3∠2=180°D .∠1=2∠28.如图,在△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别是∠ABC 、∠BCD 的平分线,则图中的等腰三角形有( )A .5个B .4个C .3个D .2个9.如图,在△ABC 中,∠B =45°,∠ACB =60°,AB =16,AD ⊥BC ,垂足为D ,∠ACB 的平分线交AD 于点E ,则AE 的长为( )A B . C .163 D .二、填空题10.有两边相等的三角形的一边是7,另一边是4,则此三角形的周长是_____. 11.等腰三角形的一个底角为50︒,则它的顶角的度数为__________.12.有一个顶角为30°的等腰三角形,若腰长为4,则腰上的高是________13.在Rt ABC ∆中,90C ∠=︒,30A ∠=︒,32BC =,AB =_______.14.已知直角三角形中30°角所对的直角边为2cm ,则斜边的长度为_______cm . 15.在ABC 中,AB AC =,60A ∠=︒,6BC =,则AB =____.三、解答题16.已知:如图,AB AC =,DE AC ,求证:DBE 是等腰三角形.17.已知:如图,在梯形ABCD 中,//CD AB ,AD BC =,E 是AB 上一点,且AE CD =,60B ∠=,求证:EBC ∆是等边三角形.18.如图,在ABC 中,90ACB ∠=︒,AC BC =,点D 在AB 边上,AD AC =,过点B 作BE CD ⊥,交CD 的延长线于点E .(1)求BCD ∠的度数;(2)求证:2CD BE =.19.如图,以平行四边形ABCD 的边DC BC 、分别做等边BCE ∆和等边CDF ∆. (1)求证:AE AF =;(2)求EAF ∠的度数.20.已知:如图,点B,C,D在同一直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE于点H,(1)求证:△BCE≌△ACD;(2)求证:CF=CH;(3)判断△CFH的形状并说明理由.21.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.⑴如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;⑵如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;⑶当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.参考答案1.D【来源】重庆市西南大学附中2018-2019学年七年级下学期期末数学试题【解析】【分析】根据等边对等角可得CAD D ∠=∠,再通过三角形外角的性质可得2ACB CAD D D =+=∠∠∠∠,再根据等边对等角可得2B ACB D ==∠∠∠,再根据三角形内角和定理求出32D ∠=︒,即可求出B 的度数.【详解】∵CA CD =∴CAD D ∠=∠∴2ACB CAD D D =+=∠∠∠∠∵AB AC =∴2B ACB D ==∠∠∠∵84BAD ∠=︒∴180180284BAD B D D D ∠=︒--=︒--=︒∠∠∠∠∴32D ∠=︒∴264B D ==︒∠∠故答案为:D .【点睛】本题考查了三角形内角的度数问题,掌握等边对等角、三角形外角的性质、三角形内角和定理是解题的关键.2.B【来源】浙江省湖州市2018年中考数学试题【解析】【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB )=70°.再利用角平分线定义即可得出∠ACE=12∠ACB=35°. 【详解】∵AD 是△ABC 的中线,AB=AC ,∠CAD=20°, ∴∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB )=70°. ∵CE 是△ABC 的角平分线,∴∠ACE=12∠ACB=35°. 故选B .【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.3.B【来源】湖南省长沙市湘郡培粹实验中学2019-2020学年八年级上学期10月月考数学试题【解析】【分析】三边的长度都不清楚,所以需要讨论三种情况,然后找出能组成三角形的组合,算出答案.【详解】解:若21x -=1x +,则x=2,则三边为3,3,4,符合条件,周长为10;若21x -=32x -,则x=1,则三边为1,1,2 无法构成三角形.若1x +=32x -,则x=32,则三边为52,52,2,符合条件,周长为7; 综上该等腰三角形的周长为10或7.【点睛】求三角形的周长一定要注意三边能否构成三角形.4.C【来源】【区级联考】山东省枣庄市薛城区2018-2019学年八年级第二学期期中考试数学试题【解析】【分析】利用等腰三角形的性质,分两种情况解答本题即可得到答案.【详解】①当80°为顶角时,底角=()18080250︒︒︒-÷=,②当80°为底角时,底角为80°,∴底角为 80°或50°,故选C.【点睛】本题考查等腰三角形的性质,以及分类讨论思想.分两种情况讨论是解答本题的关键. 5.C【来源】2014-2015学年四川省自贡赵化中学八年级上学期第三次段考数学试卷(带解析)【解析】【分析】根据等腰三角形的判定,“在同一三角形中,有两条边相等的三角形是等腰三角形(简称:在同一三角形中,等边对等角)”分三种情况解答即可.【详解】解:如图,①AB 的垂直平分线交AC 一点P 1(PA=PB ),交直线BC 于点P 2;②以A 为圆心,AB 为半径画圆,交AC 有二点P 3,P 4,交BC 有一点P 2,(此时AB=AP ); ③以B 为圆心,BA 为半径画圆,交BC 有二点P 5,P 2,交AC 有一点P 6(此时BP=BA ). 2+(3-1)+(3-1)=6,∴符合条件的点有六个.故选C .6.B【来源】山西省运城市芮城县2018-2019学年七年级下学期期末数学试题【解析】【分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.【详解】根据题意得,x−4=0,y−8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形;②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20.所以,三角形的周长为20.故选:B.