【浙教版】2017年秋九年级上《第2章简单事件的概率》检测题含答案
- 格式:doc
- 大小:189.20 KB
- 文档页数:5
浙教版九年级上册数学第2章简单事件的概率含答案一、单选题(共15题,共计45分)1、下列命题:(1 )一组数据a1, a2,…an的方差为s2,则另一组数据2a1,2a2,…2an的方差为2s2.(2 )三角形中线能将该三角形的面积平分.(3 )相似三角形的面积比等于相似比的平方.(4 )圆绕圆心旋转37.5°后也能与原来图形重合.(5 )极可能发生的事件可以看作是必然事件.(6 )关于x的方程x2+3ax﹣9=0一定有两个不相等的实数根.其中正确的个数是()A.3个B.4个C.5个D.6个2、数学老师将全班分成7个小组开展小组合作学习,采用随机抽签确定一个小组进行展示活动,则第3个小组被抽到的概率是()A. B. C. D.3、下列事件是必然事件的是()A.同旁内角互补B.任何数的平方都是正数C.两个数的绝对值相等,则这两个数一定相等D.任意写一个两位数,个位数字是的概率是4、“服务他人,提升自我”,七一学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是( )A. B. C. D.5、在一个暗箱里放入除颜色外其它都相同的3个红球和11个黄球,搅拌均匀后随机任取一个球,取到是红球的概率是( )A. B. C. D.6、下列说法正确的是()A.“经过有交通信号的路口,遇到红灯,”是必然事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C.处于中间位置的数一定是中位数D.方差越大数据的波动越大,方差越小数据的波动越小7、一个口袋中有红球、白球共10个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有71次摸到红球.请你估计这个口袋中白球的数量为( )个.A.29B.30C.3D.78、下列事件为确定事件的是()A.6张相同的小标签分别标有数字1~6,从中任意抽取一张,抽到3号签 B.抛掷1枚质地均匀的硬币反面朝上 C.射击运动员射击一次,命中靶心 D.长度分别是4,6,8的三条线段能围成一个三角形9、书包里有数学书3本,英语书2本,语文书5本,从中任意抽取一本,是数学书的概率是()A. B. C. D.10、在一副52张的扑g牌中(没有大、小王)任意抽取一张,抽出的这张牌是K的可能性是()A. B. C. D.11、下列说法正确的是()A.调查某班学生的身高情况,适宜采用抽样调查B.“若m、n互为相反数,则mn=0”,这一事件是必然事件C.小南抛挪两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1D.“1,3,2,1的中位数一定是2”,这一件是不可能事件12、在一个10万人的小镇,随机调查了3000人。
九(上)第2章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.以下事件中,必然发生的是( C )A .打开电视机,正在播放体育节目B .正五边形的外角和为180°C .通常情况下,水加热到100 ℃沸腾D .掷一次骰子,向上一面是5点2.掷一个骰子,向上一面点数大于2且小于5的概率为p 1,抛两枚硬币,均正面朝上的概率为p 2,则( B )A .p 1<p 2B .p 1>p 2C .p 1=p 2D .不能确定 3.下列说法正确的是( D )A .某事件发生的概率为12,这就是说,在两次重复试验中,该事件必有一次发生B .一个袋子里有100个球,小明摸了8次,每次都只摸到黑球,没摸到白球,则可得结论:袋子里面只有黑色的球C .将两枚一元硬币同时抛下,可能出现情形有:①两枚均为正;②两枚均为反;③一正一反,故得出一正一反的概率为13D .九年级有学生400多人,则至少有两人同一天(可以不同年)过生日4.在四张背面完全相同的卡片上分别印着等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有图案都是轴对称图形的概率( D )A.34B.14C.13D.125.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是( B )A.16B.13C.12D.236.如图,两个转盘进行“配紫色”游戏,配得紫色(红、蓝两色混合配成)的概率是( C )A.14B.17C.18D.1167.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色……不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有( C )A .18个B .15个C .12个D .10个8.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打给甲的概率为( B ) A.16 B.13 C.12 D.239.某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是( B )A.35B.710C.310D.162510.一条信息可通过如图所示的网络线由A 点往各站点传递(同级别站点不能传递),则信息由A 点到达d 3的所有不同途径中,其中按途径A →a 1→b 2→c 3→d 3到达的概率是( C )A.14B.15 C.16 D.18二、填空题(每小题4分,共24分)11.风华中学七年级(2)班的“精英小组”有男生4人,女生3人,若选一人担任组长,则组长是男生的概率为__47__.12.如图,小芳同学有两根长度为4 cm ,10 cm 的木棒,她想钉一个三角形相框,桌上有五根木棒供她选择,从中任选一根,能钉成三角形相框的概率是__25__.13.如图,有四张不透明的卡片,正面写有不同命题,背面完全相同.将这四张卡片背面朝上洗匀后,随机抽取一张,得到正面上命题是真命题的概率为__34__.错误! 错误! 错误! 错误!那么该班共有__65__人,随机地抽取1人,恰好是获得30分的学生的概率是__213__. 15.小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球3000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程中,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是__2100__.16.从1~4这4个数中任取一个数作分子,从2~4这3个数中任取一个数作分母,组成一个分数,则出现分子、分母互质的分数的概率是__712__.三、解答题(共66分)17.(6分)在5张相同的卡片上分别标上1,3,5,7,9中的一个数字,从中任意抽出2张卡片,组成一个两位数.试指出下列事件是必然事件、不可能事件,还是随机事件.(1)这个两位数为奇数是__必然事件__;(2)这个两位数能被4整除是__不可能事件__; (3)这个两位数是3的倍数是__随机事件__.18.(10分)如图,掷两个分别标有1~6点的均匀的骰子.(1)所有可能的结果有几种?(2)同时出现两个一点的概率是多少? (3)同时出现两个六点的概率是多少? (4)同时出现相同点的概率是多少? (5)出现不同点的概率是多少? 解:(1)36 (2)136 (3)136 (4)16 (5)5619.(8分)一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)摸出1个球,记下颜色后放回,并搅匀,再摸出1个球.求两次摸出的球恰好颜色不同的概率;(要求画树状图或列表)(3)现再将n 个白球放入布袋,搅匀后,使摸出1个球是白球的概率为57,求n 的值.解:(1)13 (2)图表略,P (颜色不同)=49(3)由题意得1+n 3+n =57,∴n =420.(9分)某电视台的娱乐节目《周末大放送》有这样的翻奖牌游戏,数字的背面写有祝福语或奖金数.游戏规则是:每次翻动正面一个数字,看看反面对应的内容,就可知是得奖还是得到温馨祝福.求:(1)“翻到奖金1000元”的概率; (2)“翻到奖金”的概率;(3)“翻不到奖金”的概率. 解:(1)19 (2)13 (3)2321.(7分)如图,有四张不透明的卡片,除正面写有不同的数字外,其他均相同.将这四张卡片背面向上洗匀,从中随机抽取一张,记录数字后放回,重新洗匀后再从中随机抽取一张,记录数字.试用列表或画树状图的方法,求抽出的两条卡片上的数字都是正数的概率.解:可以用下表列举所有可能情况:3现了4次.因此,两张卡片上的数字都是正数的概率P =416=1422.(8分)下表是一名同学在罚球线上投篮的试验结果,根据表中数据,回答问题:(1)(2)根据此概念,估计这名同学投篮622次,投中的次数约是多少?解:(1)估计这名球员投篮一次,投中的概率约是0.5 (2)622×0.5=311,故估计投中的次数约是311次23.(8分)如图,甲、乙两人玩游戏,他们准备了一个可以自由转动的转盘和一个不透明的袋子,转盘被分成面积相等的三个扇形,并在每一个扇形内分别标上数字-1,-2,-3;袋子中装有除数字以外其他均相同的三个乒乓球,球上标有数字1,2,3.游戏规则:转动转盘,当转盘停止后,指针所指区域的数字与随机从袋中摸出乒乓球的数字之和为0时,甲获胜;其他情况乙获胜.(如果指针恰好指在分界线上,那么重转一次,直到指针指向某一区域为止)(1)用树状图或列表法求甲获胜的概率;(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由. 解:(1)画树状图:由树状图可知共有9种等可能结果,其中和为0的有3种,∴P (甲获胜)=39=13 (2)游戏不公平.理由:∵P (甲获胜)=13,P (乙获胜)=69=23,∴P (甲获胜)≠P (乙获胜),∴游戏不公平24.(10分)小明、小亮、小芳和两个陌生人甲、乙同在如图所示的地下车库等电梯,已知两个陌生人到1至4层的任意一层出电梯,并设甲在a 层出电梯,乙在b 层出电梯.(1)小明想知道甲、乙二人在同一层出电梯的概率,你能帮他求出吗?(2)小亮和小芳打赌:若甲、乙在同一层或相邻楼层出电梯,则小亮胜,否则小芳胜.该游戏是否公平?若公平,说明理由;若不公平,请修改游戏规则,使游戏公平.解:(1)列表略 一共出现16种等可能结果,其中在同一层出电梯的有4种结果,则P (甲、乙在同一层出电梯)=416=14(2)由(1)列表知:甲、乙在同一层或相邻楼层出电梯的有10种结果,故P (小亮胜)= 1016=58,P (小芳胜)=1-58=38,∵58>38,∴游戏不公平, 修改规则:若甲、乙在同一层或相隔两层出电梯,则小亮胜; 若甲、乙相隔一层或三层出电梯,则小芳胜。
