高考数学一轮复习 第八章 立体几何 8.4 直线、平面平行的判定与性质 理
- 格式:doc
- 大小:1.02 MB
- 文档页数:19
2018版高考数学一轮复习第八章立体几何第4讲直线、平面平行的判定及其性质理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第八章立体几何第4讲直线、平面平行的判定及其性质理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第八章立体几何第4讲直线、平面平行的判定及其性质理的全部内容。
第4讲直线、平面平行的判定及其性质一、选择题1.若直线m⊂平面α,则条件甲:“直线l∥α”是条件乙:“l∥m”的( ).A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件答案D2.若直线a∥直线b,且a∥平面α,则b与α的位置关系是()A.一定平行 B.不平行C.平行或相交 D.平行或在平面内解析直线在平面内的情况不能遗漏,所以正确选项为D。
答案D3.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是 ( ).A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l⊂α解析l∥α时,直线l上任意点到α的距离都相等;l⊂α时,直线l上所有的点到α的距离都是0;l⊥α时,直线l上有两个点到α距离相等;l与α斜交时,也只能有两个点到α距离相等.答案D4.设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是().A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l2解析对于选项A,不合题意;对于选项B,由于l1与l2是相交直线,而且由l1∥m可得l1∥α,同理可得l∥α故可得α∥β,充分性成立,而由α∥β不一定能得到l1∥m,它们也2可以异面,故必要性不成立,故选B;对于选项C,由于m,n不一定相交,故是必要非充分条件;对于选项D,由n∥l2可转化为n∥β,同选项C,故不符合题意,综上选B。
【步步高】(江苏专用)2017版高考数学一轮复习 第八章 立体几何8.4 直线、平面垂直的判定与性质 文1.直线与平面垂直2.(1)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. (2)判定定理与性质定理【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)直线l与平面α内的无数条直线都垂直,则l⊥α.( ×)(2)若直线a⊥平面α,直线b∥α,则直线a与b垂直.( √)(3)直线a⊥α,b⊥α,则a∥b.( √)(4)若α⊥β,a⊥β⇒a∥α.( ×)(5)a⊥α,a⊂β⇒α⊥β.( √)(6)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.( ×)1.(教材改编)下列条件中,能判定直线l⊥平面α的是____________.①l与平面α内的两条直线垂直;②l与平面α内无数条直线垂直;③l与平面α内的某一条直线垂直;④l与平面α内任意一条直线垂直.答案④解析由直线与平面垂直的定义,可知④正确.2.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的____________条件.答案充分不必要解析若α⊥β,因为α∩β=m,b⊂β,b⊥m,所以根据两个平面垂直的性质定理可得b⊥α,又a⊂α,所以a⊥b;反过来,当a∥m时,因为b⊥m,且a,m共面,一定有b⊥a,但不能保证b⊥α,所以不能推出α⊥β.3.已知平面α⊥β,α∩β=l,P是空间一点,且P到平面α、β的距离分别是1、2,则点P到l的距离为________.答案 5解析如图,∵PO⊂平面PAB,∴l⊥PO.∴PO就是P到直线l的距离,∵α⊥β,∴四边形PAOB为矩形,PO=12+22= 5.4.(教材改编)PD垂直于正方形ABCD所在的平面,连结PB,PC,PA,AC,BD,则一定互相垂直的平面有________________________________________________________________________对.