【点睛】本题考查了等腰三角形的性质,绝对值非负数,平方非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.7.A【来源】湖北省武汉市洪山区2018-2019学年八年级上学期期中调研考试数学试卷(word)【解析】【分析】根据等腰三角形的性质和三角形内角和定理可得∠1 和∠C 之间的关系,再根据三角形外角的性质可得∠1 和∠2 之间的关系.【详解】解:∵AB=AC=BD,∴∠B=∠C=180°﹣2∠1,∴∠1﹣∠2=180°﹣2∠1,∴3∠1﹣∠2=180°.故选A.【点睛】本题考查等腰三角形的性质:等腰三角形的两个底角相等,三角形内角和定理以及三角形外角的性质;熟练掌握等腰三角形的性质,弄清角之间的数量关系是解决问题的关键,本题难度适中.8.A【来源】山东省德州市武城县实验中学2019-2020学年八年级上学期期中数学试题【解析】【分析】由等边对等角可求出∠ABC=∠ACB=72°,再根据角平分线与三角形外角性质求出图中其余角度,在图中标注出角度,根据相等的角找出等腰三角形即可得解.【详解】∵在△ABC 中,AB =AC ,∠A =36°∴∠ABC=∠ACB=()1180A 2-∠=72° ∵BD 、CE 分别是∠ABC 、∠BCD 的平分线∴∠ABD=∠CBD=12∠ABC=36°,∠ACE=∠BCE=12∠ACB=36° ∴∠CDE=∠A+∠ABD=72°,∠CED=∠BCE+∠CBD=72°,在图中标注如下:等腰三角形有:△ABC ,△ABD ,△BCE ,△CDE ,△BCD ,总共5个,故选A.【点睛】本题考查等腰三角形的判断,根据三角形内角和与外角性质求出角度是关键.9.C【来源】广东省汕头市潮南区两英镇2018-2019学年八年级期末数学试题【解析】【分析】在Rt △ABD 中,利用等腰直角三角形的性质列方程求解可求出AD 和BD 的长度,在Rt △ADC 中;根据直角三角形中30度角所对的直角边是斜边的一半的性质可列方程解出CD ,同理可得DE 的长度,再利用AE=AD −DE 即可求出AE 的长度.【详解】解:∵AD ⊥BC ,∴∠ADB =∠ADC =90°,即△ABD 、△ADC 和△CDE 为直角三角形,在Rt △ABD 中,∵∠ADB =90°,AB =16,∠B =45°,∴∠B=∠BAD =45°,则AD =BD ,设AD =BD=x ,由勾股定理得:22216+=x x ,解得:=x AD =BD=在Rt △ADC 中,∵∠ADC =90°,∠ACD =60°,AD =∴∠CAD =30°,则12CD AC =, 设CD =x ,则AC =2x ,由勾股定理得:222(2)+=x x ,解得:3=x ,即CD 3=, ∵CE 平分∠ACD ,∴∠ECD =30°,在Rt △CDE 中,同理得:DE =,∴AE =AD ﹣DE =3=3=, 故选:C .【点睛】 本题主要考查了勾股定理、等腰直角三角形的性质和直角三角形中30度角所对的直角边是斜边的一半,根据勾股定理构造方程是解题的关键.10.15或18【来源】北京交大附中2018-2019学年七年级下学期期末数学试题【解析】【分析】有两边相等的三角形是等腰三角形,由于不确定哪边是底,哪边是腰,故分两种情况讨论,并结合构成三角形的三边的关系,即可得解.【详解】若7为底,则三边为7,4,4,由于4+4>7,故可以构成三角形,周长为15;若4为底,则三边为4,7,7,也可以构成三角形,周长为18.故答案为:15或18.【点睛】本题考查等腰三角形的性质及三角形三边关系,分类讨论哪边为底哪边为腰是解题关键.11.80【来源】四川省成都市2018年中考数学试题【解析】分析:本题给出了一个底角为50°,利用等腰三角形的性质得另一底角的大小,然后利用三角形内角和可求顶角的大小.详解:∵等腰三角形底角相等,∴180°-50°×2=80°,∴顶角为80°.故答案为80°.点睛:本题考查等腰三角形的性质,即等边对等角.找出角之间的关系利用三角形内角和求角度是解答本题的关键.12.2【来源】上海市静安区实验中学九年级下学期沪教版五四制第一轮复习直角三角形【解析】【分析】根据等腰三角形和直角三角形的性质即可得到结论.【详解】如图,∵AC=AB=4,∠A=30°,∵BD⊥AC于D,∴∠ADB=90°,∴BD=12AB=2,故答案为2.【点睛】此题考查等腰三角形的性质和直角三角形的性质,熟练掌握等腰三角形的性质是解题的关键.13.3【来源】吉林省长春市东北师范大学附属中学2017-2018学年八年级下学期期末数学试题【解析】【分析】根据30°所对的直角边等于斜边的一半求解.【详解】解:∵∠C=90°,∠A=30°,BC=32,∴AB=2BC=3.故答案为:3.【点睛】本题考查含30°角的直角三角形的性质,熟练掌握直角三角形的性质是解题的关键.14.4【来源】福建省平潭县2018-2019学年八年级上学期期中数学试题【解析】【分析】在直角三角形中,30°角所对的直角边为斜边的一半,据此进一步求解即可.【详解】∵在直角三角形中,30°角所对的直角边为斜边的一半,且该直角边长为2cm,∴该直角三角形斜边长度为4cm,故答案为:4.【点睛】本题主要考查了直角三角形性质,熟练掌握相关概念是解题关键.15.6【来源】吉林省名校2019-2020学年八年级上学期期中调研A数学试题【解析】【分析】根据等边三角形的判定与性质即可得.【详解】=AB AC∴是等腰三角形ABC∠=︒A60∴等腰ABC是等边三角形∴==AB BC6故答案为:6.【点睛】本题考查了等边三角形的判定与性质,掌握等边三角形的判定与性质是解题关键.16.见解析【来源】北京市第一六六中学2017-2018学年八年级上学期期中考试数学试题【解析】试题分析:根据等角对等边即可证明.试题解析:=,证明:∵AB AC∠=∠,∴B C∵DE∥AC,∠=∠=∠,∴C ADE B=,∴DB DE∴DBE 为等腰三角形.17.见解析.【来源】安徽省宿州市萧县2018-2019学年八年级下学期期末数学试题【解析】【分析】由已知条件证得四边形AECD 是平行四边形,则CE=AD ,从而得出CE=CB ,然后根据有一个角是60°的等腰三角形是等边三角形即可证得结论.【详解】证明://CD AB ,AE CD =,∴四边形AECD 是平行四边形,CE AD ∴=,AD BC =,BC EC ∴=60B ∠=,BEC ∴∆是等边三角形.【点睛】本题考查了等腰梯形的性质,等边三角形的判定,平行四边形的判定和性质,熟练掌握各定理是解题的关键.18.