浙教版九年级上册数学第2章简单事件的概率含答案一、单选题(共15题,共计45分)1、气象台预报“本市明天降水概率是30%”,对此消息下列说法正确的是()A.本市明天将有30%的地区降水B.本市明天将有30%的时间降水C.本市明天有可能降水D.本市明天肯定不降水2、有五条线段,长度分别是2,4,6,8,10,从中任取三条能构成三角形的概率是()A. B. C. D.3、下列说法正确的是()A.方差越大,数据的波动越大B.某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖C.旅客上飞机前的安检应采用抽样调查D.掷一枚硬币,正面一定朝上4、三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A. B. C. D.5、下列四个事件中,是随机事件(不确定事件)的为( )。
A.颖颖上学经过十字路口时遇到绿灯B.不透明袋子中放了大小相同的一个乒乓球、二个玻璃球,从中去摸取出乒乓球C.本题为第10题,你这时正在解答本试卷的第12题,D.明天我市最高气温为60℃6、下列说法正确的是()A.任意抛掷一枚质地均匀的硬币10次,则“有5次正面朝上”是必然事件 B.明天的降水概率为40%,则“明天下雨”是确定事件 C.篮球队员在罚球线上投篮一次,则“投中”是随机事件 D.a是实数,则“|a|≥0”是不可能事件7、在一个不透明的布袋中装有4个白球和6个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是()A. B. C. D.8、一个布袋里装有10个只有颜色不同的球,其中4个黄球,6个白球.从布袋里任意摸出1个球,则摸出的球是黄球的概率为()A. B. C. D.9、在一个不透明的盒子中有大小均匀的黄球与白球共12个,若从盒子中随机取出一个球,若取出的球是白球的概率是,则盒子中白球的个数是().A.3B.4C.6D.810、把标号为1,2,3的三个小球放入一个不透明的口袋中,随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球的标号的和大于3的概率是()A. B. C. D.11、下列说法中正确的是( )A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“任意画出一个平行四边形,它是中心对称图形”是必然事件C.“概率为0.0001的事件”是不可能事件’ D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次12、现有四张分别标有数字1、2、2、3的卡片,他们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽出一张后放回,再背朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率()A. B. C. D.13、下列说法正确的是().A.若明天降水概率为50%,那么明天一定会降水B.任意掷一枚均匀的1元硬币,一定是正面朝上C.任意时刻打开电视,都正在播放动画片《喜洋洋》D.本试卷共24小题14、气象台预报“本市明天降水概率是80%”,对此信息,下面的几种说法正确的是()A.本市明天将有80%的地区降水B.本市明天将有80%的时间降水C.明天肯定下雨D.明天降水的可能性比较大15、在一个不透明的口袋中装有5张完全相同的卡片,卡片上面分别写有数字﹣2,﹣1,0,1,3,从中随机抽出一张卡片,卡片上面的数字是负数的概率为()A. B. C. D.二、填空题(共10题,共计30分)16、小强和小明去养老院参加社会实践活动,随机选择“打扫养老院卫生”和“调查老年人健康情况” 其中一项,那么同时选择“打扫养老院卫生”的概率是________.17、袋子中装有3个红球、5个黄球、2个白球,这些球的形状、大小、质地等完全相同,随机地从袋子中摸出一个红球的概率是________.18、3月全国两会胜利召开,某数学兴趣小组就两会期间出现频率最高的热词:A脱贫攻坚.B.绿色发展.C.自主创新.D.简政放权等热词进行了抽样调查,每个同学只能从中选择一个“我最关注”的热词,如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了________ 名同学;(2)条形统计图中,m=________ ,n=________ ;(3)扇形统计图中,热词B所在扇形的圆心角的度数是________ ;(4)从该校学生中随机抽取一个最关注热词D的学生的概率是多少?________19、盒子里有10个除颜色外完全相同的球,若摸到红球的概率是,则红球有________个.20、不透明的袋子里装有3个红球5个白球,它们除颜色外其它都相同,从中随机摸出一个球,则摸到红球的概率是________.21、掷一枚质地均匀的硬币,前9次都是反面朝上,则掷第10次时反面朝上的概率是________.22、从,0,,,6这五个数中随机抽取一个数,抽到有理数的概率是________.23、已知数据,﹣7,﹣7.5,π,﹣2017,其中出现负数的频率是________.24、小亮在投篮训练中,对多次投篮的数据进行记录.得到如下频数表:投篮次数20 40 60 80 120 160 200投中次数15 33 49 63 97 128 160投中的频率0.75 0.83 0.82 0.79 0.81 0.8 0.8估计小亮投一次篮,投中的概率是________.25、在一个不透明的箱子里放有x个除颜色外其它完全相同的球,这x个球中白球只有3个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回箱子,通过大量重复摸球实验后发现,摸到白球的频率稳定在30%,那么可以推算出x 最有可能是________个.三、解答题(共5题,共计25分)26、有四张正面分别写有数字:20,15,10,5的卡片,背面完全相同,将卡片洗匀后背面朝上.放在桌面上小明先随机抽取一张,记下牌面上的数字(不放回),再从剩下的卡片中随机抽取一张,记下牌面上的数字.如果卡片上的数字分别对应价值为20元,15元,10元,5元的四件奖品,请用列表或画树状图法求小明两次所获奖品总值不低于30元的概率?27、某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整).已知A、B两组捐款人数的比为1∶5.捐款人数分组统计表组别捐款额x/元人数A 1≤x<10 aB 10≤x<20 100C 20≤x<30D 30≤x<40E x≥40请结合以上信息解答下列问题.(1)a等于多少?本次调查样本的容量是多少?(2)先求出C组的人数,再补全“捐款人数分组统计图1”;(3)若任意抽出1名学生进行调查,恰好是捐款数不少于30元的概率是多少?28、A,B,C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B,C两人中的某一人,以后的每一次传球都是由接球者将球随机地传给其余两人中的某人。
浙教版九年级上册数学第2章简单事件的概率含答案一、单选题(共15题,共计45分)1、下列说法正确的是()A.一颗质地均匀的骰子已连续抛投了2015次,其中抛掷出5点的次数最少,则第2016次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等2、一个骰子,六个面上的数字分别为1、2、3、4、5、6,连续投掷两次,两次向上的面出现数字之和为偶数的概率是()A. B. C. D.3、下列事件中,是必然事件的是()A.直角三角形的两个锐角互余.B.买一张电影票,座位号是偶数号. C.投掷一个骰子,正面朝上的点数是7. D.打开“酷狗音乐盒”,正在播放歌曲《我和我的祖国》.4、一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A. B. C. D.5、如图,是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止),两个指针所指区域的数字和为偶数的概率是()A. B. C. D.6、在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,…如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%,②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是()A.①②③B.①②C.①③D.②③7、在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2B.12C.18D.248、下列说法正确的是()A.打开电视,它正在播天气预报是不可能事件B.