关于紧度量空间之间同胚映射可扩性的一个注记
- 格式:pdf
- 大小:165.19 KB
- 文档页数:3
微分同胚和微分流形是高等数学中的重要概念,它们在微分几何以及其他数学领域都扮演着重要的角色。
微分同胚可以理解为一种映射,它在微分流形上的每一点都有一个对应点,并且这个映射是可微分的,而微分流形则是一种具有某种特定性质的空间。
本文将着重介绍微分同胚和微分流形的定义、性质及其在数学中的应用。
首先,我们来看微分同胚。
设M和N是两个微分流形,如果存在一个双射f:M→N,且f和其逆映射都是可微分的,那么我们称f是一个微分同胚。
简单来说,微分同胚就是一种保持微分结构的双射映射。
微分同胚具有保持流形之间的局部结构不变的性质,它可以用来研究两个流形之间的等价性。
微分同胚与微分流形的关系密切。
微分流形是一种局部类似于欧几里得空间的空间,具有良好的连续、可微性质。
而微分同胚则是用来描述两个微分流形之间的等价关系。
由微分同胚的定义可知,如果两个流形之间存在一个微分同胚,那么这两个流形就是等价的,它们在微分几何上是不可区分的。
接下来,我们来介绍微分流形。
微分流形是高等数学中的一个重要概念,它是一种具有局部欧几里得性质的空间。
简单来说,微分流形就是一种可以进行微积分运算的空间,它在局部上可以与欧几里得空间同胚。
微分流形的定义比较抽象,一般使用拓扑空间的语言来描述。
具体来说,一个微分流形是一个拓扑空间M,对于M的每一个点p,存在一个开集U和一个欧几里得空间R^n以及一个映射φ:U → R^n,满足φ是连续可微的。
这个映射φ被称为一个局部坐标图,通过这个映射,我们可以将微分流形映射到欧几里得空间上。
微分流形是微分几何的重要基础,它不仅可以用来研究曲线、曲面等几何对象,还可以用来研究更抽象的几何概念,如切空间、切丛等。
微分同胚和微分流形在数学中有着广泛的应用。
首先,在微分几何中,微分同胚可以用来研究流形之间的等价性,它允许我们将一个复杂的流形映射到一个简单的欧几里得空间上,从而简化问题的研究。
其次,在物理学中,微分流形和微分同胚的概念也有着重要的应用,比如广义相对论中的时空概念就是基于微分流形的。
拓扑等价和同胚摘要:一、拓扑等价与同胚的定义及关系二、拓扑等价与同胚的性质三、拓扑等价与同胚的应用正文:拓扑等价和同胚是拓扑学中两个重要的概念,它们在数学和物理等领域具有广泛的应用。
下面我们将详细介绍这两个概念的定义、性质及应用。
一、拓扑等价与同胚的定义及关系1.拓扑等价:两个拓扑空间X 和Y 被称为拓扑等价,如果存在一个连续映射f:X → Y,使得对于Y 中的任意两点y1、y2,都有X 中的开集U X,使得f(U) = {y1, y2}。
换句话说,拓扑等价是指两个拓扑空间之间的连续映射可以保持开集的结构。
2.同胚:两个拓扑空间X 和Y 被称为同胚,如果存在一个双射映射f:X → Y,使得f 和f*(f 的逆映射)都是连续的。
同胚关系是一种更为强烈的等价关系,它要求两个空间的结构不仅在拓扑等价的意义下保持不变,还需要在微分结构上保持一致。
二、拓扑等价与同胚的性质1.拓扑等价具有自反性、对称性和传递性,即如果X ≈ Y 且Y ≈ Z,则X ≈ Z。
2.同胚具有自反性、对称性和传递性,即如果X Y 且Y Z,则X Z。
3.拓扑等价与同胚的关系:拓扑等价蕴含同胚,但同胚不一定是拓扑等价。
这是因为同胚要求映射在微分结构上保持一致,而拓扑等价仅要求在开集结构上保持一致。
三、拓扑等价与同胚的应用1.数学领域:拓扑等价与同胚在代数拓扑、流形理论等数学领域具有广泛应用。
例如,通过对拓扑空间进行拓扑等价或同胚操作,可以研究空间的性质和结构。
2.物理领域:在物理中,拓扑等价与同胚被用于研究拓扑性质和拓扑相变。
例如,在凝聚态物理中,拓扑等价与同胚可以帮助我们理解材料的拓扑性质,从而预测新的物理现象。
3.计算机科学:在计算机科学中,拓扑等价与同胚被用于图像处理、模式识别等领域。
通过对图像进行拓扑等价或同胚操作,可以实现图像的简化、降维和特征提取。
总之,拓扑等价与同胚是拓扑学中非常重要的概念,它们在数学、物理和计算机科学等领域具有广泛的应用。
关于不可约空间的一点注记
吴利生
【期刊名称】《苏州大学学报:自然科学版》
【年(卷),期】1993(009)003
【摘要】本文证明“T_1次拟仿紧空间的闭映射象是不可约的”,从而改进了龙冰“狭义次拟仿紧空间不可约”和朱俊“T_1拟仿紧空间的闭映射象不可约”这两个结果。
此外,作为推论还可得到“弱θ—加细空间的闭映射象是不可约的。
”
【总页数】3页(P181-183)
【作者】吴利生
【作者单位】无
【正文语种】中文
【中图分类】O189.1
【相关文献】
1.关于σ-有限测度空间的Loeb空间的一点注记 [J], 陈东立
2.关于Banach空间和乘积空间中的不动点性质的一点注记 [J], 赵晓全
3.关于空间圆锥面方程的一点注记 [J], 王成强
4.Orlicz序列空间光滑点的一点注记 [J], 王静;崔云安
5.关于“T_2(1/2)LF拓扑空间和ST_2(1/2)LF拓扑空间的分离性”的一点注记 [J], 郝俊玲
因版权原因,仅展示原文概要,查看原文内容请购买。
1.3 度量空间的可分性与完备性在实数空间R 中,有理数处处稠密,且全体有理数是可列的,我们称此性质为实数空间R 的可分性.同时,实数空间R 还具有完备性,即R 中任何基本列必收敛于某实数.现在我们将这些概念推广到一般度量空间.1.3.1 度量空间的可分性定义1.3.1 设X 是度量空间,,A B X ⊂,如果B 中任意点x B ∈的任何邻域(,)O x δ内都含有A 的点,则称A 在B 中稠密.若A B ⊂,通常称A 是B 的稠密子集.注1:A 在B 中稠密并不意味着有A B ⊂.例如有理数在无理数中稠密;有理数也在实数中稠密.无理数在有理数中是稠密的,无理数在实数中也是稠密的,说明任何两个不相等的实数之间必有无限多个有理数也有无限多个无理数.定理1.3.1 设(,)X d 是度量空间,下列命题等价: (1) A 在B 中稠密;(2) x B ∀∈,{}n x A ∃⊂,使得lim (,)0n n d x x →∞=;(3) B A ⊂(其中A A A '=,A 为A 的闭包,A '为A 的导集(聚点集)); (4) 任取0δ>,有(,)x AB O x δ∈⊂.即由以A 中每一点为中心δ为半径的开球组成的集合覆盖B .证明 按照稠密、闭包及聚点等相关定义易得.定理1.3.2 稠密集的传递性 设X 是度量空间,,,A B C X ⊂,若A 在B 中稠密,B 在C 中稠密,则A 在C 中稠密.证明 由定理1.1知B A ⊂,C B ⊂,而B 是包含B 的最小闭集,所以B B A ⊂⊂,于是有C A ⊂,即A 在C 中稠密.