(1)22.5︒;(2)见解析【来源】广西壮族自治区贵港市覃塘区2018-2019学年八年级下学期期中数学试题【解析】【分析】(1)根据等腰三角形的性质以及三角形的内角和定理求解即可;(2)过点作AF CD ⊥于点F ,得出122.52CAF BAC ∠=∠=︒,因此,22.5BCE CAF ∠=∠=︒,再证明BCE CAF ≌△△,推出BE CF =,然后即可证明结论. 【详解】解:(1)∵90ACB ∠=︒,AC BC =,∴45BAC ABC ∠=∠=︒,∵AD AC =, ∴()11804567.52ACD ADC ︒︒∠=∠=⨯-=︒, ∴9067.522.5BCD ACB ACD ∠=∠-∠=︒-︒=︒.(2)证明:如图,过点作AF CD ⊥于点F .∵AD AC =,45BAC ∠=︒, ∴122.52CAF BAC ∠=∠=︒, ∴22.5BCE CAF ∠=∠=︒,又BE CD ⊥,∴90AFC BEC ∠=∠=︒,∵BC AC =,∴BCE CAF ≌△△,∴BE CF =, 又12CF DF CD ==, ∴2CD BE =.【点睛】本题考查的知识点是三角形的内角和定理,角平分线的性质,全等三角形的判定及性质,根据图形找准各角之间的数量关系是解此题的关键.19.(1)见解析(2)60°【来源】河南省洛阳市高新区三山学校2018-2019学年八年级下学期期中数学试题【解析】【分析】(1)根据平行四边形的性质得出AB=CD ,BC=AD ,∠ABC=∠ADC ,根据等边三角形的性质得出DC=DF ,BC=BE ,∠EBC=∠CDF=60°,求出AB=DF ,BE=DA ,∠ABE=∠FDA ,根据SAS 推出△ABE ≌△FDA 即可.(2)连结EF ,设∠ABC=α,则∠BCD=180°-α,通过图形上角的关系,用α表示出∠FCE ,∠ABE 即可得到关键条件∠ABE=∠FCE ,再用同(1)的方法证明△ABE ≌△FCE ,得到EF=AE ,进一步得到AE=AF=EF ,△AEF 为等边三角形求得EAF ∠=60°. 【详解】解:(1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,BC=AD ,∠ABC=∠ADC ,∵△BCE 和△CDF 为等边三角形,∴DC=DF ,BC=BE ,∠EBC=∠CDF=60°,∴AB=DF ,BE=DA ,∠ABE=∠FDA ,在△ABE 和△FDA 中AB DF ABE FDA BE AD =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△FDA (SAS ),∴AE=AF .(2)连结EF ,设∠ABC=α,∵四边形ABCD 是平行四边形,∴∠BCD=180°-α, ∴∠FCE=360°-∠BCE-∠DCF-∠BC,D=360°-60°-60°-(180°-α)= 60°+α, 而∠ABE=∠CBE+∠ABC=60°+α,∴∠ABE=∠FCE ,又∵△BCE 和△CDF 为等边三角形,∴EC=BE ,CF=CD ,∵四边形ABCD 是平行四边形,∴AB=CD ,∴CF=AB ,在△ABE 和△FCE 中AB CF ABE FCE BC EC =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△FCE(SAS),∴EF=AE,∴AE=AF=EF,∴△AEF 为等边三角形,∴EAF ∠=60°【点睛】本题考查了平行四边形的性质,全等三角形的性质和判定,等边三角形的性质的应用,能综合运用定理进行推理是解此题的关键.20.①证明见解析②证明△BCF≌△ACH;③△CFH 是等边三角形【来源】人教版八年级上册数学第13章13.3.2《等边三角形》【同步练习】【解析】试题分析:①利用等边三角形的性质得出条件,可证明:△BCE ≌△ACD ;②利用△BCE ≌△ACD 得出∠CBF=∠CAH ,再运用平角定义得出∠BCF=∠ACH 进而得出△BCF ≌△ACH 因此CF=CH .③由CF=CH 和∠ACH=60°根据“有一个角是60°的三角形是等边三角形可得△CFH 是等边三角形.试题解析:①证明:∵∠BCA=∠DCE=60°,∴∠BCE=∠ACD .又BC=AC 、CE=CD ,∴△BCE ≌△ACD .②∵△BCE ≌△ACD ,∴∠CBF=∠CAH .∵∠ACB=∠DCE=60°,∴∠ACH=60°.∴∠BCF=∠ACH.又BC=AC,∴△BCF≌△ACH.∴CF=CH.③∵CF=CH,∠ACH=60°,∴△CFH是等边三角形.点睛:本题考查了三角形全等的判定和性质及等边三角形的性质;普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS.同时还要结合等边三角形的性质,创造条件证明三角形全等是正确解答本题的关键.21.(1)40°;(2)36°;(3)2∠CDE=∠BAD,理由见解析.【来源】湖北省孝感市八校联谊2017-2018学年八年级上12月联考数学试卷含答案【解析】【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D在点B的左侧时,∠ADC=x°-α,②如图2,当点D在线段BC上时,∠ADC=y°+α,③如图3,当点D在点C右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.【详解】解:(1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠CDE=∠AED-∠C=75°−35°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°−18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75° ,∴∠BAD=36°.(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D 在点B 的左侧时,∠ADC=x°﹣α∴y x y x ααβ=+⎧⎨=-+⎩①② -②得,2α﹣β=0,∴2α=β;②如图2,当点D 在线段BC 上时,∠ADC=y°+α∴+y x y x ααβ=+⎧⎨=+⎩①② -①得,α=β﹣α,∴2α=β;③如图3,当点D 在点C 右侧时,∠ADC=y°﹣α∴180180y x y x αβα-++=⎧⎨++=⎩①② -①得,2α﹣β=0,∴2α=β.综上所述,∠BAD 与∠CDE 的数量关系是2∠CDE=∠BAD .【点睛】本题考查了等腰三角形的性质,三角形外角的性质,三角形的内角和,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.。