答案7解析由于PD⊥平面ABCD,故平面PAD⊥平面ABCD,平面PDB⊥平面ABCD,平面PDC⊥平面ABCD,平面PDA⊥平面PDC,平面PAC⊥平面PDB,平面PAB⊥平面PAD,平面PBC⊥平面PDC,共7对.5.(教材改编)在三棱锥P-ABC中,点P在平面ABC中的射影为点O,(1)若PA=PB=PC,则点O是△ABC的________心.(2)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的________心.答案(1)外(2)垂解析(1)如图1,连结OA,OB,OC,OP,在Rt△POA、Rt△POB和Rt△POC中,PA=PC=PB,所以OA=OB=OC,即O为△ABC的外心.(2)如图2,延长AO、BO、CO分别交对边于H、D、G点,∵PC⊥PA,PB⊥PC,PA∩PB=P,∴PC⊥平面PAB,AB⊂平面PAB,∴PC⊥AB,又AB⊥PO,PO∩PC=P,∴AB⊥平面PGC,又CG⊂平面PGC,∴AB⊥CG,即CG为△ABC边AB的高.同理可证BD,AH为△ABC底边上的高,即O为△ABC的垂心.题型一直线与平面垂直的判定与性质例1 (2014·辽宁)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.(1)求证:EF⊥平面BCG;(2)求三棱锥D -BCG 的体积. (1)证明 由已知得 △ABC ≌△DBC , 因此AC =DC .又G 为AD 的中点,所以CG ⊥AD .同理BG ⊥AD ,又BG ∩CG =G ,因此AD ⊥平面BGC . 又因E ,F 分别为AC ,DC 的中点, 所以EF ∥AD ,所以EF ⊥平面BCG .(2)解 在平面ABC 内,作AO ⊥BC ,交CB 的延长线于O ,如图由平面ABC ⊥平面BCD ,知AO ⊥平面BDC .又G 为AD 中点,因此G 到平面BDC 的距离h 是AO 长度的一半. 在△AOB 中,AO =AB ·sin 60°=3, 所以V D -BCG =V G -BCD =13S △DBC ·h=13×12BD ·BC ·sin 120°·32=12. 思维升华 (1)证明直线和平面垂直的常用方法:①判定定理;②垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);③面面平行的性质(a ⊥α,α∥β⇒a ⊥β);④面面垂直的性质.(2)证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想. (3)线面垂直的性质,常用来证明线线垂直.如图所示,已知AB 为圆O 的直径,点D 为线段AB 上一点,且AD =13DB ,点C 为圆O 上一点,且BC =3AC ,PD ⊥平面ABC ,PD =DB .求证:PA ⊥CD .证明 因为AB 为圆O 的直径,所以AC ⊥CB , 在Rt△ABC 中,由3AC =BC 得, ∠ABC =30°,设AD =1,由3AD =DB 得,DB =3,BC =23,由余弦定理得CD 2=DB 2+BC 2-2DB ·BC cos 30°=3, 所以CD 2+DB 2=BC 2,即CD ⊥AO . 因为PD ⊥平面ABC ,CD ⊂平面ABC ,所以PD ⊥CD ,由PD ∩AO =D 得,CD ⊥平面PAB ,又PA ⊂平面PAB ,所以PA ⊥CD . 题型二 平面与平面垂直的判定与性质例2 如图所示,四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°.将△ABD 沿对角线BD 折起,记折起后A 的位置为点P ,且使平面PBD ⊥平面BCD .求证:(1)CD ⊥平面PBD . (2)平面PBC ⊥平面PDC .证明 (1)∵AD =AB ,∠BAD =90°, ∴∠ABD =∠ADB =45°, 又∵AD ∥BC ,∴∠DBC =45°, 又∠DCB =45°,∴∠BDC =90°, 即BD ⊥DC .∵平面PBD ⊥平面BCD ,平面PBD ∩平面BCD =BD , ∴CD ⊥平面PBD .(2)由CD ⊥平面PBD 得CD ⊥BP . 又BP ⊥PD ,PD ∩CD =D , ∴BP ⊥平面PDC . 又BP ⊂平面PBC , ∴平面PBC ⊥平面PDC .思维升华 面面垂直的性质应用技巧(1)两平面垂直,在一个平面内垂直于交线的直线必垂直于另一个平面.这是把面面垂直转化为线面垂直的依据,运用时要注意“平面内的直线”.