□注2:利用维尔特拉斯定理可证得{定理(Weierstrass 多项式逼近定理) 闭区间[,]a b 上的每一个连续函数都可以表示成某一多项式序列的一致收敛极限.}(1)多项式函数集[,]P a b 在连续函数空间[,]C a b 中稠密. 参考其它资料可知:(2)连续函数空间[,]C a b 在有界可测函数集[,]B a b 中稠密.(3)有界可测函数集[,]B a b 在p 次幂可积函数空间[,]p L a b 中稠密(1p ≤<+∞). 利用稠密集的传递性定理1.3.2可得:(4)连续函数空间[,]C a b 在p 次幂可积函数空间[,]p L a b 中稠密(1p ≤<+∞). 因此有[,][,][,][,]p P a b C a b B a b L a b ⊂⊂⊂.定义 1.3.2 设X 是度量空间,A X ⊂,如果存在点列{}n x A ⊂,且{}n x 在A 中稠密,则称A 是可分点集(或称可析点集).当X 本身是可分点集时,称X 是可分的度量空间.注3:X 是可分的度量空间是指在X 中存在一个稠密的可列子集.例1.3.1 欧氏空间n R 是可分的.{坐标为有理数的点组成的子集构成n R 的一个可列稠密子集.}证明 设12{(,,,)|,1,2,,}n n i Q r r r r Q i n =∈=为n R 中的有理数点集,显然n Q 是可数集,下证n Q 在n R 中稠密.对于n R 中任意一点12(,,,)n x x x x =,寻找n Q 中的点列{}k r ,其中12(,,,)k k k k n r r r r =,使得()k r x k →→∞.由于有理数在实数中稠密,所以对于每一个实数i x (1,2,,i n =),存在有理数列()k i i r x k →→∞.于是得到n Q 中的点列{}k r ,其中12(,,,)k k k k n r r r r =,1,2,.k =现证()k r x k →→∞.0ε∀>,由()k i i r x k →→∞知,i K ∃∈N ,当i k K >时,有||ki i r x -<1,2,,i n =取12max{,,,}n K K K K =,当k K >时,对于1,2,,i n =,都有||k i i r x -<,因此(,)k d r x ε=即()k r x k →→∞,从而知n Q 在n R 中稠密.□例 1.3.2 连续函数空间[,]C a b 是可分的.{具有有理系数的多项式的全体[,]o P a b 在[,]C a b 中稠密,而[,]o P a b 是可列集.}证明 显然[,]o P a b 是可列集.()[,]x t C a b ∀∈,由Weierstrass 多项式逼近定理知,()x t 可表示成一致收敛的多项式的极限,即0ε∀>,存在(实系数)多项式()p t ε,使得(,)max |()()|2a t bd x p x t p t εεε≤≤=-<另外,由有理数在实数中的稠密性可知存在有理数多项式00()[,]p t P a b ∈,使得00(,)max |()()|2a t bd p p p t p t εεε≤≤=-<因此,00(,)(,)(,)d x p d x p d p p εεε≤+<,即0()(,)p t O x ε∈,在[,]C a b 中任意点()x t 的任意邻域内必有[,]o P a b 中的点,按照定义知[,]o P a b 在[,]C a b 中稠密.□例1.3.3 p 次幂可积函数空间[,]p L a b 是可分的.证明 由于[,]o P a b 在[,]C a b 中稠密,又知[,]C a b 在[,]p L a b 中稠密,便可知可数集[,]o P a b 在[,]p L a b 中稠密.□例1.3.4 p 次幂可和的数列空间p l 是可分的.证明 取12{(,,,,0,,0,)|,}o n i E r r r r Q n =∈∈N ,显然o E 等价于1n n Q ∞=,可知o E 可数,下面证o E 在p l 中稠密.12(,,,,)p n x x x x l ∀=∈,有1||p i i x ∞=<+∞∑,因此0ε∀>,N ∃∈N ,当n N >时,1||2p pin N x ε∞=+<∑又因Q 在R 中稠密,对每个i x (1i N ≤≤),存在i r Q ∈,使得||2p pi i x r Nε-<,(1,2,3,,)i N =于是得1||2p Npiii x r ε=-<∑令0120(,,,,0,,0,)N x r r r E =∈,则11011(,)(||||)()22ppNppppi i iii i N d x x x r xεεε∞==+=-+<+=∑∑因此o E 在p l 中稠密.□例1.3.5 设[0,1]X =,则离散度量空间0(,)X d 是不可分的.证明 假设0(,)X d 是可分的,则必有可列子集{}n x X ⊂在X 中稠密.又知X 不是可列集,所以存在*x X ∈,*{}n x x ∉.取12δ=,则有 ***01(,)(,)2O x x d x x x δ⎧⎫=<=⎨⎬⎩⎭即*(,)O x δ中不含{}n x 中的点,与{}n x 在X 中稠密相矛盾.□思考题: 离散度量空间0(,)X d 可分的充要条件为X 是可列集.注意:十进制小数转可转化为二进制数:乘2取整法,即乘以2取整,顺序排列,例如 (0.625)10=(0.101)2 0.625⨯2=1.25取1;0.25⨯2=0.50取0;0.5⨯2=1.00取1. 二进制小数可转化为十进制小数,小数点后第一位为1则加上0.5(即1/2),第二位为1则加上0.25(1/4),第三位为1则加上0.125(1/8)以此类推.即1221011(0.)()2nn i ii x x x x ==∑,例如(0.101)2=1010111(101)(0.625)248=⨯+⨯+⨯=. 因此[0,1]与子集12{(,,,,)0 1}n n A x x x x x ===或对等,由[0,1]不可数知A 不可列.例1.3.6 有界数列空间l ∞是不可分的.12{(,,,,)=()| }n i l x x x x x x ∞==为有界数列,对于()i x x =,()i y y =∈l ∞,距离定义为1(,)sup ||i i i d x y x y ≥=-.证明 考虑l ∞中的子集12{(,,,,)0 1}n n A x x x x x ===或,则当,x y A ∈,x y ≠时,有(,)1d x y =.因为[0,1]中每一个实数可用二进制表示,所以A 与[0,1]一一对应,故A 不可列.假设l ∞可分,即存在一个可列稠密子集0A ,以0A 中每一点为心,以13为半径作开球,所有这样的开球覆盖l ∞,也覆盖A .因0A 可列,而A 不可列,则必有某开球内含有A 的不同的点,设x 与y 是这样的点,此开球中心为0x ,于是001121(,)(,)(,)333d x y d x x d x y =≤+<+=矛盾,因此l ∞不可分.