要考察一个班级中学生的视力情况适合用抽样调查C.抛掷一枚均匀的硬币,正面朝上的概率是,若抛掷10次,就一定有5次正面朝上. D.甲、乙两人射中环数的方差分别为,,说明乙的射击成绩比甲稳定9、在下列事件中,随机事件是()A.通常温度降到0℃以下,纯净的水会结冰B.随意翻到一本书的某页,这页的页码是奇数C.明天的太阳从东方升起D.在一个不透明的袋子里装有完全相同的6个红色小球,随机抽取一个白球10、对一批衬衣进行抽检,统计合格衬衣的件数,得到如下的频数表:抽查件数(件)100 150 200 500 800 1000合格频数85 141 176 445 724 900根据表中数据,下列说法错误的是()A.抽取100件的合格频数是85B.任抽取一件衬衣是合格品的概率是0.8 C.抽取200件的合格频率是0.88 D.出售1200件衬衣,次品大约有120件11、下列事件是必然事件的是( )A.打开电视机,任选一个频道,屏幕上正在播放天气预报B.到电影院任意买一张电影票,座位号是奇数C.在地球上,抛出去的篮球会下落D.掷一枚均匀的骰子,骰子停止转动后偶数点朝上12、在一个不透明的口袋里装有2个白球、3个黑球和3个红球,它们除了颜色外其余都相同.现随机从袋里摸出1个球,则摸出白球的概率是()A. B. C. D.13、桌上放着25粒棋子,小明和小刚两人轮流拿,一次可以拿走1粒棋子、2粒棋子或者3粒棋子,但不可以不拿,拿到最后一粒棋子的算输,该游戏()A.公平B.不公平C.对小明有利D.不确定14、一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A. B. C. D.15、下列事件中,是随机事件的是()A.抛出的篮球会下落B.爸爸买彩票中奖了C.地球绕着太阳转 D.一天有24小时二、填空题(共10题,共计30分)16、在中,给出以下4个条件:⑴ ;⑵ ;⑶ ;⑷ ;从中任取一个条件,可以判定出是直角三角形的概率是________.17、四张完全相同的卡片上,分别画有等边三角形、平行四边形、矩形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为________.18、事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是________19、某事件发生的可能性是99.9%.下面的三句话:①发生的可能性很大,但不一定发生;②发生的可能性较小;③肯定发生.以上三句话对此事件描述正确的是________(选填序号).20、从分别标有1、2、3、4的四张卡片中,一次同时抽2张,其中和为奇数的概率是________.21、从1、﹣1、0三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率是________.22、四个实数,,,π中,任取一个数是无理数的概率为________.23、若我们把十位上的数字比个位和百位上的数字都小的三位数称为凹数,如:768,645.则由1,2,3这三个数字构成的,数字不重复的三位数是“凹数”的概率是________ .24、一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为,则袋中应再添加红球________个(以上球除颜色外其他都相同).25、某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是________ .三、解答题(共5题,共计25分)26、在四编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中机抽取一张.我们知道,满足的三个正整数a,b,c成为勾股数,请用“列表法”或“树状图法”求抽到的两张卡片上的数都是勾股数的概率(卡片用A,B,C,D表示).27、某公司举行一个游戏,规则如下:有4张背面相同的卡片,分别对应1000元、600元、400元、200元的奖金,现将4张纸牌洗匀后背面朝上摆放到桌上,让员工抽取,每人有两次抽奖机会,两次抽取的奖金之和作为公司发的奖金.现有两种抽取的方案:①小芳抽取方案是:直接从四张牌中抽取两张.②小明抽取的方案是:先从四张牌中抽取一张后放回去,再从四张中再抽取一张.你认为是小明抽到的奖金不少于1000元的概率大还是小芳抽取到的奖金少于1000元的概率大?请用树形图或列表法进行分析说明.28、小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1-4的四个球(除编号不同外其它都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字.若两次数字之和大于5,则小颖胜,否则小丽胜.这个游戏对双方公平吗?请说明理由.29、一个不透明盒子中放有三张除所标数字不同外其余均相同的卡片,卡片上分别标有数字1,2,从盒子中随机抽取一张卡片,记下数字后放回,再次随机抽取一张一记下数字,请用画树状图或列表的方法,求第二次抽取的数字大于第一次抽取的数字的概率.30、某学校游戏节活动中,设计了一个有奖转盘游戏,如图,A转盘被分成三个面积相等的扇形,B转盘被分成四个面积相等的扇形,每一个扇形都标有相应的数字,先转动A转盘,记下指针所指区域内的数字,再转动B转盘,记下指针所指区域内的数字(当指针在边界线上时,重新转动一次,直到指针指向一个区域内为止),然后,将两次记录的数据相乘.(1)请利用画树状图或列表格的方法,求出乘积结果为负数的概率.(2)如果乘积是无理数时获得一等奖,那么获得一等奖的概率是多少?参考答案一、单选题(共15题,共计45分)1、D2、B4、C5、B6、B7、C8、D9、B10、B11、C12、D13、B14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、29、30、。
浙教版九年级上册数学第2章简单事件的概率含答案一、单选题(共15题,共计45分)1、从1~9这九个自然数中任取一个,是3的倍数的概率是()A. B. C. D.2、已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有2个,黑球有n个.随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀.经过大量重复试验发现摸出白球的频率稳定在0.4附近,则n的值为( )A.2B.3C.4D.53、从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是()A.0B.C.D.14、把1枚质地均匀的普通硬币重复掷两次,落地后出现一次正面一次反面的概率是()A.1B.C.D.5、口袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是()A.随机摸出1个球,是白球B.随机摸出1个球,是红球C.随机摸出1个球,是红球或黄球D.随机摸出2个球,都是黄球6、在100张奖卷中,有4张中奖,小红从中任抽1张,他中奖的概率是()A. B. C. D.7、电动游览车经过某景区十字路口,可能直行,也可能左转或者右转.如果这三种可能性大小相同,则经过这个十字路口的两辆游览车一辆左转,一辆右转的概率为( )A. B. C. D.8、下列事件中为必然事件的是()A.早晨的太阳从东方升起B.打开电视机,正在播放新闻C.随机掷一枚硬币,落地后正面朝上D.下雨后,天空出现彩虹9、四张完全相同的卡片上分别画有平行四边形、菱形、等腰梯形、圆,现从中任意抽取一张,卡片上所画的图形恰好是中心对称图形的概率为( )A. B. C. D.10、下列说法中正确的是().A.“打开电视机,正在播放《动物世界》”是必然事件B.某种彩票的中奖概率为,说明每买1000张,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为D.想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查11、某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A. B. C. D.12、如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到得卡片上算式正确的概率是()A. B. C. D.113、“翻开数学书,恰好翻到第16页”,这个事件是()A.随机事件B.必然事件C.不可能事件D.确定事件14、在一个透明的口袋中装着大小、外形一模一样的5个黄球,2个红球和2个白球,这些球在口袋中被搅匀了,下列事件必然发生的是()( 1 )从口袋中任意摸出一个球是一个黄球或是一个白球(2)从口袋中一次任意摸出5个球,全是黄球(3)从口袋中一次任意摸出8个球,三种颜色都有(4)从口袋中一次任意摸出6个球,有黄球和红球,或有黄球和白球,或三种颜色都有.A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(2)(3)(4)15、有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面的点数为偶数.下列说法正确的是()A.事件A、B都是随机事件B.事件A、B都是必然事件C.事件A是随机事件,事件B是必然事件D.事件A是必然事件,事件B是随机事件二、填空题(共10题,共计30分)16、不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是________.17、从-2、1、这三个数中任取两个不同的数相乘,积是无理数的概率是________.18、把1枚质地均匀的普通硬币重复掷三次,落地后三次都是正面朝上的概率是________.19、在一个不透明的盒子中装有a个除颜色外完全相同的球,其中只有6个白球.