试卷说明:1. 本试卷考试时间为 100 分钟,总分数为 120 分.2. 本试卷共 10 页,八道大题,30 道小题.3. 请将答案都写在答题纸上.4.一律不得使用涂改液及涂改带,本试卷主观试题铅笔答题无效. 5. 注意保持卷面整洁,书写工整。
试卷命题人:苏海燕 吴勇 试卷审核人:陈平&北师大附属实验中学 2018—2019 学年度第二学期初二数学期中考试试卷A 卷一、选择题(本大题共 10 道小题,每小题 3 分,共 30 分)1. 下列各组数中,以它们为边长的线段能构成直角三角形的是()。
A. 2,4,4B.√2,2,2C.3,4,5D.5,12,142. 下列各式中属于最简二次根式的是( )。
A .√3B . √20C. %√D . '()3. 如图,在□ABCD 中,若∠A = 2∠B ,则∠C 的度数为()。
A .60°B.90°C.120°D.150°4. 如图,矩形ABCD 中,对角线AC ,BD 交于点O . 若∠AOD = 120°,AC = 4则CD 的长为( )。
A. 2B. 3C.2√2D. 2√35.若函数y = (m + 1)x |9|:)是反比例函数,则m =()。
A.±1B. ±3C. −1D. 16. 下列说法错.误.的是().A.直角三角形斜边上的中线等于斜边的一半B.对角线互相垂直的四边形是菱形C.三个角是直角的四边形是矩形D.对角线互相垂直且相等的平行四边形是正方形7. 如图,正方形ABOC的边长为 3,点A在反比例函数y = > (k≠ 0)的图象上,则k的值是()。
A.3 B. -3 C.9 D.−98. 如图,在□ABCD中,AB = 3,AD = 5,∠ABC的平分线交AD于E,交CD的延长线于点F,则DF=().A.1 B.√3 C.2 D.39. 已知点A(−2, y(),B(−1, y)),C(3, y%)反比例函数y = G上,则y(,y),y%的大小关系是()A.y1 > y2> y3B. y3 > y1 > y2C.y3 > y2 > y1D. y2 > y1 > y310.如图,边长为 1 的正方形ABCD的对角线交于点O,点E是边AB上一动点,点F在边BC上,且满足OE⊥OF,在点E由A运动到B的过程中,以下结论:①线段OE的大小先变小后变大;②线段EF的大小先变大后变小;③四边形OEBF的面积先变大后变小。
北师大版数学八年级下册期中检测题姓名: 得分:一、选择题1.如图,△ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于( )A .1:1:1B .1:2:3C .2:3:4D .3:4:52.式子:①2>0;②4x +y ≤1;③x +3=0;④y ﹣7;⑤m ﹣2.5>3.其中不等式有( )A .1个B .2个C .3个D .4个3.下列不等式变形正确的是( )A .由a >b ,得ac >bcB .由a >b ,得a ﹣2<b ﹣2C .由﹣>﹣1,得﹣>﹣aD .由a >b ,得c ﹣a <c ﹣b4.不等式组的解集在数轴上表示为( )A .B .C .D .5.不等式﹣2x >的解集是( )A .x <﹣B .x <﹣1C .x >﹣D .x >﹣16.如图,△ABC 的面积为12,将△ABC 沿BC 方向移到△A′B′C′的位置,使B′与C 重合,连接AC′交A′C 于D ,则△C′DC 的面积为( )A.10 B.8 C.6 D.47.下列条件能判定△ABC为等腰三角形的是()A.∠A=30°,∠B=60°B.AB=5,AC=12,BC=13C.∠A=50°,∠B=80°D.∠A:∠B:∠C=3:4:58.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A.2 B.3 C.D.49.如图,在Rt△ABC中,∠C=90°,∠ABC=60°,AB的垂直平分线分别交AB与AC于点D和点E.若CE=2,则AB的长是()A.4 B.4C.8 D.810.已知a>b,下列关系式中一定正确的是()A.a2<b2B.2a<2b C.a+2<b+2 D.﹣a<﹣b11.下列图形中,既是中心对称图又是轴对称图形的是()A.B. C.D.12.把代数式x3﹣4x2+4x分解因式,结果正确的是()A.x(x2﹣4x+4)B.x(x﹣4)2C.x(x+2)(x﹣2)D.x(x﹣2)2二、填空题13.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,设运动时间为t秒,当t为时,△ACP是等腰三角形.14.如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为.15.如图,在3×3的网格中,每个网格线的交点称为格点.已知图中A,B两个格点,请在图中再寻找另一个格点C,使△ABC成为等腰三角形,则满足条件的点C有个.16.因式分解多项式2a2b3+6ab2,应提取的公因式是.三、解答题17.如图,在四边形ABCD中,∠B=90°,DE∥AB交BC于E、交AC于F,∠CDE=∠ACB=30°,BC=DE.求证:△FCD是等腰三角形.18.已知:如图所示,Rt△ABC中,∠C=90°,∠A、∠B的平分线AD、BE交于F,求∠AFB的度数.19.如图,在△ABC中,边AB的垂直平分线交BC,AB于点E,M,边AC的垂直平分线交BC,AC于点F,N,△AEF的周长是10.(1)求BC的长度;(2)若∠B+∠C=45°,EF=4,求△AEF的面积.20.将下列不等式化成“x>a”或“x<a”的形式:(1)x﹣17<﹣5;(2)>﹣3.21.某班50名学生上体育课,老师出了一道题:现在我拿出一些篮球,如果每5名同学打一个篮球,有些同学就会没有球打;如果每6名同学打一个篮球,其中有一个篮球打的人数就会不足6人.请写出篮球数x与人数的不等关系.22.因式分解:(1)xy(x﹣y)﹣x(x﹣y)2(2)(a2+b2)2﹣4a2b2.23.数学课上老师出了一道题:计算2962的值,喜欢数学的小亮举手做出这道题,他的解题过程如下:2962=(300﹣4)2=3002﹣2×300×(﹣4)+42=90000+2400+16=92416老师表扬小亮积极发言的同时,也指出了解题中的错误,你认为小亮的解题过程错在哪儿,并给出正确的答案.答案与解析1.如图,△ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于( )A .1:1:1B .1:2:3C .2:3:4D .3:4:5【考点】KF :角平分线的性质.