□1.3.2 度量空间的完备性实数空间R 中任何基本列(Cauchy 列)必收敛.即基本列和收敛列在R 中是等价的,现在将这些概念推广到一般的度量空间.定义1.3.3 基本列设{}n x 是度量空间X 中的一个点列,若对任意0ε>,存在N ,当,m n N >时,有(,)m n d x x ε<则称{}n x 是X 中的一个基本列(或Cauchy 列). 定理1.3.3 (基本列的性质) 设(,)X d 是度量空间,则 (1) 如果点列{}n x 收敛,则{}n x 是基本列; (2) 如果点列{}n x 是基本列,则{}n x 有界;(3) 若基本列含有一收敛子列,则该基本列收敛,且收敛到该子列的极限点. 证明 (1) 设{}n x X ⊂,x X ∈,且n x x →.则0ε∀>,N N ∃∈,当n N >时,(,)2n d x x ε<,从而n ,m N >时,(,)(,)(,)22n m n m d x x d x x d x x εεε≤+<+=.即得{}n x 是基本列.(2) 设{}n x 为一基本列,则对1ε=,存在N ,当n N >时,有1(,)1N n d x x ε+<=,记11211max{(,),(,),,(,),1}1N NN N M d x x d x x d x x +++=+,那么对任意的,m n ,均有 11(,)(,)(,)2n m n N m N d x x d x x d x x M M M ++≤+<+=,即{}n x 有界.(3) 设{}n x 为一基本列,且{}kn x 是{}n x 的收敛子列,().kn x x k →→∞于是,10,N ε∀>∃∈N ,当1,m n N >时,(,)2n m d x x ε<;2N ∃∈N ,当2k N >时,(,)2kn d x x ε<.取12max{,}N N N =,则当n N >,k N >时,k n k N ≥>,从而有(,)(,)(,)22k k n n n n d x x d x x d x x εεε≤+<+=,故()n x x n →→∞.□注4:上述定理1.3.3表明收敛列一定是基本列(Cauchy 列),那么基本列是收敛列吗? 例 1.3.7 设(0,1)X =,,x y X ∀∈,定义(,)d x y x y =-,那么度量空间(,)X d 的点列1{}1n x n ⎧⎫=⎨⎬+⎩⎭是X 的基本列,却不是X 的收敛列.证明 对于任意的0ε>,存在N ∈N ,使得1N ε>,那么对于m N a =+及n N b =+,其中,a b ∈N ,有11(,)11(1)(1)n m n m a bd x x x x N b N a N a N b -=-=-=++++++++ max{,}1(1)(1)a b a b N a N b Na Nb Nε+<<=<+++++,即得{}n x 是基本列.显然1lim 01n X n →∞=∉+,故{}n x 不是X 的收敛列.或者利用1{}{}1n x n =+是R 上的基本列,可知0ε∀>,N ∃∈N ,当,n m N >时有 1111n m ε-<++.于是可知1{}1n x n ⎧⎫=⎨⎬+⎩⎭也是X 上的基本列.□ 如果一个空间中的基本列都收敛,那么在此空间中不必找出序列的极限,就可以判断它是否收敛,哪一类度量空间具有此良好性质呢?是完备的度量空间.定义1.3.4 完备性如果度量空间X 中的任何基本列都在X 中收敛,则称X 是完备的度量空间. 例1.3.8 n 维欧氏空间n R 是完备的度量空间.证明 由n R 中的点列收敛对应于点的各坐标收敛,以及R 的完备性易得.□ 例1.3.9 连续函数空间[,]C a b 是完备的度量空间.(距离的定义:[,](,)max |()()|t a b d f g f t g t ∈=-)证明 设{}n x 是[,]C a b 中的基本列,即任给0ε>,存在N ,当,m n N >时,(,)m n d x x ε<即[,]max ()()m n t a b x t x t ε∈-<故对所有的[,]t a b ∈,()()m n x t x t ε-<,由一致收敛的Cauchy 准则,知存在连续函数()x t ,使{()}n x t 在[,]a b 上一致收敛于()x t ,即(,)0()m d x x n →→∞,且[,]x C a b ∈.因此[,]C a b 完备.□例1.3.10 设[0,1]X C =,(),()f t g t X ∈,定义110(,)|()()|d f g f t g t dt =-⎰,那么1(,)X d 不是完备的度量空间.(注意到例1.3.9结论(,)X d 完备)证明 设10 021111()() 222111 12n t f t n t t n t n ⎧≤<⎪⎪⎪=-≤<+⎨⎪⎪+≤≤⎪⎩()[0,1]n f t C ∈的图形如图1.3.1所示.显然()[0,1]n f t C ∈,1,2,3,n =.因为1(,)m n d f f 是下面右图中的三角形面积,所以0ε∀>,1N ε∃>,当,m n N >时,有1111(,)2m n d f f n mε=-<,112m ma =+112n na =+|()()|m n S f t f t dx∆=-⎰图1.3.1 ()[0,1]n f t C ∈图像及有关积分示意图于是{}n f 是X 的基本列.下面证{}n f 在X 中不收敛.若存在()f t X ∈,使得1(,)0()n d f f n →→∞.由于1(,)n d f f 1|()()|n f t f t dt =-⎰11122111221|()||()()||1()|n nn f t dt f t f t dt f t dt ++=+-+-⎰⎰⎰,显然上式右边的三个积分均非负,因此1(,)0n d f f →时,每个积分均趋于零.推得1212[0,]0()(,1]1t f t t ∈⎧=⎨∈⎩ 可见()f t 不连续,故{}n f 在X 中不收敛,即[0,1]C 在距离1d 下不完备.□表1.3.1 常用空间的可分性与完备性度量空间距离 可分性 完备性n 维欧氏空间(,)nR d(,)d x y =√ √ 离散度量空间0(,)X dX 可数 00 (,)1x y d x y x y =⎧=⎨≠⎩当时当时√√ X 不可数× √ 连续函数空间[,]C a b[,](,)max |()()|t a b d f g f t g t ∈=-√ √1(,)()()bad f g f x g x dx =-⎰√× 有界数列空间l ∞ 1(,)sup ||i i i d x y x y ≥=-× √ p 次幂可和的数列空间p l 11(,)||pp p i i i d x y x y ∞=⎛⎫=- ⎪⎝⎭∑√√ p 次幂可积函数空间([,],)p L a b d1[,](,)(|()()|)ppa b d f g f t g t dt =-⎰√√由于有理数系数的多项式函数集0[,]P a b 是可列的,以及0[,]P a b 在[,]P a b 、[,]C a b 、[,]B a b 以及[,]p L a b 中稠密,可知闭区间[,]a b 上多项式函数集[,]P a b 、连续函数集[,]C a b 、有界可测函数集[,]B a b 、p 次幂可积函数集[,]p L a b 均是可分的.