(2)两个相交平面同时垂直于第三个平面,那么它们的交线也垂直于第三个平面,此性质在不是很复杂的题目中,要对此进行证明.(2015·重庆)如图,三棱锥PABC 中,平面PAC ⊥平面ABC ,∠ABC =π2,点D ,E 在线段AC 上,且AD =DE =EC =2,PD =PC =4,点F在线段AB 上,且EF ∥BC . (1)证明:AB ⊥平面PFE ;(2)若四棱锥PDFBC 的体积为7,求线段BC 的长.(1)证明 由DE =EC ,PD =PC 知,E 为等腰△PDC 中DC 边的中点,故PE ⊥AC .又平面PAC ⊥平面ABC ,平面PAC ∩平面ABC =AC ,PE ⊂平面PAC ,PE ⊥AC , 所以PE ⊥平面ABC ,从而PE ⊥AB . 因∠ABC =π2,EF ∥BC ,故AB ⊥EF .又PE ∩EF =E ,所以AB ⊥平面PFE . (2)解 设BC =x ,则在Rt△ABC 中,AB =AC 2-BC 2=36-x 2,从而S △ABC =12AB ·BC =12x 36-x 2.由EF ∥BC 知,AF AB =AE AC =23,得△AFE ∽△ABC ,故S △AFE S △ABC =⎝ ⎛⎭⎪⎫232=49, 即S △AFE =49S △ABC .由AD =12AE ,S △AFD =12S △AFE =12·49S △ABC=29S △ABC =19x 36-x 2. 从而四边形DFBC 的面积为S DFBC =S △ABC -S △AFD =12x 36-x 2-19x 36-x 2=718x 36-x 2. 由(1)知,PE ⊥平面ABC , 所以PE 为四棱锥PDFBC 的高.在Rt△PEC 中,PE =PC 2-EC 2=42-22=2 3. 体积V PDFBC =13·S DFBC ·PE=13·718x 36-x 2·23=7, 故得x 4-36x 2+243=0,解得x 2=9或x 2=27, 由于x >0,可得x =3或x =3 3. 所以,BC =3或BC =3 3. 题型三 垂直关系中的探索性问题例3 (2015·合肥质量检测)如图,在三棱台ABC -DEF 中,CF ⊥平面DEF ,AB ⊥BC .(1)设平面ACE ∩平面DEF =a ,求证:DF ∥a ;(2)若EF =CF =2BC ,试问在线段BE 上是否存在点G ,使得平面DFG ⊥平面CDE ?若存在,请确定G 点的位置;若不存在,请说明理由.(1)证明 在三棱台ABC -DEF 中,AC ∥DF ,AC ⊂平面ACE ,DF ⊄平面ACE , ∴DF ∥平面ACE .又∵DF ⊂平面DEF ,平面ACE ∩平面DEF =a , ∴DF ∥a .(2)解 线段BE 上存在点G ,且BG =13BE ,使得平面DFG ⊥平面CDE .证明如下:取CE 的中点O ,连结FO 并延长交BE 于点G , 连结GD ,∵CF =EF ,∴GF ⊥CE .在三棱台ABC -DEF 中,AB ⊥BC ⇒DE ⊥EF . 由CF ⊥平面DEF ⇒CF ⊥DE .又CF ∩EF =F ,∴DE ⊥平面CBEF ,∴DE ⊥GF .⎭⎪⎬⎪⎫GF ⊥CEGF ⊥DE CE ∩DE =E ⇒GF ⊥平面CDE . 又GF ⊂平面DFG ,∴平面DFG ⊥平面CDE .此时,如平面图所示,延长FO 与CB 交于点H ,∵O 为CE 的中点,EF =CF =2BC ,由平面几何知识易证△HOC ≌△FOE , ∴HB =BC =12EF .由△HGB ∽△FGE 可知BG GE =12,即BG =13BE .思维升华 同“平行关系中的探索性问题”的规律方法一样,一般是先探求点的位置,多为线段的中点或某个三等分点,然后给出符合要求的证明.如图(1)所示,在Rt△ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图(2)所示. (1)求证:DE ∥平面A 1CB ; (2)求证:A 1F ⊥BE ;(3)线段A 1B 上是否存在点Q ,使A 1C ⊥平面DEQ ?说明理由.(1)证明因为D,E分别为AC,AB的中点,所以DE∥BC.又因为DE⊄平面A1CB,BC⊂平面A1CB,所以DE∥平面A1CB.(2)证明由已知得AC⊥BC且DE∥BC,所以DE⊥AC,所以DE⊥A1D,DE⊥CD,所以DE⊥平面A1DC.而A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,CD∩DE=D,所以A1F⊥平面BCDE,又BE⊂平面BCDE,所以A1F⊥BE.