若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到白球的频率稳定在20%左右,则a的值约为________.20、一个不透明的袋中有四张形状大小质地完全相同的卡片,它们上面分别标有数字,随机抽取一张卡片不放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为奇数的概率是________.21、张凯家购置了一辆新车,爸爸妈妈商议确定车牌号,前三位选定为8ZK 后,对后两位数字意见有分歧,最后决定由毫不知情的张凯从如图排列的四个数字中随机划去两个,剩下的两个数字从左到右组成两位数,续在8ZK之后,则选中的车牌号为8ZK86的概率是________.22、小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向上的概率是________.23、一袋中装有5个红球、4个白球和3个黄球,每个球除颜色外都相同.从中任意摸出一个球,则:P(摸到红球)=________,P(摸到白球)=________.24、从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是________.25、布袋内装有大小、形状相同的3个红球和1个白球,从布袋中一次摸出两个球,那么两个都摸到红球的概率是________.三、解答题(共5题,共计25分)26、有3个完全相同的小球,把它们分别标号为1,2,3,放在一个不透明的口袋中,从口袋中随机摸出一个小球,记下标号后放回,再从口袋中随机摸出一个小球,记下标号.用画树状图(或列表)的方法,求两次摸出的小球号码恰好都大于1的概率.27、从一副扑g牌中选取红桃A、方块A、梅花K三张扑g牌,正面朝下洗均后放在桌面上,小红先从中随机抽取一张,放回洗匀;小明再从中随机抽取一张,用画树状图(或列表)的方法,求小红和小明抽取的扑g牌的牌面都是A 的概率.28、有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定,转动两个转盘各一次,指向大的数字获胜.现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?29、如图,在四张质地,大小相同的卡片上分别写上1,-2,4,-8,从中任意抽取一张卡片,记下上面的数字作为点的横坐标;把卡片放回去搅匀,再任意抽取一张卡片,记下上面的数字作为点的纵坐标.用列表或画树状图的方法求这个点一定在反比例函数y=- ,的图象上的概率。
《第2章简单事件的概率》一、选择题1.下列事件中,必然事件是()A.掷一枚硬币,正面朝上B.a是实数,|a|≥0C.某运动员跳高的最好成绩是20.1米D.从车间刚生产的产品中任意抽取一个,是次品2.已知抛一枚均匀硬币正面朝上的概率是0.5,下列说法正确的是()A.连续抛一枚均匀硬币2次,必有1次正面朝上B.连续抛一枚均匀硬币2次,一次是正面一次是反面的概率是C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的3.从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M,“这个四边形是等腰梯形”.下列推断正确的是()A.事件M是不可能事件B.事件M是必然事件C.事件M发生的概率为 D.事件M发生的概率为4.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为()A.B.C.D.15.一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是()A.m=3,n=5 B.m=n=4 C.m+n=4 D.m+n=86.在x2□2xy□y2的空格□中,分别填上“+”或“﹣”,在所得的代数式中,能构成完全平方式的概率是()A.1 B.C.D.7.如图,正方形ABCD内接于⊙O,⊙O的直径为分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是()A.B.C. D.8.学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”、“2”、“3”、“4”表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则都重转一次.在该游戏中乙获胜的概率是()A.B.C.D.9.如图,A、B是数轴上两点.在线段AB上任取一点C,则点C到表示﹣1的点的距离不大于2的概率是()A.B.C.D.10.已知A,B两个口袋中都有6个分别标有数字0,1,2,3,4,5的彩球,所有彩球除标示的数字外没有区别.甲、乙两位同学分别从A,B两个口袋中随意摸出一个球.记甲摸出的球上数字为x,乙摸出的球上数字为y,数对(x,y)对应平面直角坐标系内的点Q,则点Q落在以原点为圆心,半径为的圆上或圆内的概率为()A.B.C.D.二、填空题11.在一个不透明的布袋中,红色、黑色、白色的乒乓球共有20个,除颜色外,形状、大小、质地等完全相同.小明通过多次摸球实验后发现其中投到红色、黑色球的频率稳定在5%和15%,则口袋中白色球的个数很可能是个.12.如图所示的电路图中,在开关全部断开的情况下,闭合其中任意一个开关,灯泡发亮的概率是.13.张凯家购置了一辆新车,爸爸妈妈商议确定车牌号,前三位选定为8ZK后,对后两位数字意见有分歧,最后决定由毫不知情的张凯从如图排列的四个数字中随机划去两个,剩下的两个数字从左到右组成两位数,续在8ZK之后,则选中的车牌号为8ZK86的概率是.14.随机掷一枚质地均匀的硬币三次,至少有一次正面朝上的概率是.15.两个袋子中分别装着写有1、2、3、4的四张卡片,从每一个袋子中各抽取一张,则两张卡片上的数字之和是6的机会是.16.在不透明的口袋中,有四个形状、大小、质地完全相同的小球,四个小球上分别标有数字,2,4,﹣,现从口袋中任取一个小球,并将该小球上的数字作为平面直角坐标系中点P的横坐标,且点P在反比例函数y=图象上,则点P落在正比例函数y=x图象上方的概率是.17.如图,某商标是由边长均为2的正三角形、正方形、正六边形的金属薄片镶嵌而成的镶嵌图案.如果在这个镶嵌图案中随机确定一个点O,那么点O落在镶嵌图案中的正方形区域的概率为.(.结果保留二位小数)18.17世纪的一天,保罗与著名的赌徒梅尔赌钱,每人拿出6枚金币,然后玩骰子,约定谁先胜三局谁就得到12枚金币,比赛开始后,保罗胜了一局,梅尔胜了两局,这是一件意外的事中断了他们的赌博,于是他们商量这12枚金币应该怎样分配才合理,保罗认为,根据胜的局数,他应得总数的三分之一,即4枚金币,但精通赌博的梅尔认为他赢得可能性大,所以他应得全部赌金.请你根据概率知识分析保罗应赢得枚金币.三、简答题(共38分)19.在复习《反比例函数》一课时,同桌的小明和小芳有一个问题观点不一致.小明认为如果两次分别从1~6六个整数中任取一个数,第一个数作为点P(m,n)的横坐标,第二个数作为点P(m,n)的纵坐标,则点P(m,n)在反比例函数的图象上的概率一定大于在反比例函数的图象上的概率,而小芳却认为两者的概率相同.你赞成谁的观点?(1)试用列表或画树状图的方法列举出所有点P(m,n)的情形;(2)分别求出点P(m,n)在两个反比例函数的图象上的概率,并说明谁的观点正确.20.研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.活动结果:摸球实验活动一共做了50次,统计结果如下表:推测计算:由上述的摸球实验可推算:(1)盒中红球、黄球各占总球数的百分比分别是多少?(2)盒中有红球多少个?21.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;(2)比赛完四个人站成一排拍照,甲乙刚好相邻而站的概率是多少?22.如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字,现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P (x,y).(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;(2)李刚为甲、乙两人设计了一个游戏:记s=x+y.当s<6时,甲获胜,否则乙获胜.你认为这个游戏公平吗?对谁有利?(3)请你利用两个转盘,设计一个公平的游戏规则.23.如图1,抛物线与x轴交于A、C两点,与y轴交于B点,与直线y=kx+b交于A、D两点.(1)直接写出A、C两点坐标和直线AD的解析式;(2)如图2,质地均匀的正四面体骰子的各个面上依次标有数字﹣1、1、3、4.随机抛掷这枚骰子两次,把第一次着地一面的数字m记做P点的横坐标,第二次着地一面的数字n记做P点的纵坐标.则点P(m,n)落在图1中抛物线与直线围成区域内(图中阴影部分,含边界)的概率是多少?《第2章简单事件的概率》参考答案与试题解析一、选择题1.下列事件中,必然事件是()A.掷一枚硬币,正面朝上B.a是实数,|a|≥0C.某运动员跳高的最好成绩是20.1米D.从车间刚生产的产品中任意抽取一个,是次品【考点】随机事件.【专题】应用题.【分析】一定会发生的事情称为必然事件.依据定义即可解答.【解答】解:A、是随机事件,故不符合题意,B、是必然事件,符合题意,C、是不可能事件,故不符合题意,D、是随机事件,故不符合题意.故选B.【点评】本题主要考查了必然事件为一定会发生的事件,解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养,难度适中.2.已知抛一枚均匀硬币正面朝上的概率是0.5,下列说法正确的是()A.连续抛一枚均匀硬币2次,必有1次正面朝上B.