【专题】选择题【分析】利用角平分线上的一点到角两边的距离相等的性质,可知三个三角形高相等,底分别是20,30,40,所以面积之比就是2:3:4.【解答】解:利用同高不同底的三角形的面积之比就是底之比可知选C . 故选C .【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质及三角形的面积公式.做题时应用了三个三角形的高时相等的,这点式非常重要的.2.式子:①2>0;②4x +y ≤1;③x +3=0;④y ﹣7;⑤m ﹣2.5>3.其中不等式有( )A .1个B .2个C .3个D .4个【考点】C1:不等式的定义.【专题】选择题【分析】找到用不等号连接的式子的个数即可.【解答】解:①是用“>”连接的式子,是不等式;②是用“≤”连接的式子,是不等式;③是等式,不是不等式;④没有不等号,不是不等式;⑤是用“>”连接的式子,是不等式;∴不等式有①②⑤共3个,故选C.【点评】用到的知识点为:用“<,>,≤,≥,≠”连接的式子叫做不等式.3.下列不等式变形正确的是()A.由a>b,得ac>bc B.由a>b,得a﹣2<b﹣2C.由﹣>﹣1,得﹣>﹣a D.由a>b,得c﹣a<c﹣b【考点】C2:不等式的性质.【专题】选择题【分析】分别利用不等式的基本性质判断得出即可.【解答】解:A、由a>b,得ac>bc(c>0),故此选项错误;B、由a>b,得a﹣2>b﹣2,故此选项错误;C、由﹣>﹣1,得﹣>﹣a(a>0),故此选项错误;D、由a>b,得c﹣a<c﹣b,此选项正确.故选:D.【点评】此题主要考查了不等式的基本性质,正确掌握不等式基本性质是解题关键.4.不等式组的解集在数轴上表示为()A. B.C.D.【考点】C4:在数轴上表示不等式的解集.【专题】选择题【分析】根据在数轴上表示不等式解集的方法进行解答即可.【解答】解:∵x>﹣1,∴在﹣1处是空心圆点且折线向右,∵x<2,∴在2处是空心圆点且折现向左,不等式组的解集在数轴上表示在数轴上表示为:故选B.【点评】本题考查的是在数轴上表示不等式的解集,熟知小于向左,大于向右是解答此题的关键.5.不等式﹣2x>的解集是()A.x<﹣ B.x<﹣1 C.x>﹣D.x>﹣1【考点】C6:解一元一次不等式.【专题】选择题【分析】根据不等式的基本性质两边都除以﹣2可得.【解答】解:两边都除以﹣2可得:x<﹣,故选:A.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.6.如图,△ABC的面积为12,将△ABC沿BC方向移到△A′B′C′的位置,使B′与C重合,连接AC′交A′C于D,则△C′DC的面积为()A.10 B.8 C.6 D.4【考点】Q2:平移的性质.【专题】选择题【分析】根据题意,可求得D为A′B′的中点,则可知△C′DC的面积为△ABC的面积的一半.【解答】解:∵将△ABC沿BC方向移到△A′B′C′的位置,使B′与C重合,∴AB∥A′B′,∵BC=CC′,∴D为A′B′的中点,∴△C′DC的面积为△ABC的面积的一半,即6,故选C.【点评】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.7.下列条件能判定△ABC为等腰三角形的是()A.∠A=30°,∠B=60°B.AB=5,AC=12,BC=13C.∠A=50°,∠B=80°D.∠A:∠B:∠C=3:4:5【考点】KI:等腰三角形的判定.【专题】选择题【分析】根据等腰三角形判定,利用三角形内角定理对4个选项逐一进行分析即可得到答案.【解答】解;A、当∠A=30°,∠B=60°时,∠C=90°,不是等腰三角形,所以A选项错误.B、当AB=5,AC=12,BC=13,52+122=132,所以是直角三角形,不是等腰三角形,错误;C、当A=50°,∠B=80°,∠C=50°,是等腰三角形,正确,D、当∠A:∠B:∠C=3:4:5,不是等腰三角形,所以D选项错误.故选C.【点评】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和掌握,解答此题的关键是熟练掌握三角形内角和定理.8.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A.2 B.3 C.D.4【考点】KF:角平分线的性质.【专题】选择题【分析】作PE⊥OA于E,根据角平分线的性质解答.【解答】解:作PE⊥OA于E,∵点P是∠AOB平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD=2,故选:A.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.9.如图,在Rt△ABC中,∠C=90°,∠ABC=60°,AB的垂直平分线分别交AB与AC于点D和点E.若CE=2,则AB的长是()A.4 B.4C.8 D.8【考点】KO:含30度角的直角三角形;KG:线段垂直平分线的性质.【专题】选择题【分析】由ED是线段AB的垂直平分线,根据线段垂直平分线定理得到EA=EB,根据等边对等角可得∠A和∠ABE相等,由∠A的度数求出∠ABE的度数,得出∠EBC=∠EBA=30°,再由角平分线上的点到角的两边的距离相等得出DE=CE=2.由30°角所对的直角边等于斜边的一半,可得AE=2ED=4,由勾股定理求出AD,那么AB=2AD.【解答】解:∵在Rt△ABC中,∠C=90°,∠ABC=60°,∴∠A=30°,∵DE是线段AB的垂直平分线,∴EA=EB,ED⊥AB,∴∠A=∠EBA=30°,∴∠EBC=∠ABC﹣∠EBA=30°,又∵BC⊥AC,ED⊥AB,∴DE=CE=2.在直角三角形ADE中,DE=2,∠A=30°,∴AE=2DE=4,∴AD==2,∴AB=2AD=4.故选B.【点评】此题考查了线段垂直平分线的性质,角平分线的性质,含30°角的直角三角形的性质,勾股定理,解题的关键是熟练掌握含30°角的直角三角形的性质,即在直角三角形中,30°角所对的直角边等于斜边的一半.10.已知a>b,下列关系式中一定正确的是()A.a2<b2B.2a<2b C.a+2<b+2 D.﹣a<﹣b【考点】C2:不等式的性质.【专题】选择题【分析】根据不等式的性质分别进行判断,即可求出答案.【解答】解:A,a2<b2,错误,例如:2>﹣1,则22>(﹣1)2;B、若a>b,则2a>2b,故本选项错误;C、若a>b,则a+2>b+2,故本选项错误;D、若a>b,则﹣a<﹣b,故本选项正确;故选:D.【点评】此题考查了不等式的性质,掌握不等式的性质是解题的关键,不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.11.