前面的例子说明n 维欧氏空间n R 以及p 次幂可和的数列空间p l 也是可分空间,而有界数列空间l ∞和不可数集X 对应的离散度量空间0(,)X d 是不可分的.从上面的例子及证明可知,n 维欧氏空间n R 是完备的度量空间,但是按照欧氏距离(0,1)X =却不是完备的;连续函数空间[,]C a b 是完备的度量空间,但是在积分定义的距离110(,)|()()|d f g f t g t dt =-⎰下,[0,1]C 却不完备.由于离散度量空间中的任何一个基本列只是同一个元素的无限重复组成的点列,所以它是完备的.我们还可以证明p 次幂可和的数列空间p l 是完备的度量空间,p 次幂可积函数空间[,](1)p L a b p ≥是完备的度量空间,有界数列空间的完备性.通常所涉及到的空间可分性与完备性如表1.3.3所示.在度量空间中也有类似于表示实数完备性的区间套定理,就是下述的闭球套定理. 定理1.3.4 (闭球套定理)设(,)X d 是完备的度量空间,(,)n n n B O x δ=是一套闭球:12n B B B ⊃⊃⊃⊃. 如果球的半径0()n n δ→→∞,那么存在唯一的点1n n x B ∞=∈.证明 (1)球心组成的点列{}n x 为X 的基本列.当m n >时,有m m n x B B ∈⊂((,)n n O x δ=),可得(,)m n n d x x δ≤. (2.4)0ε∀>,取N ,当n N >时,使得n δε<,于是当,m n N >时,有(,)m n n d x x δε≤<,所以{}n x 为X 的基本列.(2)x 的存在性.由于(,)X d 是完备的度量空间,所以存在点x X ∈,使得lim n n x x →∞=.令(2.4)式中的m →∞,可得(,)n n d x x δ≤即知n x B ∈,1,2,3,n =,因此1n n x B ∞=∈.(3) x 的唯一性.设还存在y X ∈,满足1n n y B ∞=∈,那么对于任意的n ∈N ,有,n x y B ∈,从而(,)(,)(,)20n n n d x y d x x d x y δ≤+≤→()n →∞,于是x y =.□注4:完备度量空间的另一种刻画:设(,)X d 是一度量空间,那么X 是完备的当且仅当对于X 中的任何一套闭球:12n B B B ⊃⊃⊃⊃,其中(,)n n n B O x δ=,当半径0()n n δ→→∞,必存在唯一的点1n n x B ∞=∈.大家知道1lim(1)n n e n→∞+=,可见有理数空间是不完备的,但添加一些点以后得到的实数空间是完备的,而完备的实数空间有着许多有理数空间不可比拟的好的性质与广泛的应用.对于一般的度量空间也是一样,完备性在许多方面起着重要作用.那么是否对于任一不完备的度量空间都可以添加一些点使之成为完备的度量空间呢?下面的结论给出了肯定的回答.定义1.3.5 等距映射设(,)X d ,(,)Y ρ是度量空间,如果存在一一映射:T X Y →,使得12,x x X ∀∈,有1212(,)(,)d x x Tx Tx ρ=,则称T 是X 到Y 上的等距映射,X 与Y 是等距空间(或等距同构空间). 注5:从距离的角度看两个等距的度量空间,至多是两个空间里的属性不同,是同一空间的两个不同模型.另外度量空间中的元素没有运算,与(,)X d 相关的数学命题,通过等距映射T ,使之在(,)Y ρ中同样成立.因此把等距同构的(,)X d 和(,)Y ρ可不加区别而看成同一空间.定义1.3.6 完备化空间设X 是一度量空间,Y 是一完备的度量空间,如果Y 中含有与X 等距同构且在Y 中稠密的子集Y',则称Y 是X 的一个完备化空间.图1.3.2 度量空间X 的完备化示意图定理1.3.5 (完备化空间的存在与唯一性)对于每一个度量空间X ,必存在一个完备化的度量空间Y ,并且在等距同构意义下Y 是唯一确定的.例1.3.11 设,(,)x y R ∈=-∞+∞,定义距离(,)|arctan arctan |d x y x y =-,试证(,)R d 不是完备的空间.证明 取点列{}n x R ⊂,其中n x n =,注意lim arctan 2n n x π→∞=,显然不存在一点x R ∈,使得(,)|arctan arctan |0()n n d x x x x n =-→→∞.所以点列{}n x 在R 中没有极限.由于lim arctan 2x x π→∞=,即0ε∀>,N ∃,当,m n N >时,有|arctan |22m πε-<,|arctan |22n πε-<,于是(,)|arctan arctan |n m n m d x x x x =-|arctan ||arctan |22n m x x ππε≤-+-<因此点列{}n x 是基本列,却不是收敛列.□。
第7章紧致性§7.1 紧致空间本节重点:掌握紧致子集的定义及判断一个子集是紧致子集的方法.(这些方法哪些是充要条件);掌握紧致性是否是连续映射可保留的,是否是可遗传的、有限可积的.在§5.3中,我们用关于开覆盖和子覆盖的术语刻画了一类拓扑空间,即Lindeloff空间.现在来仿照这种做法,即将Lindeloff空间定义中的“可数子覆盖”换成“有限子覆盖”,以定义紧致空间.读者在数学分析中早已见过的Heine-Borel定理断言:实数空间R的任何一个子集为有界闭集的充分必要条件是它的每一个开覆盖都有一个有限子覆盖.(在§7.3中我们将要推广这个定理.)因此我们现在作的事也应当在意料之中.定义7.1.1 设X是一个拓扑空间.如果X的每一个开覆盖有一个有限子覆盖,则称拓扑空间X是一个紧致空间.明显地,每一个紧致空间都是Lindeloff空间.但反之不然,例如包含着无限但可数个点的离散空间是一个Lindeloff空间,但它不是一个紧致空间.例7.1.1实数空间R不是一个紧致空间.这是因为如果我们设A={(-n,n)R|b∈Z+},则A的任何一个有限子族{ },由于它的并为(-max{},max{})所以不是R的一个子覆盖.因此R的开覆盖A没有任何一个有限子覆盖.定义7.1.2 设X是一个拓扑空间,Y是X中的一个子集,如果Y作为X的子空间是一个紧致空间,则称Y是拓扑空间X的一个紧致子集.