连续抛一枚均匀硬币2次,一次是正面一次是反面的概率是C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的【考点】概率的意义.【专题】应用题.【分析】根据概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答】解:A、连续抛一均匀硬币2次必有1次正面朝上,不正确,有可能两次都正面朝上,也可能都反面朝上,故此选项错误;B、连续抛一枚均匀硬币2次,一次是正面一次是反面的概率应是,故本选项错误;C、大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次,不正确,有可能都朝上,故本选项错误;D、通过抛一均匀硬币确定谁先发球的比赛规则是公平的,概率均为,故此选项正确.故选:D.【点评】此题主要考查了概率的意义,关键是弄清随机事件和必然事件的概念的区别.3.从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M,“这个四边形是等腰梯形”.下列推断正确的是()A.事件M是不可能事件B.事件M是必然事件C.事件M发生的概率为 D.事件M发生的概率为【考点】正多边形和圆;三角形内角和定理;等腰三角形的性质;多边形内角与外角;等腰梯形的判定;随机事件;概率公式.【分析】连接BE,根据正五边形ABCDE的性质得到BC=DE=CD=AB=AE,根据多边形的内角和定理求出∠A=∠ABC=∠C=∠D=∠AED=108°,根据等腰三角形的性质求出∠ABE=∠AEB=36°,求出∠CBE=72°,推出BE∥CD,得到四边形BCDE是等腰梯形,即可得出答案.【解答】解:如图,连接BE,∵正五边形ABCDE,∴BC=DE=CD=AB=AE,根据多边形的内角和(n﹣2)×180°得:∠A=∠ABC=∠C=∠D=∠AED==108°,∴∠ABE=∠AEB=(180°﹣∠A)=36°,∴∠CBE=∠ABC﹣∠ABE=72°,∴∠C+∠CBE=180°,∴BE∥CD,∴四边形BCDE是等腰梯形,即事件M是必然事件,故选:B.【点评】本题主要考查对正多边形与圆,三角形的内角和定理,等腰三角形的性质,等腰梯形的判定,必然事件,概率,随机事件,多边形的内角和定理等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.4.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为()A.B.C.D.1【考点】概率公式;中心对称图形.【专题】计算题.【分析】先判断出圆、矩形、等边三角形、等腰梯形中的中心对称图形,再根据概率公式解答即可.【解答】解:圆、矩形、等边三角形、等腰梯形中,中心对称图形有圆,矩形2个;则P(中心对称图形)==.故选B.【点评】此题考查了概率公式和中心对称图形的定义,要弄清概率公式适用的条件方可解题:(1)试验中所有可能出现的基本事件有有限个;(2)每个基本事件出现的可能性相等.5.一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是()A.m=3,n=5 B.m=n=4 C.m+n=4 D.m+n=8【考点】概率公式.【专题】计算题.【分析】由于每个球都有被摸到的可能性,故可利用概率公式求出摸到白球的概率与摸到的球不是白球的概率,列出等式,求出m、n的关系.【解答】解:根据概率公式,摸出白球的概率,,摸出不是白球的概率,,由于二者相同,故有=,整理得,m+n=8,故选D.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6.在x2□2xy□y2的空格□中,分别填上“+”或“﹣”,在所得的代数式中,能构成完全平方式的概率是()A.1 B.C.D.【考点】概率公式;完全平方式.【专题】数形结合.【分析】让填上“+”或“﹣”后成为完全平方公式的情况数除以总情况数即为所求的概率.【解答】解:能够凑成完全平方公式,则2xy前可是“﹣”,也可以是“+”,但y2前面的符号一定是:“+”,此题总共有(﹣,﹣)、(+,+)、(+,﹣)、(﹣,+)四种情况,能构成完全平方公式的有2种,所以概率是.故选:C.【点评】此题考查完全平方公式与概率的综合应用,注意完全平方公式的形式.用到的知识点为:概率=所求情况数与总情况数之比;a2±2ab+b2能构成完全平方式.7.如图,正方形ABCD内接于⊙O,⊙O的直径为分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是()A.B.C. D.【考点】几何概率;正多边形和圆.【专题】压轴题.【分析】在这个圆面上随意抛一粒豆子,落在圆内每一个地方是均等的,因此计算出正方形和圆的面积,利用几何概率的计算方法解答即可.【解答】解:因为⊙O的直径为分米,则半径为分米,⊙O的面积为π()2=平方分米;正方形的边长为=1分米,面积为1平方分米;因为豆子落在圆内每一个地方是均等的,==.所以P(豆子落在正方形ABCD内)故选A.【点评】此题主要考查几何概率的意义:一般地,对于古典概型,如果试验的基本事件为n,随机事件A所包含的基本事件数为m,我们就用来描述事件A出现的可能性大小,称它为事件A的概率,记作P(A),即有 P(A)=.8.学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”、“2”、“3”、“4”表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则都重转一次.在该游戏中乙获胜的概率是()A .B .C .D .【考点】列表法与树状图法. 【专题】数形结合.【分析】列举出所有情况,看两指针指的数字和为奇数的情况占总情况的多少即可. 【解答】解:所有出现的情况如下,共有16种情况,积为奇数的有4种情况,所以在该游戏中甲获胜的概率是=.乙获胜的概率为=.故选C .【点评】本题主要考查用列表法与树状图法求概率,用到的知识点为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=.9.如图,A 、B 是数轴上两点.在线段AB 上任取一点C ,则点C 到表示﹣1的点的距离不大于2的概率是( )A .B .C .D .【考点】概率公式;数轴. 【专题】计算题.【分析】将数轴上A 到表示﹣1的点之间的距离不大于2、表1的点到表示﹣1 的点间的距离不大于2,而AB 间的距离分为5段,利用概率公式即可解答.【解答】解:如图,C 1与C 2到表示﹣1的点的距离均不大于2,根据概率公式P=. 故选:D .【点评】此题结合几何概率考查了概率公式,将AB间的距离分段,利用符合题意的长度比上AB的长度即可.10.已知A,B两个口袋中都有6个分别标有数字0,1,2,3,4,5的彩球,所有彩球除标示的数字外没有区别.甲、乙两位同学分别从A,B两个口袋中随意摸出一个球.记甲摸出的球上数字为x,乙摸出的球上数字为y,数对(x,y)对应平面直角坐标系内的点Q,则点Q落在以原点为圆心,半径为的圆上或圆内的概率为()A.B.C.D.【考点】列表法与树状图法;点与圆的位置关系.【专题】压轴题.【分析】根据已知列表得出所有结果,进而得出满足条件的点的个数为:8个,即可求出点Q落在以原点为圆心,半径为的圆上或圆内的概率.【解答】解:根据题意列表得出:∵数对(x,y)对应平面直角坐标系内的点Q,点Q落在以原点为圆心,半径为的圆上或圆内的坐标横纵坐标绝对值都必须小于等于2,∴满足条件的点的个数为:8个,∴点Q落在以原点为圆心,半径为的圆上或圆内的概率为:.故选:A.【点评】此题考查的是用列表法或者用树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.二、填空题11.在一个不透明的布袋中,红色、黑色、白色的乒乓球共有20个,除颜色外,形状、大小、质地等完全相同.小明通过多次摸球实验后发现其中投到红色、黑色球的频率稳定在5%和15%,则口袋中白色球的个数很可能是16 个.【考点】利用频率估计概率.【专题】计算题.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,先求得白球的频率,再乘以总球数求解.【解答】解:白色球的个数是:20×(1﹣5%﹣15%)=20×80%=16,故答案为:16,【点评】此题主要考查了利用频率估计概率,解答此题的关键是要计算出口袋中白色球所占的比例,再计算其个数.12.如图所示的电路图中,在开关全部断开的情况下,闭合其中任意一个开关,灯泡发亮的概率是.【考点】列表法与树状图法.【专题】计算题;压轴题.【分析】根据概率公式知,共有3个开关,只闭一个开关时,只有闭合K时才发光,所以小灯泡发3光的概率等于.小灯泡才发光,所以小灯泡发光的概率等于.【解答】解:根据题意,三个开关,只有闭合K3故答案为.【点评】本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.张凯家购置了一辆新车,爸爸妈妈商议确定车牌号,前三位选定为8ZK后,对后两位数字意见有分歧,最后决定由毫不知情的张凯从如图排列的四个数字中随机划去两个,剩下的两个数字从左到右组成两位数,续在8ZK之后,则选中的车牌号为8ZK86的概率是.【考点】概率公式.【专题】压轴题;规律型.【分析】先得出四个数字中随机划去两个,剩下的两个数字组成两位数的可能,再得出是86的可能,根据概率公式即可求解.【解答】解:如图排列的四个数字中随机划去两个,剩下的两个数字从左到右组成两位数的可能有6种,其中是86的可能有2种,故选中的车牌号为8ZK86的概率是=2÷6=.故答案为:.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.14.随机掷一枚质地均匀的硬币三次,至少有一次正面朝上的概率是.