下列图形中,既是中心对称图又是轴对称图形的是()A.B. C.D.【考点】R5:中心对称图形;P3:轴对称图形.【专题】选择题【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图,不是轴对称图形,故本选项错误;C、既是中心对称图又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.12.把代数式x3﹣4x2+4x分解因式,结果正确的是()A.x(x2﹣4x+4)B.x(x﹣4)2C.x(x+2)(x﹣2)D.x(x﹣2)2【考点】55:提公因式法与公式法的综合运用.【专题】选择题【分析】根据提公因式,完全平方公式,可得答案.【解答】解:原式=x(x2﹣4x+4)=x(x﹣2)2,故选:D.【点评】本题考查了因式分解,利用提公因式,完全平方公式是解题关键.13.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,设运动时间为t秒,当t为时,△ACP是等腰三角形.【考点】KI:等腰三角形的判定.【专题】填空题【分析】由于没有说明哪一条边是腰,故需要分情况讨论.【解答】解:∵AC=6,BC=8,∴由勾股定理可知:AB=10,当点P在CB上运动时,由于∠ACP=90°,∴只能有AC=CP,如图1,∴CP=6,∴t==3,当点P在AB上运动时,①AC=AP时,如图2,∴AP=6,PB=AB﹣CP=10﹣6=4,∴t==6,②当AP=CP时,如图3,此时点P在线段AC的垂直平分线上,过点P作PD⊥AC于点D,∴CD=AC=3,PD是△ACB的中位线,∴PD=BC=4,∴由勾股定理可知:AP=5,∴PB=5,∴t==6.5;③AC=PC时,如图4,过点C作CF⊥AB于点F,∴cos∠A==,∴AF=3.6,∴AP=2AF=7.2,∴PB=10﹣7.2=2.8,∴t==5.4;综上所述,当t为3或6或6.5或5.4时,△ACP是等腰三角形.故答案为:3或6或6.5或5.4.【点评】本题考查等腰三角形的性质,解题的关键是根据腰的情况进行分类讨论,本题属于中等题型.14.如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为.【考点】KF:角平分线的性质.【专题】填空题【分析】作PE⊥OB于E,如图,然后根据角平分线的性质求解.【解答】解:作PE⊥OB于E,如图,∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB,∴PE=PD=6,即点P到边OB的距离为6,故答案为6.【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.15.如图,在3×3的网格中,每个网格线的交点称为格点.已知图中A,B两个格点,请在图中再寻找另一个格点C,使△ABC成为等腰三角形,则满足条件的点C有个.【考点】KI:等腰三角形的判定.【专题】填空题【分析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.【解答】解:如图,AB是腰长时,红色的4个点可以作为点C,AB是底边时,黑色的4个点都可以作为点C,所以,满足条件的点C的个数是4+4=8,故答案为8.【点评】本题考查了等腰三角形的判定,熟练掌握网格结构的特点是解题的关键,要注意分AB是腰长与底边两种情况讨论求解.16.因式分解多项式2a2b3+6ab2,应提取的公因式是.【考点】52:公因式.【专题】填空题【分析】直接利用公因式的定义分别得出系数最大公约数以及公共字母进而得出答案.【解答】解:2a2b3+6ab2=2ab2(ab+3b),故因式分解多项式2a2b3+6ab2,应提取的公因式是2ab2.故答案为:2ab2.【点评】此题主要考查了公因式,注意确定公因式的方法:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.17.如图,在四边形ABCD中,∠B=90°,DE∥AB交BC于E、交AC于F,∠CDE=∠ACB=30°,BC=DE.求证:△FCD是等腰三角形.【考点】KI:等腰三角形的判定;JA:平行线的性质.【专题】解答题【分析】由平行可求得∠EFC,由三角形的外角可求得∠FCD,则可证明FD=FC,可证得结论.【解答】证明:∵∠B=90°,∠ACB=30°,∴∠BAC=60°∵AB∥DE,∴∠EFC=∠BAC=60°,∵∠CDE=30°,∴∠FCD=∠EFC﹣∠CDE=60°﹣30°=30°,∴∠FCD=∠FDC,∴FD=FC,即△FCD为等腰三角形.【点评】本题主要考查等腰三角形的判定,利用条件求得∠FCD的度数是解题的关键,注意三角形外角性质的应用.18.已知:如图所示,Rt△ABC中,∠C=90°,∠A、∠B的平分线AD、BE交于F,求∠AFB的度数.【考点】KN:直角三角形的性质;K7:三角形内角和定理.【专题】解答题【分析】先根据C=90°,求得∠CAB+∠CBA=90°,再根据AD、BE平分∠CAB、∠CBA,即可得到∠FAB+∠FBA=45°,最后根据三角形内角和定理即可得到∠AFB=135°.【解答】解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵AD、BE平分∠CAB、∠CBA,∴∠FAB+∠FBA=45°,∴∠AFB=135°.【点评】本题主要考查了直角三角形的性质以及三角形内角和定理的运用,解题时注意:有一个角为90°的三角形,叫做直角三角形.19.如图,在△ABC中,边AB的垂直平分线交BC,AB于点E,M,边AC的垂直平分线交BC,AC于点F,N,△AEF的周长是10.(1)求BC的长度;(2)若∠B+∠C=45°,EF=4,求△AEF的面积.【考点】KG:线段垂直平分线的性质.【专题】解答题【分析】(1)根据线段垂直平分线的性质得到BE=AE,FA=FC,根据三角形的周长公式计算即可;(2)根据题意得到∠EAF=90°,利用完全平方公式解答.【解答】解:(1)∵ME是边AB的垂直平分线,NF是AC的垂直平分线,∴BE=AE,FA=FC,∴BC=BE+EF+FC=AE+EF+AF=10;(2)∵∠B+∠C=45°,∴∠BAC=135°,∵BE=AE,FA=FC,∴∠EAB=∠B,∠FAC=∠C,∴∠EAF=90°,∴AE2+AF2=16,又AE+AF=10﹣4=6,∴△AEF的面积=AE×AF=[(AE+AF)2﹣(AE2+AF2)]=5【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.20.