根据定义,拓扑空间X中的一个子集Y是X的紧致子集意味着每一个由子空间Y中的开集构成的Y的开覆盖有一个有限子覆盖,这并不明显地意味着由X中的开集构成的每一个Y的覆盖都有有限子覆盖.所以陈述以下定理是必要的.定理7.1.1 设X是一个拓扑空间,Y是X中的一个子集.则Y是X的一(此个紧致子集当且仅当每一个由X中的开集构成的Y的覆盖都有有限子覆盖.定理表明开覆盖中的开子集可以是X的,也可以是Y的)证明必要性设Y是拓扑空间X中的一个紧致子集,A是Y的一个覆盖,它由X中的开集构成.则容易验证集族A}也是Y的一个覆盖,它由Y中的开集构成.因此A有一个有限子覆盖,设为{},于是A的有限子族覆盖Y.充分性,假定每一个由X的开集构成的Y的覆盖都有一个有限子覆盖.设A是Y的一个覆盖,它由Y中的开集构成.则对于每一个A∈A存在X中的一个开集使得A=∩Y.因此A}是由X中的开集构成的Y的一个覆盖,所以有一个有限子覆盖,设为{}此时易见A的子族{}覆盖Y.这证明Y是X的一个紧致子集.下面介绍关于紧致性的一个等价说法.定义7.1.3 设A是一个集族.如果A的每一个有限子族都有非空的交(即如果是A的一个有限子族,则),则称A是一个具有有限交性质的集族.定理7.1.2 设X是一个拓扑空间.则X是一个紧致空间当且仅当X中的每一个具有有限交性质的闭集族都有非空的交.证明:设X是一个紧致空间.用反证法.设F是X中的一个具有有限交性质的闭集族.设F≠.如果,则令A={∈F}.由于所以A是X的一个开覆盖.于是A有一个有限子覆盖,设为{}.从而这说明F 不具有有限交性质.矛盾.“”,设X中的每一个具有有限交性质的闭集族都有非空的交.为证明X是一个紧致空间,设A是X的一个开覆盖.我们需要证明A有一个有限子覆盖.如果A=,则,这蕴涵X=以及A的每一个子族都是X的覆盖.以下假定A≠.此时F={|A∈A}便是X中的一个非空闭集族,并且因此,它不具有有限交性质.也就是说,它有一个有限子族其交为空集.设F的这个有限子族为{},则是X的一个有限子覆盖.如果B是紧致空间X的一个基,那么由B中的元素构成的X的一个覆盖当然是一个开覆盖,因此有有限子覆盖.下述定理指出,为验证拓扑空间的紧致性,只要验证由它的某一个基中的元素组成的覆盖有有限子覆盖.定理7.1.3 设B*是拓扑空间X的一个基,并且X的由B*中的元素构成的每一个覆盖有一个有限子覆盖.则X是一个紧致空间.证明A*设是X的一个开覆盖.对于每一个A∈A*存在B*的一个子族使得令由于故是一个由B*的元素构成的X的一个覆盖,所以有一个有限子覆盖,设为,对于每一个,i=1,2,…,n,于是对于A*的有限于族{}有也就是说A*有一个有限子覆盖{ }.这证明X是一个紧致空间.定理7.1.4 设X和Y是两个拓扑空间,f:X→Y是一个连续映射.如果A 是X的一个紧致子集,则f(A)是Y的一个紧致子集.证明设C*是f(A)的一个覆盖,它由Y中的开集组成.对于每一个C∈C*,由于f是一个连续映射,(C)是X中的一个开集所以A={(C)|C∈C*}是A的一个开覆盖.由于A是X的一个紧致子集,所以A有一个有限子族,设为{},覆盖A即{}是C*的一个子族并且覆盖f(A).这证明f(A)是Y的一个紧致子集.由上述定理可见,拓扑空间的紧致性是连续映射所保持的性质,因此是拓扑不变性质,也是一个可商性质.由此可见,由于实数空间R不是紧致空间,而每一个开区间都是与它同胚的,所以每一个开区间(作为子空间)都不是紧致空间.定理7.1.5 紧致空间中的每一个闭子集都是紧致子集.证明设Y是紧致空间X中的一个闭子集.如果A是Y的一个覆盖,它由X中的开集构成.则是X的一个开覆盖.设B1是B的一个有限子族并且覆盖X.则B1-{ }便是A的一个有限子族并且覆盖Y.这证明Y是X 的一个紧致子集.定理7.1.6 每一个拓扑空间必定是某一个紧致空间的开子空间.证明:设(X,T)是一个拓扑空间.令∞为任何一个不属于X的元素.令X*=X∪{∞}T*=T∪∪{X*}其中={E X*|X*-E是拓扑空间(X,T)中的一个紧致闭集}首先验证T*是集合X*的一个拓扑.(略)其次.证明(X*,T*)是一个紧致空间:设C*是X*的一个开覆盖.则存在C∈C*使得∞∈C.于是C∈,因此X*-C 是紧致的,并且C*-{C}是它的一个开覆盖.于是C*-{C}有一个有限子族,设为C1,覆盖X*-C.易见C1∪{C}是C*的一个有限子族,并且覆盖X*.最后,我们指出拓扑空间(X,T)是拓扑空间(X*,T*)的一个开子空间.这是因为T =及X是X*的一个开集.在以上定理的证明中由拓扑空间(X,T)构造出来的紧致空间(X*,T*),通常称为拓扑空间(X,T)的一点紧化.由于非紧致空间(它是存在的)是它的一点紧化的一个子空间,因此紧致性不是可遗传的性质.但由定理7.1.5可知紧致性是闭遗传的.以下定理表明紧致性是可积性质.定理7.1.7设是n≥1个紧致空间.则积空间是一个紧致空间.证明(略)作业:P188 1.4.5.§7.2紧致性与分离性公理本节重点:掌握紧致空间中各分离性公理的关系;掌握Hausdorff空间中紧致子集的性质.在本节中我们把第六章中研究的诸分离性公理和紧致性放在一起进行考察、我们将会发现在紧致空间中分离性公理变得十分简单了.此外在本节的后半部分,我们给出从紧致空间到Hausdorff空间的连续映射的一个十分重要的性质.定理7.2.1 设X是一个Hausdorff空间.如果A是X的一个不包含点x∈X 的紧致子集,则点x和紧致子集A分别有开邻域U和V使得U∩V=.证明设A是一个紧致子集,x∈.对于每一个y∈A,由于X是一个Hausdorff空间,故存在x的一个开邻域和y的一个开邻域.集族{|y∈A}明显是紧致子集A的一个开覆盖,它有一个有限子族,设为 {},覆盖A.令,它们分别是点x和集合A的开邻域.此外,由于对于每一个i=1,2,…,n有:所以推论7.2.2 Hausdorff空间中的每一个紧致子集都是闭集.证明设A是Hausdorff空间X的一个紧致子集.对于任何x∈X,如果x A,则根据定理7.2.1可见x不是A的凝聚点.因此凡A的凝聚点都在A中,从而A是一个闭集.推论7.2.2 结合定理7.1.5可见:推论7.2.3 在一个紧致的Hausdorff空间中,一个集合是闭集的充分必要条件是它是一个紧致子集.为了加强读者对定理7.1.5,推论7.2.2和推论7.2.3中的几个简单而常用的结论的印象,重新简明地列举如下:紧致空间:闭集紧致子集Hausdorff空间:闭集紧致子集紧致的hausdorff空间:闭集紧致子集推论7.2.4 每一个紧致的Haudorff空间都是正则空间.证明设A是紧致的Hausdorff空间X的一个闭子集,x是X中的一个不属于集合A的点.由于紧致空间中的闭子集是紧致的(参见定理7.1.5),所以A是一个紧致子集.又根据定理7.2.1,点x和集合A分别有开邻域U和V 使得U∩V=.这就证明了X是一个正则空间.