【考点】列表法与树状图法.【分析】根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可.【解答】解:∵随机掷一枚质地均匀的硬币三次,∴根据树状图可知至少有一次正面朝上的概率是:.故答案为:.【点评】此题主要考查了树状图法求概率,根据题意画出树状图是解决问题的关键.15.两个袋子中分别装着写有1、2、3、4的四张卡片,从每一个袋子中各抽取一张,则两张卡片上的数字之和是6的机会是.【考点】列表法与树状图法.【专题】数形结合.【分析】列举出所有情况,看两张卡片上的数字之和是6的情况数占总情况数的多少即可.【解答】解:共16种情况,和等于6的情况数有3种,所以所求的概率为,故答案为.【点评】考查概率的求法;得到两张卡片上的数字之和是6的情况数的解决本题的关键;用到的知识点为:概率=所求情况数与总情况数之比.16.在不透明的口袋中,有四个形状、大小、质地完全相同的小球,四个小球上分别标有数字,2,4,﹣,现从口袋中任取一个小球,并将该小球上的数字作为平面直角坐标系中点P的横坐标,且点P在反比例函数y=图象上,则点P落在正比例函数y=x图象上方的概率是.【考点】概率公式;正比例函数的图象;反比例函数图象上点的坐标特征.【专题】压轴题.【分析】首先由点P在反比例函数y=图象上,即可求得点P的坐标,然后找到点P落在正比例函数y=x图象上方的有几个,根据概率公式求解即可.【解答】解:∵点P在反比例函数y=图象上,∴点P的坐标可能为:(,2),(2,),(4,),(﹣,﹣3),∵点P落在正比例函数y=x图象上方的有:(,2),∴点P落在正比例函数y=x图象上方的概率是.故答案为:.【点评】此题考查了反比例函数与一次函数与点的关系,以及概率公式的应用.注意概率=所求情况数与总情况数之比.17.如图,某商标是由边长均为2的正三角形、正方形、正六边形的金属薄片镶嵌而成的镶嵌图案.如果在这个镶嵌图案中随机确定一个点O,那么点O落在镶嵌图案中的正方形区域的概率为0.54 .(.结果保留二位小数)【考点】几何概率;平面镶嵌(密铺).【分析】由图形得到由10个正三角形,11个正方形,2个正六边形,分别求出三个图形的面积,即可求出点O落在镶嵌图案中的正方形区域的概率.【解答】解:由图形可知:由10个正三角形,11个正方形,2个正六边形,正方形的面积是2×2=4,连接OA、OB,∵图形是正六边形,∴△OAB是等边三角形,且边长是2,即等边三角形的面积是,∴正六边形的面积是6×=6,∴点O落在镶嵌图案中的正方形区域的概率是≈0.54,答:点O落在镶嵌图案中的正方形区域的概率约为0.54.故答案为:0.54.【点评】本题主要考查了正多边形与圆,等边三角形的性质和判定,几何概率,勾股定理,平面镶嵌等知识点的理解和掌握,能根据性质进行计算是解此题的关键.18.17世纪的一天,保罗与著名的赌徒梅尔赌钱,每人拿出6枚金币,然后玩骰子,约定谁先胜三局谁就得到12枚金币,比赛开始后,保罗胜了一局,梅尔胜了两局,这是一件意外的事中断了他们的赌博,于是他们商量这12枚金币应该怎样分配才合理,保罗认为,根据胜的局数,他应得总数的三分之一,即4枚金币,但精通赌博的梅尔认为他赢得可能性大,所以他应得全部赌金.请你根据概率知识分析保罗应赢得 3 枚金币.【考点】概率公式.【分析】根据保罗胜了一局,梅尔胜了两局得到要再玩两局,才会决定胜负,根据要再玩两局出现的结果即可得到结论.【解答】解:∵要再玩两局,才会决定胜负,∴会出现四种可能的结果:(梅尔胜,保罗胜),(保罗胜,梅尔胜),(梅尔胜,梅尔胜),(保罗胜,保罗胜),其中前三种结果都是梅尔胜,只有第四种结果是保罗胜,∴梅尔取胜的概率是,保罗取胜的概率是,∴梅尔赢得12×=9枚金币,保罗应赢,12×=3枚金币,故答案为:3.【点评】本题考查了概率的公式,掌握的理解题意是解题的关键.三、简答题(共38分)19.在复习《反比例函数》一课时,同桌的小明和小芳有一个问题观点不一致.小明认为如果两次分别从1~6六个整数中任取一个数,第一个数作为点P(m,n)的横坐标,第二个数作为点P(m,n)的纵坐标,则点P(m,n)在反比例函数的图象上的概率一定大于在反比例函数的图象上的概率,而小芳却认为两者的概率相同.你赞成谁的观点?(1)试用列表或画树状图的方法列举出所有点P(m,n)的情形;(2)分别求出点P(m,n)在两个反比例函数的图象上的概率,并说明谁的观点正确.【考点】列表法与树状图法;反比例函数图象上点的坐标特征.【分析】(1)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;解题时要注意是放回实验还是不放回实验,此题属于放回实验;(2)依据(1)分析求得所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:(1)列表得:。
第2章 简单事件的概率检测卷一、选择题(本大题共10小题,每小题4分,共40分)1、一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到白球的概率为( )A .23 B. 12 C. 13D 、12、一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同、若从中任意摸出一个球,则下列叙述正确的是( )A 、摸到红球是必然事件B 、摸到白球是不可能事件C 、摸到红球与摸到白球的可能性相等D 、摸到红球比摸到白球的可能性大3、四张质地、大小相同的卡片上,分别画上如下图所示的四个图形,在看不到图形的情况下从中任意抽出一张,则抽出的卡片是轴对称图形的概率是( )第3题图A. 12B. 14C. 34D 、1 4、已知一个布袋里装有2个红球、3个白球和a 个黄球,这些球除颜色外其余都相同,若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于( )A 、1B 、2C 、3D 、45、如图的四个转盘中,C ,D 转盘分成8等份,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是( )6、某中学举行数学竞赛,经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛,那么九年级同学获得前两名的概率是( )A. 12B. 13C. 14D. 167、一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色…不断重复上述过程、小明共摸了100次,其中20次摸到黑球、根据上述数据,小明可估计口袋中的白球大约有( )A 、18个B 、15个C 、12个D 、10个第8题图8、(宁波中考)如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的概率是( )A. 12B. 25C. 37D. 479、同时抛掷A 、B 两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x 、y ,并以此确定点P (x ,y ),那么点P 落在抛物线y =-x 2+3x 上的概率为( )A.118 B. 112 C. 19 D. 16第10题图10、如图,已知点A ,B ,C ,D ,E ,F 是边长为1的正六边形的顶点,连结任意两点均可得到一条线段,在连结两点所得的所有线段中任取一条线段,取到长度为3的线段的概率为( )A. 14B. 25C. 23D. 59 二、填空题(本大题共6小题,每小题5分,共30分)11、在一个不透明的口袋中,有3个完全相同的小球,它们的标号分别为2,3,4.从袋中随机地摸取一个小球然后放回,再随机地摸取一个小球,则两次摸取的小球标号之和为5的概率是________、12、如图,在某十字路口,汽车可直行、可左转、可右转、若这三种可能性相同,则两辆汽车经过该路口都向右转的概率为________、第12题图13、有三辆车按1,2,3编号,舟舟和嘉嘉两人可任意选坐一辆车,则两人坐不同车的概率为________、14、在创建国家生态园林城市活动中,某市园林部门为了扩大城市的绿化面积、进行了大量的树木移栽、下表记录的是在相同的条件下移栽某种幼树的棵数与成活棵数:移栽棵数 100 1000 10000 成活棵数899109008依此估计这种幼树成活的概率是___(结果用小数表示,精确到0.1)、15、有长度分别为2cm ,3cm ,4cm ,7cm 的四条线段,任取其中三条能组成三角形的概率是________、16、(兰州中考)在四个完全相同的小球上分别写上1,2,3,4四个数字,然后装入一个不透明的口袋内搅匀,从口袋内取出一个球记下数字后作为点P 的横坐标x ,放回袋中搅匀,然后再从袋中取出一个球记下数字后作为点P 的纵坐标y ,则点P (x ,y )落在直线y =-x +5上的概率是__________、三、解答题(本大题共8小题,共80分)17、(8分)(宁波中考)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为12.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表或画树状图等方法求出两次摸到的球都是白球的概率、18、(8分)长城公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有A 、B 、C 三种型号,乙品牌有D 、E 两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠、(1)写出所有的选购方案(用列表法或树状图);(2)如果在上述选购方案中,每种方案被选中的可能性相同,那么A 型器材被选中的概率是多少?19、(8分)(杭州中考)一个布袋中装有只有颜色不同的a (a >12)个球,分别是2个白球、4个黑球、6个红球和b 个黄球,从中任意摸出一个球、把摸出白球、黑球、红球的概率绘制成统计图(未绘制完整)、请补全统计图并求出ba的值、第19题图20、(8分)保险公司对某地区人的寿命调查后发现:活到50岁的有69800人,在该年龄死亡的人数为980人;活到70岁的有38500人,在该年龄死亡的有2400人、(1)某人今年50岁,则他活到70岁的概率为多少?