将下列不等式化成“x>a”或“x<a”的形式:(1)x﹣17<﹣5;(2)>﹣3.【考点】C2:不等式的性质.【专题】解答题【分析】(1)不等式移项合并,即可得到结果;(2)不等式x系数化为1,即可得到结果.【解答】解:(1)移项合并得:x<12;(2)两边乘以﹣2得:x<6.【点评】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.21.某班50名学生上体育课,老师出了一道题:现在我拿出一些篮球,如果每5名同学打一个篮球,有些同学就会没有球打;如果每6名同学打一个篮球,其中有一个篮球打的人数就会不足6人.请写出篮球数x与人数的不等关系.【考点】CD:由实际问题抽象出一元一次不等式组.【专题】解答题【分析】利用不等式结合未知数分别分析得出实际意义.【解答】解:设篮球数为x,根据题意可得:,解得:<x<10,因为取整数,所以x=9.【点评】此题主要考查了一元一次不等式的实际意义,结合未知数以及不等关系分析是解题关键.22.因式分解:(1)xy(x﹣y)﹣x(x﹣y)2(2)(a2+b2)2﹣4a2b2.【考点】54:因式分解﹣运用公式法.【专题】解答题【分析】(1)根据提公因式,可得答案;(2)根据完全平方公式,可得答案.【解答】解:(1)原式=x(x﹣y)[y﹣(x﹣y)]=x(x﹣y)(2y﹣x);(2)原式=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2.【点评】本题考查了因式分解,解(1)的关键是提公因式,解(2)的关键是利用公式法.23.数学课上老师出了一道题:计算2962的值,喜欢数学的小亮举手做出这道题,他的解题过程如下:2962=(300﹣4)2=3002﹣2×300×(﹣4)+42=90000+2400+16=92416老师表扬小亮积极发言的同时,也指出了解题中的错误,你认为小亮的解题过程错在哪儿,并给出正确的答案.【考点】59:因式分解的应用.【专题】解答题【分析】运用完全平方公式进行正确的计算后即可得到正确的结果.【解答】解:答案:错在“﹣2×300×(﹣4)”,应为“﹣2×300×4”,公式用错.∴2962=(300﹣4)2=3002﹣2×300×4+42=90000﹣2400+16=87616.【点评】本题考查了因式分解的应用,解题的关键是了解完全平方公式的形式并正确的应用.。
太原市2018-2019学年度第二学期期中考试试题八年级数学注意事项:1. 本试卷共8页,满分100分.2. 答卷前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置.第Ⅰ卷 选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,选出每小题答案后填在对应的表格中)1. 下面每组图形中,左面的图形平移后可以得到右面的图形的是( )A .B .C .D .2. 下列图形中,是中心对称图形,但不是轴对称图形的是( )A .B .C .D .3. 若m n >,则下列不等式正确的是( )A .22m n -<-B .44mn>C .66m n +<-D .88m n ->-4. 如图,AD ,CE 分别是ABC ∆的中线和角平分线.若AB AC =,25CAD ∠=︒,则ACE ∠的度数是( )A .25︒B .50︒C .32.5︒D .65︒5. 古埃及人曾经用如图所示的方法画直角:把一根长绳打上等距离的13个结,然后以3个结间距、4个结间距、5个结间距的长度为边长,用木桩钉成一个三角形,其中一角便是直角,这样做的道理是( )A .直角三角形两个锐角互余B .三角形内角和等于180︒C .三角形两边之和大于第三边,两边之差小于第三边D .如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形6. 如图,在ABC ∆中,DE 是AC 的垂直平分线,8AC cm =,且ABD ∆的周长为16cm ,则ABC ∆的周长为( )A .24cmB .21cmC .18cmD .16cm7. 不等式组354x x ≤⎧⎨+>⎩的最小整数解为( )A .-1B .0C .1D .28. 已知直线3(0)y mx m =+≠经过点(2,0),则关于x 的不等式30mx +>的解集是( )A .2x >B .2x <C .2x ≥D .2x ≤9. 如图,在ABC ∆中,4AB =,3AC =,30BAC ∠=︒,将ABC ∆绕点A 按逆时针旋转60︒得到11AB C ∆,连接1BC ,则1BC 的长为( )A .3B .4C .5D .610. 一个等腰三角形的周长为16,其中一边长为4,则这个等腰三角形的底边长是( )A .4B .6C .8D .4或8第Ⅱ卷 非选择题(共70分)二、填空题(本大题共5小题,每小题2分,共10分)11. 不等式51x -≥的解集是 .12. 如图,点O 在ABC ∆内部,且到三边的距离相等.若130BOC ∠=︒,则A ∠=________︒.13. 在平面直角坐标系中,点O 为坐标原点,已知点(3,4)A ,将OA 绕坐标原点O 顺时针旋转90︒到'OA ,则点'A 的坐标是 .14. 空气炸锅利用高速空气循环技术煎炸各种美味食物,既安全又经济.某品牌空气炸锅进价为800元,标价为1200元.店庆期间,商场为了答谢顾客,进行打折促销活动,但是要保证利润率不低于5%,则至多打_______折时销售最优惠.15. 将两块全等的直角三角板按图1方式放置,11130BAC B AC ∠=∠=︒,固定三角板11A B C ,然后将三角板ABC 绕点C 顺时针旋转到图2的位置,此时AB 与1A C ,11A B 分别交于点D ,E ,AC 与11A B 交于点F ,且11AB A B ⊥,则旋转角的度数为 ︒.三、解答题(本大题共8小题,共60分.解答题应写出文字说明、证明过程或演算步骤)16.(每小题4分,共8分)(1)解不等式113xx +<-,并将解集表示在数轴上;(2)解不等式组351,134.3x xx -≤⎧⎪⎨-<⎪⎩①②17.(本题6分)如图所示,在平面直角坐标系中,ABC ∆各顶点的坐标分别是(2,4)A --,(0,4)B -,(1,1)C -.(1)在图中画出ABC ∆向左平移3个单位长度后的111A B C ∆;(2)在图中画出ABC ∆绕原点O 逆时针旋转90︒后的222A B C ∆.18.(本题5分)如图,在ABC ∆中,AD 平分BAC ∠交于BC 边的中点D ,过点D 作DE AB ⊥,DF AC ⊥,垂足分别为E ,F .