定理7.2.5 设X是一个Hausdorff空间.如果A和B是X的两个无交的紧致子集,则它们分别有开邻域U和V使得U∩V=.证明设A和B是X的两个无交的紧致子集.对于任何x∈A,根据定理7.2.1,点x和集合B分别有开邻域.集族{|x∈A}是紧致子集A的一个开覆盖,它有一个有限子族,设为{ },覆盖A.令由于对于每一个i=1,2,…,n有∩V=,所以U∩V=.由于Hausdorff空间的每一个闭子集都是紧致子集,所以根据定理7.2.5立即有:推论7.2.6 每一个紧致的Hausdorff空间都是的,这个结论也可以根据推论7.2.4和定理6.4.3直接推出.根据这个推论联系着表6.1并且留意到每一个紧致空间都是Lindeloff空间这一事实,我们可有图表7.1.从这个图表中可以看出,在紧致空间中分离性公理显得特别简单.图表7.1:紧致空间中的分离性公理定理7.2.7 设X是一个正则空间.如果A是X中的一个紧致子集,U是A的一个开邻域,则存在A的一个开邻域V使得.证明设A是正则空间X中的一个紧致子集,U是A的一个开邻域.对于任何x∈A,点x有一个开邻域使得集族{|x∈A}是紧致子集A的一个开覆盖,它有有限子族,设为{ },覆盖A.令,它是A的一个开邻域,并且根据这个定理立即可见,每一个紧致的正则空间都是正规空间.然而这并不是什么新结论,因为每一个紧致空间都是Lindeloff空间,所以它明显地蕴涵于定理6.4.3中.然而紧致的正规空间可以不是正则空间.例子见于例6.2.3.在那个正规而非正则空间的例子中的拓扑空间只含有有限多个点,当然会是紧致的.定理7.2.8 从紧致空间到Hausdorff空间的任何一个连续映射都是闭映射.证明设X是一个紧致空间,Y是一个Hausdorff空间,f:X→Y是一个连续映射.如果A是紧致空间X中的一个闭子集.则它是紧致的(参见定理7.1.5),因此它的象集f(A)是Hausdorff空间Y中的一个紧致子集(参见定理7.1.4),所以又是闭集(参见推论7.2.2).这证明f是一个闭映射.因为一个既单且满的开(或闭)的连续映射即是一个同胚,所以我们有:推论7.2.9 从紧致空间到Hausdorff空间的任何一个既单且满的(即—一的)连续映射都是同胚.作业:P192 1.2.§7.3n维欧氏空间中的紧致子集定义7.3.1 设(X,ρ)是一个度量空间,A X.如果存在实数M>0使得ρ(x,y)<M对于所有x,y∈A成立,则称A是X的一个有界子集;如果X本身是一个有界子集,则称度量空间(X,ρ)是一个有界度量空间.定理7.3.1 紧致度量空间是有界的.证明设(X,ρ)是一个紧致度量空间.由球形邻域构成的集族{B(x,1)|x∈X}是X的一个开覆盖,它有一个有限子覆盖,设为{B(x1,1),B(x2,1),…,B(xn,1)}.令M=rnax{ρ(xi,xj)|1≤i,j≤n}十2如果x,y∈X,则存在i,j,1≤i,j≤n,使得x∈B(xi,l)和y∈B(xj,l).于是ρ(x,y)<ρ(x,xi)+ρ(xi,xj)十ρ(xj,y)<M因此度量空间中的每一个紧致子集都是有界子集.特别n维欧氏空间的每一个紧致子集都是有界的.下面作为引理给出单位闭区间[0,1]是一个紧致空间的证明.尽管读者可能早已熟知这个结论.引理7.3.2 单位闭区间[0,1]是一个紧致空间.证明设A是[0,1]的一个开覆盖.令P={x∈[0,l]|A有一个有限子族覆盖[0,x]}它是[0,1]的一个子集.对于集合P,我们依次证明,(l)P.因为显然0∈P;(2)P是一个开集.设x∈P.则A有一个有限子族,设为{ },覆盖[0,x].当x=1时,易见P=[0,l],它是一个开集.因此x是P的一个内点.下设x<1.这时对于某一个i0,1≤i0≤n,有x∈.由于是[0,1]中的一个开集,所以存在实数ε>0使得[x,x+ε).于是[0,x+ε)..这蕴涵[0,x+ε)P.由于[0,x+ε)是[0,1]中的一个包含x的开集,所以x是P的一个内点.以上证明了集合P中的任何一个点都是P的内点,所以它是一个开集.(3)P是一个闭集.设x∈=[0,1]-P.根据集合P的定义可见,[x,1].另外根据(1)可见.0<x.选取选取A∈A使得x∈A.由于A是一个开集,所以存在实数ε>0使得(x-ε,x]A.假如(x-ε,x]∩P≠,设z∈(x-ε,x]∩P.则A有一个有限子族A1覆盖[0,z],因此A的有限子族A1∪{A}覆盖[0,x],这与x P矛盾.所以(x-ε,x]∩P=,即(x-ε,x],从而(x-ε,1],因此x是的一个内点.这证明是一个开集,即P是一个闭集.根据上述三条,P是[0,l]中的一个既开又闭的非空子集.由于[0,1]是一个连通空间,所以P=[0,1],特别,1∈P.这也就是说A有一个有限子族覆盖[0,1].以上证明了[0,1]的任何一个开覆盖有有限子覆盖,故[0,1]是一个紧致空间.任何一个闭区间[a,b](a<b),由于它和单位闭区间[0,1]同胚,所以是紧致的.并且作为紧致空间的积空间,可见n维欧氏空间中任何一个闭方体(a<b)也是紧致空间.定理7.3.3 设A是n维欧氏空间中的一个子集.则A是一个紧致子集当且仅当A是一个有界闭集.证明设ρ是n维欧氏空间的通常度量.“”:如果A是一个紧致子集,则根据定理7.3.1,它是有界的;由于是一个Hausdorff空间,根据推论7.2.2,它是一个闭集.“”:设A是一个有界闭集.如果A=,则A是紧致的.下设A.于是存在实数M>0使得对于任何x,y∈A有ρ(x,y)<M.任意选取x0∈A,并且令N=M十ρ(0,x0),其中0=(0,0,…,0)∈.容易验证(根据三角不等式)A.因此A作为紧致空间中的一个闭子集必定是紧致的.定理7.3.4 设X是一个非空的紧致空间,f:X→R是一个连续映射.则存在x0,x1∈X使得对于任意x∈X有f(x0)≤f(x)≤f(x1)换言之,从非空的紧致空间到实数空间R的任何一个连续映射都可以取到最大点与最小点.证明由于X紧致,故根据定理7.1.4可见f(X)是实数空间R中的一个紧致子集.由于R是一个Hausdorff空间,所以f(X)是一个闭集.设m和M 分别为集合f(X)的下,上确界,则m,M∈f(X).因此存在x0,x1∈X使得f(x0)=m和f(x1)=M.根据上,下确界的定义立即可见,对于任何x∈X有f (x0)≤f(x)≤f(x1).此外,由于m维单位球面是一个有界闭集,所以是紧致的,n维欧氏空间不是紧致的,而紧致性又是一个拓扑不变性质,所以:定理7.3.5 设m,n∈Z+.则m维单位球面与n维欧氏空间不同胚.这是通过拓扑不变性质区分不同胚的拓扑空间的又一个例子.作业:P196 1. 2.§7.4几种紧致性以及其间的关系本节重点:掌握新定义的几种紧致性的定义及它们之间的关系.读者已从数学分析的学习中知道了以下命题:实数空间中的一个子集A 如果满足以下条件(l)~(4)中的任何一条,则满足其他的几条.