(2)若有20000个50岁的人参加保险,当年死亡的赔偿金为每人2万元,预计保险公司该年赔付总额为多少?21、(10分)暑假快要到了,某市准备组织同学们分别到A,B,C,D四个地方进行夏令营活动,前往四个地方的人数如图、(1)去B地参加夏令营活动人数占总人数的40%,根据统计图求去B地的人数?(2)若一对姐弟中只能有一人参加夏令营,姐弟俩提议让父亲决定、父亲说:现有4张卡片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张、若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加、用列表法或树形图分析这种方法对姐弟俩是否公平?第21题图22、(12分)如图,在方格纸中,△ABC 的三个顶点及D ,E ,F ,G ,H 五个点分别位于小正方形的顶点上、第22题图(1)现以D ,E ,F ,G ,H 中的三个点为顶点画三角形,在所画的三角形中与△ABC 不全..等.但面积相等的三角形是__△DFG 或HF __(只需要填一个三角形); (2)先从D ,E 两个点中任意取一个点,再从F ,G ,H 三个点中任意取两个不同的点,以所取的这三个点为顶点画三角形,求所画三角形与△ABC 面积相等的概率(用画树状图或列表法求解)、23、(12分)“端午”节前,小明爸爸去超市购买了大小、形状、重量等都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时从盒中随机取出火腿粽子的概率为13;妈妈从盒中取出火腿粽子3只、豆沙粽子7只送给爷爷和奶奶后,这时随机取出火腿粽子的概率为25.(1)请你用所学知识计算:爸爸买的火腿粽子和豆沙粽子各有多少只?(2)若小明一次从盒内剩余粽子中任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用列表法或树状图计算)24、(14分)某校一课外活动小组为了解学生喜欢的球类运动情况,随机抽查了该校九年级的200名学生,调查的结果如图所示,请根据该扇形统计图解答以下问题:(1)求图中x的值;(2)求最喜欢乒乓球运动的学生人数;(3)若由3名最喜欢篮球运动的学生,1名最喜欢乒乓球运动的学生,1名最喜欢足球运动的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),列出所有的可能情况,并求2人均是最喜欢篮球运动的学生的概率、第24题图第2章 简单事件的概率检测卷答案1、A 2. D 3. A 4. A 5. A 6. D 7. C 8. D 9.A第10题图10、B 【点拨】过六边形6个顶点的线段共有6×(6-1)2=15条、如图,连结AB ,AF ,BF ,过A 作AH ⊥BF 于点H.由正六边形的性质可得∠BAH =12∠BAF =12×120°=60°.在Rt △ABH 中,BH =AB×sin ∠BAH =1×32=32.所以BF =2BH =3.可得所连线段中长度为3的有BF ,AE ,FD ,EC ,DB ,AC 共6条,所以概率P(长度为3的线段)=615=25.故选B .11. 2912. 1913. 2314. 0.9 15. 1416. 1417. (1)由题意,得2÷12=4,∴布袋里共有4个球、∵4-2-1=1,∴布袋里有1个红球、(2)第17题图∴任意摸出2个球刚好都是白球的概率是16.18. (1)图略 (2)1319. ∵4a =0.2,∴2a =0.1,6a =0.3. 绘制统计图如图、 ba=1-0.1-0.2-0.3=0.4.第19题图20. (1)活到70岁的概率P≈0.5516;(2)赔付总额约为562万元、21. (1)设去B 地的人数为x 人,x30+x +20+10=40%,得x =40.∴去B 地的人数为40人、 (2)图略,∵姐姐能参加的概率P(姐)=416=14,弟弟能参加的概率为P(弟)=516,∵P(姐)=416<P(弟)=516,∴不公平、 22. (1)△DFG 或△DHF (2)画树状图:第22题图由树状图可知共有6种等可能结果、其中与△ABC 面积相等的有3种,即△DHF ,△DFG ,△EGF ,∴所画三角形与△ABC 面积相等的概率P =36=12.23. (1)设爸爸买的火腿粽子和豆沙粽子分别为x 只、y 只,根据题意得:⎩⎪⎨⎪⎧x x +y =13,x -3x -3+y -7=25,解得:⎩⎪⎨⎪⎧x =5,y =10,所以爸爸买了火腿粽子5只、豆沙粽子10只、 (2)由题可知,盒中剩余的火腿粽子和豆沙粽子分别为2只、3只,我们不妨把两只火腿粽子记为a 1、a 2;3只豆沙粽子记为b 1、b 2、b 3,则可列出表格(略),P =35.24. (1)x%+5%+15%+45%=1,解得:x =35. (2)200×45%=90(人)、(3)用A 1,A 2,A 3表示3名最喜欢篮球运动的学生,B 表示1名最喜欢乒乓球运动的学生,C 表示1名最喜欢足球运动的学生,则从5人中选出2人的情况有:(A 1,A 2),(A 1,A 3),(A 1,B),(A 1,C),(A 2,A 3),(A 2,B),(A 2,C),(A 3,B),(A 3,C),(B ,C),共计10种、选出的2人都是最喜欢篮球运动的学生有(A 1,A 2),(A 1,A 3),(A 2,A 3)三种、则选出2人都是最喜欢篮球运动的学生的概率为310.。
浙教版九年级上册数学第2章简单事件的概率测试卷一、选择题:(每题3分,共30分)1.掷一枚均匀的普通骰子,下列事件属于必然事件的是… ()A.朝上的点数小于7B.朝上点数是奇数C.朝上的点数是偶数D.朝上的点数大于12. 袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是……()A.3个B.不足3个C.4个D.5个或5个以上3. NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是…()A.科比罚球投篮2次,一定全部命中B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,没命中的可能性较小4. 从1,2,3 三个数中,随机抽取两个数相乘,积是正数的概率是()A.0B.13C.23D.15. 一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球,从布袋里任意摸出一个球,则摸出的球是红球的概率为……………………………………………………()A.B.C.D.6. 随机掷一枚均匀的硬币两次,两次正面都朝上的概率是()A.14B.12C.34D.1121623137. 已知粉笔盒里有4支红色粉笔和n 支白色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,取出红色粉笔的概率是25,则n 的值是( ) A .4 B .6 C .8 D .108. 甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏.游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.甲获胜的概率是( )A .13B .49 C .59 D .239. 有a 张甲级票和b 张乙级票,小英用实验的方法,从中任抽l 张,抽到甲级票的概率为m ,则甲级票张数是乙级票张数的……( )A .m 倍B .1m m -倍C .1m m +倍D .1m m-倍 10. 如图,一个小球从A 点沿制定的轨道下落,在每个交叉口都有向左或向右两种机会均等的结果,小球最终到达H 点的概率是( )A .12B .14C .16D .13二、填空题:(每题3分,共18分)11. “明天会下雨”是 事件.(填“必然”或“不可能”或“可能”)12. 在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是 .13. 任意翻一下2014年日历(共365张),翻出9月份日历的概率为 ;翻出4月31日的概率为 .。