(3)解线段A1B上存在点Q,使A1C⊥平面DEQ. 理由如下:如图所示,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE∥PQ,所以平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰三角形DA1C底边A1C的中点,所以A1C⊥DP,因为DE∩DP=D,所以A1C⊥平面DEP,从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.17.立体几何证明问题中的转化思想典例(14分)如图所示,M,N,K分别是正方体ABCD—A1B1C1D1的棱AB,CD,C1D1的中点.求证:(1)AN∥平面A1MK;(2)平面A1B1C⊥平面A1MK.思维点拨(1)要证线面平行,需证线线平行.(2)要证面面垂直,需证线面垂直,要证线面垂直,需证线线垂直.规范解答证明(1)如图所示,连结NK.在正方体ABCD—A1B1C1D1中,∵四边形AA1D1D,DD1C1C都为正方形,∴AA1∥DD1,AA1=DD1,C1D1∥CD,C1D1=CD.[2分]∵N,K分别为CD,C1D1的中点,∴DN∥D1K,DN=D1K,∴四边形DD1KN为平行四边形.[3分]∴KN∥DD1,KN=DD1,∴AA1∥KN,AA1=KN.∴四边形AA1KN为平行四边形.∴AN∥A1K.[4分]∵A1K⊂平面A1MK,AN⊄平面A1MK,∴AN∥平面A1MK.[6分](2)如图所示,连结BC1.在正方体ABCD—A1B1C1D1中,AB∥C1D1,AB=C1D1.∵M,K分别为AB,C1D1的中点,∴BM∥C1K,BM=C1K.∴四边形BC1KM为平行四边形.∴MK∥BC1.[8分]在正方体ABCD—A1B1C1D1中,A1B1⊥平面BB1C1C,BC1⊂平面BB1C1C,∴A1B1⊥BC1.∵MK∥BC1,∴A1B1⊥MK.∵四边形BB1C1C为正方形,∴BC1⊥B1C.∴MK⊥B1C.[12分]∵A1B1⊂平面A1B1C,B1C⊂平面A1B1C,A1B1∩B1C=B1,∴MK⊥平面A1B1C.又∵MK⊂平面A1MK,∴平面A1B1C⊥平面A1MK.[14分]温馨提醒(1)线面平行、垂直关系的证明问题的指导思想是线线、线面、面面关系的相互转化,交替使用平行、垂直的判定定理和性质定理;(2)线线关系是线面关系、面面关系的基础.证明过程中要注意利用平面几何中的结论,如证明平行时常用的中位线、平行线分线段成比例;证明垂直时常用的等腰三角形的中线等; (3)证明过程一定要严谨,使用定理时要对照条件、步骤书写要规范.[方法与技巧] 1.三类论证(1)证明线线垂直的方法①定义:两条直线所成的角为90°; ②平面几何中证明线线垂直的方法; ③线面垂直的性质:a ⊥α,b ⊂α⇒a ⊥b ; ④线面垂直的性质:a ⊥α,b ∥α⇒a ⊥b . (2)证明线面垂直的方法①线面垂直的定义:a 与α内任何直线都垂直⇒a ⊥α; ②判定定理1:⎭⎪⎬⎪⎫m 、n ⊂α,m ∩n =A l ⊥m ,l ⊥n⇒l ⊥α;③判定定理2:a ∥b ,a ⊥α⇒b ⊥α; ④面面平行的性质:α∥β,a ⊥α⇒a ⊥β;⑤面面垂直的性质:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β. (3)证明面面垂直的方法①利用定义:两个平面相交,所成的二面角是直二面角; ②判定定理:a ⊂α,a ⊥β⇒α⊥β. 2.转化思想:垂直关系的转化线线垂直判定性质线面垂直判定性质面面垂判定性质直在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决. [失误与防范]1.在解决直线与平面垂直的问题过程中,要注意直线与平面垂直的定义、判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的互相转化.2.面面垂直的性质定理是作辅助线的一个重要依据.我们要作一个平面的一条垂线,通常是先找这个平面的一个垂面,在这个垂面中,作交线的垂线即可.A组专项基础训练(时间:40分钟)1.已知平面α⊥平面β,α∩β=l,点A∈α,AD/∈l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是________.