(l)A是一个有界闭集;(2)A的每一个开覆盖都有有限子覆盖;(3)A中的每一个无限子集都有凝聚点在A中;(4)A中的每一个序列都有收敛的子序列收敛于A中的点.这几个条件的重要意义,读者应当早就有所体会了.不难发现这四条中以惟有(l)中涉及的概念有赖于度量,其余(2),(3)和(4)三条中所涉及的概念都只是牵连到拓扑.我们当然希望在一般的拓扑空间中还能建立条件(2),(3)和(4)的等价性;假如不能,讨论在何种条件下它们等价也是一件有意义的事.本节我们研究这个问题.为了研究问题时的方便,引进以下条件(5)作为讨论的中间站.(5)A的每一个可数开覆盖都有有限子覆盖.定义7.4.l 设X是一个拓扑空间.如果X的每一个可数开覆盖都有有限子覆盖,则称拓扑空间X是一个可数紧致空间.以下两个定理的证明十分容易,请读者自己补证.定理7.4.1 每一个紧致空间都是可数紧致空间.定理7.4.2 每一个Lindeloff的可数紧致空间都是紧致空间.定义7.4.2 设X是一个拓扑空间.如果X的每一个无限子集都有凝聚点,则称拓扑空间X是一个列紧空间.定理7.4.3 每一个可数紧致空间都是列紧空间.证明设X是一个可数紧致空间.为了证明它是一个列紧空间,我们只要证明它的每一个可数的无限子集都有凝聚点,现在用反证法来证明这一点.假设X有一个可数无限子集A没有凝聚点.首先这蕴涵A是一个闭集.此外对于每一个a∈A,由于a不是A的凝聚点,所以存在a的一个开邻域使得∩A={a}.于是集族{|a∈A}∪{}是X的一个开覆盖.由于X是可数紧致空间,它有一个有限子覆盖,不妨设为{} 由于与A无交,所以{}必定覆盖A.因此,A=()∩A={a1,a2,…an}是一个有限集.这是一个矛盾.定义7.4.3 设是一个由集合构成的序列,如果它满足条件:对于每一个i∈Z+成立,即则称序列是一个下降序列.在某一个拓扑空间中的一个由非空闭集构成的下降序列也叫做一个非空闭集下降序列.引理7.4.4 设X是一个拓扑空间.则拓扑空间X是一个可数紧致空间当且仅当由X中任何一个非空闭集下降序列,有非空的交,即证明设可数紧致空间X中的非空闭集下降序列使得于是是X的一个开覆盖,它有一个有限子覆盖,设为{}由此可得这是一个矛盾.另一方面,设拓扑空间X中的每一个非空闭集下降序列都有非空的交.如果X不是一个可数紧致空间,则X有一个可数开覆盖,设为{ },没有有限子覆盖.对于每一个i∈Z+,令则{}也是X的一个开覆盖,没有有限子覆盖,并且满足条件:因此是一个非空闭集下降序列,所以.由此可见.也就是说{}不是X的一个覆盖,这是一个矛盾.定理7.4.5 每一个列紧的空间都是可数紧致空间.证明设X是一个列紧的空间.如果X不是一个可数紧致空间,则根据引理7.4.4,X中有一个非空闭集下降序列,使得在每一个中选取一点,并且考虑集合A={}如果A是一个有限集,则必有一点x∈A和一个正整数的严格递增序列n1,n2,…使得于是对于任何i∈Z+有x∈.这是因为,于是x∈,这与反证假设矛盾.设A是一个无限集.由于X是一个列紧空间,所以A有一个凝聚点,设为y.由于X是一个空间(它的每一个有限子集都是闭集),易见对于每一个i∈Z+,点y也是集合的一个凝聚点;又由于.这也与反证假定矛盾.定义7.4.4 设X是一个拓扑空间.如果X中的每一个序列都有一个收敛的子序列,称拓扑空间X是一个序列紧致空间.定理7.4.6 每一个序列紧致空间都是可数紧致空间.证明设X是一个序列紧致空间,{}是X中的一个非空闭集下降序列.在每.对于每一个i∈Z+,.根据引理7.4.4X 是一个可数紧致空间.定理7.4.7 每一个满足第一可数性公理的可数紧致空间都是序列紧致空间.证明设X是一个满足第一可数性公理的可数紧致空间,设.对于每一个i∈Z+,令和.于是是拓扑空间X中的一个非空闭集下降序列,因此根据引理7.4.4,我们有.由于X满足第一可数性公理,根据定理5.1.8,在点x处有一个可数邻域基{ }满足条件:对于任意j∈Z+成立.令对于每一个i>l,令,于是是一个严格递增的正整数序列.并且对于每一个i∈Z+成立.我们来证明序列{}的子序列{}收敛于x:设U是x的一个邻域.存在某一个k∈Z+,使得,于是当i>k时我们有根据本节中的各个定理,我们可以得到图表7.2.根据这个表立即可以知:推论7.4.8 设X是一个满足第二可数性公理的空间,A是X的一个子集.则下列条件等价:(l)A的每一个开覆盖都有有限子覆盖;(2)A的每一个可数开覆盖都有有限子覆盖;(3)A中的每一个序列都有子序列收敛于A中的点;(4)A中的每一个无限子集都有凝聚点在A中.特别,对于n维欧氏空间的子集以上推论成立,并且推论中的每一个条件都等价于A是一个有界闭集.作业:P201 1§7.5度量空间中的紧致性本节重点:掌握度量空间中的紧致空间、可数紧致空间、序列紧致空间、列紧空间之间的关系.由于度量空间满足第一可数性公理,同时也是空间,所以上一节中的讨论(参见表7.2)因此我们,一个度量空间是可数紧致空间当且仅当它是列紧空间,也当且仅当它是序列紧致空间.但由于度量空间不一定就是Lindeloff空间,因此从定理7.4.2并不能断定列紧的度量空间是否一定就是紧致空间.本节研究这个问题并给出肯定的回答.定义7.5.1 设A是度量空间(X,ρ)中的一个非空子集.集合A的直径diam(A)定义为diam(A)=sup{ρ(x,y)|x,y∈A}若A是有界的diam(A)=∞ 若A是无界的定义7.5.2 设(X,ρ)是一个度量空间,A是X的一个开覆盖.实数λ>0称为开覆盖A的一个Lebesgue数,如果对于X中的任何一个子集A,只要diam(A)<λ,则 A包含于开覆盖A的某一个元素之中.Lebesgue数不一定存在.例如考虑实数空间R的开覆盖{(-∞,1)}∪{(n-1/n,n+1+1/n) |n∈Z+}则任何一个正实数都不是它的Lebesgue数.(请读者自补证明.)定理7.5.1[Lebesgue数定理] 序列紧致的度量空间的每一个开覆盖有一个Lebesgue数.证明设X是一个序列紧致的度量空间,A是X的一个开覆盖.假若开覆盖A没有Lebesgue 数,则对于任何i∈Z+,实数1/i不是A的Lebesgue数,所以X有一个子集E,使得diam(E)<1/i并且Ei不包含于A的任何元素之中.在每一个之中任意选取一个点,由于X是一个序列紧致空间,所以序列有一个收敛的子序列.由于A是X的一个开覆盖,故存在A∈A使得y∈A,并且存在实数ε>0使得球形邻域B(y,ε)A.由于,所以存在整数M>0使得当i>M时.令k为任意一个整数,使得k>M+2/ε,则对于任何有ρ(x,y)≤ρ(x,)+ρ(,y)<ε这证明A与的选取矛盾.定理7.5.2 每一个序列紧致的度量空间都是紧致空间.证明设X是一个序列紧致的度量空间,A是X的一个开覆盖.