浙教版九年级上册数学第2章《简单事件的概率》测试卷考试时间:120分钟满分:120分一、选择题(本大题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.1.下列事件为必然事件的是()A. 打开电视机,正在播放新闻B. 任意画一个三角形,其内角和是180°C. 买一张电影票,座位号是奇数号D. 掷一枚质地均匀的硬币,正面朝上2.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A. B. C. D.3.在“践行生态文明,你我一起行动”主题有奖竞赛活动中,903班共设置“生态知识、生态技能、生态习惯、生态文化”四个类别的竞赛内容,如果参赛同学抽到每一类别的可能性相同,那么小宇参赛时抽到“生态知识”的概率是()A. B. C. D.4.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是()A. B. C. D.5.抛掷一枚质地均匀的硬币次,正面朝上的次数最有可能为()A. B. C. D.6.小强同学从,,,,,这六个数中任选一个数,满足不等式的概率是()A. B. C. D.7.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A. B. C. D.8.从长度分别为2,4,6,8的四条线段中任选三条作边,能构成三角形的概率为()A. B. C. D.9.已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是()A. B. C. D.10.“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择—个参加活动,两人恰好选择同—场馆的概率是( )A. B. C. D.11.投掷一枚质地均匀的骰子两次,向上一面的点数依次记为.那么方程有解的概率是()A. B. C. D.12.箱子内装有53颗白球及2颗红球,小芬打算从箱子内抽球,以毎次抽出一球后将球再放回的方式抽53次球.若箱子内每颗球被抽到的机会相等,且前52次中抽到白球51次及红球1次,则第53次抽球时,小芬抽到红球的机率为何?()A. B. C. D.二、填空题(本大题有6小题,每小题3分,共18分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.13.掷一枚质地均匀的骰子,向上一面的点数为奇数的概率是________.14.袋中装有除颜色外其余均相同的5个红球和3个白球.从袋中任意摸出一个球,则摸出的球是红球的概率为________.15.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.连续掷两次骰子,在骰子向上的一面上,第二次出现的点数是第一次出现的点数的2倍的概率是________.16.一个不透明的口袋中共有8个白球、5个黄球、5个绿球、2个红球,这些球除颜色外都相同。
九(上)第2章检测题
(时间:120分钟 满分:120分)
一、选择题(每小题3分,共30分) 1.以下事件中,必然发生的是( C )
A .打开电视机,正在播放体育节目
B .正五边形的外角和为180°
C .通常情况下,水加热到100 ℃沸腾
D .掷一次骰子,向上一面是5点
2.掷一个骰子,向上一面点数大于2且小于5的概率为p 1,抛两枚硬币,均正面朝上的概率为p 2,则( B )
A .p 1<p 2
B .p 1>p 2
C .p 1=p 2
D .不能确定 3.下列说法正确的是( D )
A .某事件发生的概率为1
2,这就是说,在两次重复试验中,该事件必有一次发生
B .一个袋子里有100个球,小明摸了8次,每次都只摸到黑球,没摸到白球,则可得结论:袋子里面只有黑色的球
C .将两枚一元硬币同时抛下,可能出现情形有:①两枚均为正;②两枚均为反;③一正一反,故得出一正一反的概率为1
3
D .九年级有学生400多人,则至少有两人同一天(可以不同年)过生日
4.在四张背面完全相同的卡片上分别印着等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有图案都是轴对称图形的概率( D )
A.34
B.14
C.13
D.1
2
5.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是( B )
A.16
B.13
C.12
D.23
6.如图,两个转盘进行“配紫色”游戏,配得紫色(红、蓝两色混合配成)的概率是( C )
A.14
B.17
C.18
D.116
7.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色……不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有( C )
A .18个
B .15个
C .12个
D .10个
8.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打给甲的概率为( B ) A.16 B.13 C.12 D.23
9.某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是( B )
A.35
B.710
C.310
D.1625
10.一条信息可通过如图所示的网络线由A 点往各站点传递(同级别站点不能传递),则信息由A 点到达d 3的所有不同途径中,其中按途径A →a 1→b 2→c 3→d 3到达的概率是( C )
A.14
B.1
5 C.1
6 D.18
二、填空题(每小题4分,共24分)
11.风华中学七年级(2)班的“精英小组”有男生4人,女生3人,若选一人担任组长,则组长是男生的概率为__4
7
__.
12.如图,小芳同学有两根长度为4 cm ,10 cm 的木棒,她想钉一个三角形相框,桌上有五根木棒供她选择,从中任选一根,能钉成三角形相框的概率是__2
5
__.
13.如图,有四张不透明的卡片,正面写有不同命题,背面完全相同.将这四张卡片背面朝上洗匀后,随机抽取一张,得到正面上命题是真命题的概率为__3
4
__.
错误! 错误! 错误! 错误!
那么该班共有__65__人,随机地抽取1人,恰好是获得30分的学生的概率是__
2
13
__. 15.小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球3000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程中,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是__2100__.
16.从1~4这4个数中任取一个数作分子,从2~4这3个数中任取一个数作分母,组
成一个分数,则出现分子、分母互质的分数的概率是__7
12
__.
三、解答题(共66分)
17.(6分)在5张相同的卡片上分别标上1,3,5,7,9中的一个数字,从中任意抽出2张卡片,组成一个两位数.试指出下列事件是必然事件、不可能事件,还是随机事件.
(1)这个两位数为奇数是__必然事件__;
(2)这个两位数能被4整除是__不可能事件__; (3)这个两位数是3的倍数是__随机事件__.
18.(10分)如图,掷两个分别标有1~6点的均匀的骰子.
(1)所有可能的结果有几种?
(2)同时出现两个一点的概率是多少? (3)同时出现两个六点的概率是多少? (4)同时出现相同点的概率是多少? (5)出现不同点的概率是多少? 解:(1)36 (2)136 (3)136 (4)16 (5)5
6
19.(8分)一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.
(1)求摸出1个球是白球的概率;
(2)摸出1个球,记下颜色后放回,并搅匀,再摸出1个球.求两次摸出的球恰好颜色不同的概率;(要求画树状图或列表)
(3)现再将n 个白球放入布袋,搅匀后,使摸出1个球是白球的概率为5
7,求n 的值.
解:(1)13 (2)图表略,P (颜色不同)=4
9
(3)由题意得1+n 3+n =5
7
,∴n =4
20.(9分)某电视台的娱乐节目《周末大放送》有这样的翻奖牌游戏,数字的背面写有祝福语或奖金数.游戏规则是:每次翻动正面一个数字,看看反面对应的内容,就可知是得奖还是得到温馨祝福.
求:(1)“翻到奖金1000元”的概率; (2)“翻到奖金”的概率;
(3)“翻不到奖金”的概率. 解:(1)19 (2)13 (3)2
3
21.(7分)如图,有四张不透明的卡片,除正面写有不同的数字外,其他均相同.将这
四张卡片背面向上洗匀,从中随机抽取一张,记录数字后放回,重新洗匀后再从中随机抽取一张,记录数字.试用列表或画树状图的方法,求抽出的两条卡片上的数字都是正数的概率.
解:可以用下表列举所有可能情况:
3现了4次.因此,两张卡片上的数字都是正数的概率P =416=1
4
22.(8分)下表是一名同学在罚球线上投篮的试验结果,根据表中数据,回答问题:
(1)(2)根据此概念,估计这名同学投篮622次,投中的次数约是多少?
解:(1)估计这名球员投篮一次,投中的概率约是0.5 (2)622×0.5=311,故估计投中的次数约是311次
23.(8分)如图,甲、乙两人玩游戏,他们准备了一个可以自由转动的转盘和一个不透明的袋子,转盘被分成面积相等的三个扇形,并在每一个扇形内分别标上数字-1,-2,-3;袋子中装有除数字以外其他均相同的三个乒乓球,球上标有数字1,2,3.游戏规则:转动转盘,当转盘停止后,指针所指区域的数字与随机从袋中摸出乒乓球的数字之和为0时,甲获胜;其他情况乙获胜.(如果指针恰好指在分界线上,那么重转一次,直到指针指向某一区域为止)
(1)用树状图或列表法求甲获胜的概率;
(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由. 解:(1)画树状图:
由树状图可知共有9种等可能结果,其中和为0的有3种,∴P (甲获胜)=39=1
3 (2)游
戏不公平.理由:∵P (甲获胜)=13,P (乙获胜)=69=2
3,∴P (甲获胜)≠P (乙获胜),∴游戏不
公平
24.(10分)小明、小亮、小芳和两个陌生人甲、乙同在如图所示的地下车库等电梯,已知两个陌生人到1至4层的任意一层出电梯,并设甲在a 层出电梯,乙在b 层出电梯.
(1)小明想知道甲、乙二人在同一层出电梯的概率,你能帮他求出吗?
(2)小亮和小芳打赌:若甲、乙在同一层或相邻楼层出电梯,则小亮胜,否则小芳胜.该游戏是否公平?若公平,说明理由;若不公平,请修改游戏规则,使游戏公平.
解:(1)列表略 一共出现16种等可能结果,其中在同一层出电梯的有4种
结果,则P (甲、乙在同一层出电梯)=416=1
4(2)由(1)列表知:
甲、乙在同一层或相邻楼层出电梯的有10种结果,故P (小亮胜)= 1016=58,P (小芳胜)=1-58=38,∵58>3
8,∴游戏不公平, 修改规则:若甲、乙在同一层或相隔两层出电梯,则小亮胜; 若甲、乙相隔一层或三层出电梯,则小芳胜。