①AB∥m; ②AC⊥m;③AB∥β;④AC⊥β.答案④解析如图所示,AB∥l∥m;AC⊥l,m∥l⇒AC⊥m;AB∥l⇒AB∥β,只有④不一定成立.2.(2014·浙江改编)设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题正确的是________.①若m⊥n,n∥α,则m⊥α;②若m∥β,β⊥α,则m⊥α;③若m⊥β,n⊥β,n⊥α,则m⊥α;④若m⊥n,n⊥β,β⊥α,则m⊥α.答案③解析①中,由m⊥n, n∥α,可得m⊂α或m∥α或m与α相交,错误;②中,由m∥β,β⊥α,可得m⊂α或m∥α或m与α相交,错误;③中,由m⊥β,n⊥β,可得m∥n,又n⊥α,则m⊥α,正确;④中,由m⊥n,n⊥β,β⊥α,可得m与α相交或m⊂α或m∥α,错误.3.(2015·天津滨海新区模拟)如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:①BD⊥AC;②△BAC是等边三角形;③三棱锥D-ABC是正三棱锥;④平面ADC⊥平面ABC.其中正确的是________.答案①②③解析由题意知,BD⊥平面ADC,故BD⊥AC,①正确;AD为等腰直角三角形斜边BC上的高,平面ABD⊥平面ACD,所以AB=AC=BC,△BAC是等边三角形,②正确;易知DA=DB=DC,又由②知③正确;由①知④错.4.(2015·福建改编)若l ,m 是两条不同的直线,m 垂直于平面α,则“l ⊥m ”是“l ∥α”的____________条件.答案 必要而不充分解析 m 垂直于平面α,当l ⊂α时,也满足l ⊥m ,但直线l 与平面α不平行,∴充分性不成立,反之,l ∥α,一定有l ⊥m ,必要性成立.5.(2015·镇江模拟)如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD .(只要填写一个你认为是正确的条件即可)答案 DM ⊥PC (或BM ⊥PC 等)解析 由定理可知,BD ⊥PC .∴当DM ⊥PC (或BM ⊥PC ),即有PC ⊥平面MBD .而PC ⊂平面PCD ,∴平面MBD ⊥平面PCD .6.如图,直三棱柱ABC -A 1B 1C 1中,侧棱长为2,AC =BC =1,∠ACB =90°,D 是A 1B 1的中点,F 是BB 1上的动点,AB 1,DF 交于点E .要使AB 1⊥平面C 1DF ,则线段B 1F 的长为________.答案 12解析 设B 1F =x ,因为AB 1⊥平面C 1DF ,DF ⊂平面C 1DF ,所以AB 1⊥DF .由已知可得A 1B 1=2,设Rt△AA 1B 1斜边AB 1上的高为h ,则DE =12h . 由面积相等得2×2=h 22+22,所以h =233,DE =33. 在Rt△DB 1E 中, B 1E = 222-332=66. 由面积相等得66× x 2+222=22x , 得x =12.7.如图,PA ⊥圆O 所在的平面,AB 是圆O 的直径,C 是圆O 上的一点,E ,F 分别是点A在PB,PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.答案①②③解析由题意知PA⊥平面ABC,∴PA⊥BC.又AC⊥BC,且PA∩AC=A,∴BC⊥平面PAC,∴BC⊥AF.∵AF⊥PC,且BC∩PC=C,∴AF⊥平面PBC,∴AF⊥PB,又AE⊥PB,AE∩AF=A,∴PB⊥平面AEF,∴PB⊥EF.故①②③正确.8.点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,则下列四个命题:①三棱锥A-D1PC的体积不变;②A1P∥平面ACD1;③DP⊥BC1;④平面PDB1⊥平面ACD1.其中正确的命题序号是________.答案①②④解析由题意可得直线BC1平行于直线AD1,并且直线AD1⊂平面AD1C,直线BC1⊄平面AD1C,所以直线BC1∥平面AD1C.所以点P到平面AD1C的距离不变,VA-D1PC=VP-AD1C,所以体积不变.故①正确;如图,连结A1C1,A1B,可得平面AD1C∥平面A1C1B.又因为A1P⊂平面A1C1B,所以A1P∥平面ACD1,故②正确;当点P运动到B点时,△DBC1是等边三角形,所以DP不垂直于BC1.故③不正确;连结DB1,因为直线AC⊥平面DB1,DB1⊂平面DB1.所以AC⊥DB1.同理可得AD1⊥DB1.所以可得DB1⊥平面AD1C.