根据定理7.5.1,X的开覆盖A有一个Lebesgue数,设为λ>0.令B={B(x,λ/3)}.它是X的一个开覆盖.我们先来证明B有一个有限子覆盖.假设B没有有限子覆盖.任意选取一点∈X.对于i>1,假定点已经取定,由于不是X的覆盖,选取.按照归纳原则,序列已经取定.易见对于任何i,j∈Z+,i≠j,有ρ()>λ/3.序列没有任何收敛的子序列.(因为任何y∈X的球形邻域B(y,λ/6)中最多只能包含这个序列中的一个点.)这与X是序列紧致空间相矛盾.现在设{}是开覆盖B的一个有限子覆盖.由于其中每一个元素的直径都小于λ,所以对于每一个i=1,2,…,n存在使得B(,λ/3).于是{}是A的一个子覆盖.因此,根据定理7.5.2以及前一节中的讨论可见:定理7.5.3 设X是一个度量空间.则下列条件等价:(1)X是一个紧致空间;(2)X是一个列紧空间;(3)X是一个序列紧致空间;(4)X是一个可数紧致空间.我们将定理7.5.3的结论列为图表7.3以示强调.作业:P205 1.本章总结:(1)重点是紧致性、紧致性与分离性的关系.(2)度量空间(特别是)中的紧致性性质要掌握.(3)紧致性是否是连续映射所能保持的、可积的、可遗传的?证明时牵涉到的闭集要注意是哪个空间的闭集.§7.6局部紧致空间,仿紧致空间本节重点:掌握局部紧致空间、仿紧致空间的定义.性质;掌握局部紧致空间、仿紧致空间中各分离性公理空间之间的关系;掌握局部紧致空间、仿紧致空间与紧致空间之间的关系.定义7.6.1 设X是一个拓扑空间,如果X中的每一个点都有一个紧致的邻域,则称拓扑空间X是一个局部紧致空间.由定义立即可见,每一个紧致空间都是局部紧致空间,因为紧致空间本身便是它的每一个点的紧致邻域.n维欧氏空间也是局部紧致空间,因为其中的任何一个球形邻域的闭包都是紧致的.定理7.6.1 每一个局部紧致的空间都是正则空间.证明设X是一个局部紧致的Hausdorff空间,设x∈X,U是x的一个开邻域.令D是x的一个紧致邻域,作为Hausdorff空间X的紧致子集,D是X中的闭集.由推论7.2.4,D作为子空间是一个紧致的Hausdorff空间,所以是一个正则空间.是x在子空间D中的一个开邻域,其中是集合D在拓扑空间X中的内部.从而x在子空间D中有一个开邻域V使得它在子空间D中的闭包包含于W.一方面V是子空间D中的一个开集,并且又包含于W,因此V 是子空间W中的一个开集,而W是X中的一个开集,所以V也是X中的开集.另一方面,由于D是X的闭集,所以V在D中的闭包便是V在X中的闭包因此点x在X中的开邻域V使得.因此X是一个正则空间.定理7.6.2 设X是一个局部紧致的正则空间,x∈X,则点x的所有紧致邻域构成的集族是拓扑空间X在点x处的一个邻域基.证明设U是x∈X的一个开邻域.令D为x的一个紧致邻域,则是x的一个开邻域.因为X是正则空间,所以存在x的开邻域V使得.闭。
泛函分析基础:度量空间(一):度量空间的结构小周又活过来了!度量空间的结构定义定义1:设有集合,且存在映射,使得对任意的都有:1.非负性:;2.对称性:;3.三角不等式:映射称为集合上的一个度量,称为度量空间.度量函数有时也用表示.下边我们给出一些常用的度量空间:1.,度量函数为经典度量.这样的实空间就称为欧式空间.2.(平凡度量)在任何一个集合上,我们都可以定义上述度量,因此任何一个集合上都可以让其变为一个度量空间.3.(空间) 所有的方勒贝格可积函数,定义度量:4.(空间) 所有的在可测的本性有界的函数,定义度量:表示它的本性上界.5.(空间和空间) 元素是数列:.6.(连续函数空间) 如果不做声明时,我们的定义的度量是:当然还可以有其他度量:收敛性有了度量函数后,我们可以定义收敛性:定义2:设为距离空间中的一个点列(或称序列), 这里如果存在中的点 , 使得当时, , ,则称点列收敛于 , 记为有时也简记为称为的极限.注意到,这里一定要要求在集合中!命题1:设是距离空间中的收敛点列,则下列性质成立:(i) 的极限唯一;(ii) 对任意的 , 数列有界.(iii) 如果收敛,那么它的任意子列也收敛.柯西列与完备化定义3:距离空间中的点列叫做基本点列或柯西点列,若对任给的 , 存在 , 使得当时,如果中的任一基本点列必收敛于中的某一点,则称为完备的距离空间.注意到:一个空间是否完备与它的集合和度量都有关系,比如:按照最大值定义的度量是完备的,但是按照积分定义的度量不完备,在比如上配备欧式度量,点列是基本列但是不收敛,因为不在集合中.一个不完备的空间,我们可以想方设法的添加一些元素使其完备,然而是否任何的不完备空间都能这样做使其完备呢?这就要需要我们的完备化定理了!在此之前,我们需要引入一些其他有必要的东西!定义4设是两个度量空间, 如果存在映射:满足:(1):是满射;(2):.则称和是等距同构的, 称为等距同构映射, 有时简称等距同构。
拓扑知识点总结1. 拓扑空间拓扑空间是拓扑学的基本对象。
它是一个集合X连同一个满足一定条件的集合T构成的二元组(X,T)。
这个集合T包含了X的某些子集,称为开集,它满足以下性质:1)空集和X本身都是开集;2)开集的任意并集仍然是开集;3)开集的有限交集仍然是开集。
闭集是开集的补集。
拓扑空间中的开集和闭集具有许多重要的性质,如开集和闭集的运算法则、开集的性质等,这些性质对于研究拓扑空间的结构和性质非常重要。
2. 连通性连通性是拓扑空间的一个重要性质。
一个空间如果不是连通的,那么它可以分解成为若干个连通的子空间。
连通性在很多领域都有重要的应用,如在微积分中,连通性是讨论函数定义域的重要性质;在代数拓扑学中,连通性是讨论拓扑空间的同伦性等。
3.紧性紧性是拓扑空间的一个重要性质。
一个拓扑空间如果满足这个性质,就称为紧拓扑空间。
紧性在很多领域都有重要的应用,如在微积分中,紧性是讨论极限的性质;在代数拓扑学中,紧性是讨论拓扑空间的完备性等。
4. 度量空间度量空间是拓扑学中的一个重要概念,它是一个集合X连同一个度量d构成的二元组(X,d)。
(1)度量空间是数学分析和实变函数中的基本概念之一,度量空间给出了“距离”的概念。
(2)度量空间是几何学中的基本概念之一,度量空间给出了点的位置的概念。
拓扑空间与度量空间有着密切的联系,在实际应用中常将拓扑空间视为度量空间来分析,或者将度量空间的公理推广到拓扑空间来研究。
5. 同胚同胚是拓扑学中的一个重要概念。
如果两个拓扑空间X和Y之间存在一个一一映射f,且f和f的逆映射都是连续的,则称X和Y是同胚的。
同胚将一个拓扑空间上的拓扑结构转移到另一个拓扑空间上,使得它们在拓扑上是相似的。
同胚是研究拓扑空间的一个重要工具,它可以帮助我们理解拓扑空间的结构和性质。
6. 康托尔集康托尔集是拓扑学中的一个重要概念。
它是一个紧集,是典型的不可数集。
康托尔集的构造方法非常巧妙,它是通过递归地删除中间的开区间来构造的。