若2BE =,求CF 的长.19.(本题8分)为提高学生综合素质,某教育集团举行篮球联赛,在初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得晋级资格.(1)已知甲队在初赛阶段的积分不低于18分,求甲队初赛阶段最多负几场;(2)如果乙队要获得晋级资格,那么乙队在初赛阶段至少要胜多少场?20.(本题7分)如图,在ABC ∆中,90C ∠=︒,PD PA =.(1)尺规作图:作BD 的垂直平分线交BC 于点E ,交BD 于点F .(不写作法,保留作图痕迹)(2)在(1)所作的图中,连接DE ,求证:DE DP ⊥.21.(本题7分)牛奶是最古老的天然饮料之一,被誉为“白色血液”,对人体的重要性可想而知,现已成为国家营养餐计划备选食品之一.为推行国家营养餐计划,某乳品公司向某营养餐中心运输不少于1000kg 的牛奶.由铁路运输每千克只需运费0.58元;由公路运输,每千克需运费0.28元,还需其他费用600元.请探究并说明选用哪种运输方式所需费用较少?22.(本题7分)综合与实践:氢动力汽车是一种真正实现零排放的交通工具,排放出的是纯净水,其具有无污染,零排放,储量丰富等优势,因此,氢动力汽车是传统汽车最理想的替代方案.某实验团队进行氢动力汽车实验,在一条笔直的公路上有A ,B 两地,小张驾驶氢动力汽车从B 地去A 地然后立即原路返回到B 地,小陈驾驶观察车从A 地驶向B 地.如图是氢动力汽车、观察车离B 地的距离()y km 和行驶时间()x h 之间的函数图象,请根据图象回答下列问题:(1)A ,B 两地的距离是______km ,小陈驾驶观察车行驶的速度是______/km h ;(2)当小张驾驶氢动力汽车从A 地原路返回B 地时,有一段时间小陈驾驶的观察车与氢动力汽车之间的距离不超过30千米,请探究此时行驶时间x 在哪一范围内?23.(本题12分)综合与探究:如图,点O 是等边ABC ∆内一点,105AOB ∠=︒,BOC ∠等于α∠,将BOC ∆绕点C 按顺时针方向旋转60︒得ADC ∆,连接OD .(1)求证:COD ∆是等边三角形;(2)求OAD ∠的度数;(3)探究:当α∠为多少度时,AOD ∆是等腰三角形?太原市2018-2019学年度第二学期期中考试试题八年级数学参考答案一、选择题1-5: DCBCD 6-10: ABBCA二、填空题11. 6x ≥ 12. 80 13. (4,3)- 14. 7 15. 30三、解答题16. 解:(1)去分母,得133x x +<-,移项,合并同类项,得24x -<-,系数化为1,解得2x >.这个不等式的解集在数轴上的表示如图所示:(2)解不等式①,得2x ≤.解不等式②,得1x >.∴不等式组的解集为12x <≤.17. 解:(1)如图所示,111A B C ∆即为所求的三角形.(2)如图所示,222A B C ∆即为所求的三角形.18. 解:∵AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,∴DE DF =,90DEB DFC ∠=∠=︒.∵点D 为BC 的中点,∴BD CD =,在Rt BED ∆和Rt CFD ∆中,BD CDDEDF =⎧⎨=⎩,∴()Rt BED Rt CFD HL ∆≅∆.∴2CF BE ==.19. 解:(1)设甲队负了x 场,则胜了(10)x -场,根据题意,得2(10)18x x -+≥.解得2x ≤.答:甲队最多负了2场.(2)设乙队在初赛阶段胜a 场,根据题意,得2(10)15a a +->,解得5a >,因为a 取最小正整数,所以a 最小值为6.答:乙队在初赛阶段至少要胜6场.20. 解:(1)如图所示,直线EF 即为线段BD 的垂直平分线.(2)证明:∵PD PA =,∴A PDA ∠=∠.∵EF 是BD 的垂直平分线,∴BE DE =,∴B EDB ∠=∠.∵90C ∠=︒,∴90A B ∠+∠=︒,∴90PDA EDB ∠+∠=︒.∴18090PDE PDA EDB ∠=︒-∠-∠=︒.∴DE DP ⊥.21. 解:设该公司运输的这批牛奶为x kg ,选择铁路运输时,所需运费为1y 元,选择公路运输时,所需运费为2y 元,则:10.58y x =,20.28600y x =+.当12y y >时,0.580.28600x x >+,解得2000x >;当12y y =时,0.580.28600x x =+,解得2000x =;当12y y <时,0.580.28600x x <+,解得2000x <.答:当运输牛奶质量大于2000kg 时,选用公路运输所需费用较少;当运输牛奶质量等于2000kg 时,选用两种运输所需费用相同;当运输牛奶质量大于1000kg 而小于2000kg 时,选用铁路运输所需费用较少.22. 解:(1)120 60(每空1分)(2)当小张驾驶氢动力汽车从A 地原路返回B 地时,氢动力汽车离B 地的距离1y 和行驶时间x 间的函数表达式为:1120240(12)y x x =-+≤≤.小陈驾驶的观察车离B 地的距离2y 和行驶时间x 之间的函数表达式为:260120(02)y x x =-+≤≤.在12x ≤≤范围内:当1230y y -≤时,120240(60120)30x x -+--+≤, 解得322x ≤≤.故小陈驾驶的观察车与氢动力汽车之间的距离不超过30千米时,此时行驶时间x 的取值范围是322x ≤≤.23.(1)证明:∵BOC ∆绕点C 按顺时针旋转60︒得到ADC ∆,∴BCO ACD ∆≅∆,∴OC CD =,且60OCD ∠=︒.则OCD ∆是等边三角形.(2)解:∵ABC ∆为等边三角形,∴60BAO OAC ∠+∠=︒,60ABO OBC ∠+∠=︒,∵105AOB ∠=︒,∴75BAO ABO ∠+∠=︒,∴1207545OAC OBC ∠+∠=︒-︒=︒,∵BCO ACD ∆≅∆,∴DAC OBC ∠=∠,∴45OAD OAC CAD ∠=∠+∠=︒.(3)解:由(1)知OCD ∆是等边三角形,∴60COD ∠=︒.由(2)知45OAD ∠=︒,∵AOD ∆为等腰三角形,∴当OA OD =时,90AOD ∠=︒,3601056090105α∠=︒-︒-︒-︒=︒; 当OA AD =时,67.5AOD ∠=︒,3601056067.5127.5α∠=︒-︒-︒-︒=︒; 当AD OD =时,45AOD ∠=︒,3601056045150α∠=︒-︒-︒-︒=︒. 综上所述:当105α∠=︒,127.5︒或150︒时,AOD ∆是等腰三角形.。