又因为DB1⊂平面PDB1.所以可得平面PDB1⊥平面ACD1.故④正确.综上,正确的序号为①②④.9.(2014·湖北)如图,在正方体ABCD-A1B1C1D1中,E,F,P,Q,M,N分别是棱AB,AD,DD1,BB1,A1B1,A1D1的中点.求证:(1)直线BC1∥平面EFPQ;(2)直线AC1⊥平面PQMN.证明(1)如图,连结AD1,由ABCD-A1B1C1D1是正方体,知AD1∥BC1,因为F,P分别是AD,DD1的中点,所以FP∥AD1,从而BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.(2)连结AC,BD,则AC⊥BD.由CC1⊥平面ABCD,BD⊂平面ABCD,可得CC1⊥BD.又AC∩CC1=C,所以BD⊥平面ACC1.而AC1⊂平面ACC1,所以BD⊥AC1.因为M,N分别是A1B1,A1D1的中点,所以MN∥BD,从而MN⊥AC1.同理可证PN⊥AC1.又PN∩MN=N,所以直线AC1⊥平面PQMN.10.如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD、PC的中点.求证:(1)PA⊥底面ABCD;(2)BE∥平面PAD;(3)平面BEF⊥平面PCD.证明(1)∵平面PAD∩平面ABCD=AD.又平面PAD⊥平面ABCD,且PA⊥AD.∴PA⊥底面ABCD.(2)∵AB∥CD,CD=2AB,E为CD的中点,∴AB∥DE,且AB=DE.∴四边形ABED为平行四边形.∴BE∥AD.又∵BE⊄平面PAD,AD⊂平面PAD,∴BE∥平面PAD.(3)∵AB⊥AD,且四边形ABED为平行四边形.∴BE⊥CD,AD⊥CD.由(1)知PA⊥底面ABCD,则PA⊥CD,又PA∩AD=A,∴CD⊥平面PAD,从而CD⊥PD,又E、F分别为CD、CP的中点,∴EF∥PD,故CD⊥EF.由(2)知BE∥平面PAD,∴BE⊥CD,又EF,BE在平面BEF内,且EF∩BE=E,∴CD⊥平面BEF.又∵CD⊂平面PCD,∴平面BEF⊥平面PCD.B组专项能力提升(时间:30分钟)11.如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在________________________________________________________________________.①直线AB上;②直线BC上;③直线AC上;④△ABC内部.答案①解析由AC⊥AB,AC⊥BC1,∴AC⊥平面ABC1.又∵AC⊂面ABC,∴平面ABC1⊥平面ABC.∴C1在面ABC上的射影H必在两平面交线AB上.12.设α,β是空间两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:________(用代号表示).答案①③④⇒②(或②③④⇒①)解析逐一判断.若①②③成立,则m与α的位置关系不确定,故①②③⇒④错误;同理①②④⇒③也错误;①③④⇒②与②③④⇒①均正确.13.已知α,β,γ是三个不同的平面,命题“α∥β,且α⊥γ⇒β⊥γ”是真命题,如果把α,β,γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有________个.答案 2解析 若α,β换为直线a ,b ,则命题化为“a ∥b ,且a ⊥γ⇒b ⊥γ”,此命题为真命题;若α,γ换为直线a ,b ,则命题化为“a ∥β,且a ⊥b ⇒b ⊥β”,此命题为假命题;若β,γ换为直线a ,b ,则命题化为“a ∥α,且b ⊥α⇒a ⊥b ”,此命题为真命题.14. 如图,四边形ABCD 和ABEF 为直角梯形,平面ABCD ⊥平面ABEF ,且AD ∥BC ,AF ∥BE ,∠ABC =∠ABE =90°,AF =AB =12BE =1,M ,N 分别为BC ,AF 的中点.(1)证明:EM ∥平面ADF ;(2)证明:平面BMN ⊥平面MAE .证明 (1)由题意知BC ∥AD ,∵BC ⊂平面BCE ,AD ⊄平面BCE ,∴AD ∥平面BCE .同理可得AF ∥平面BCE .∵AD ,AF ⊂平面ADF ,AD ∩AF =A ,∴平面ADF ∥平面BCE .∵EM ⊂平面BCE ,∴EM ∥平面ADF .(2)在底面ABEF 中,易知△ABN ∽△BEA ,∴AE ⊥BN .∵平面ABCD ⊥平面ABEF ,平面ABCD ∩平面ABEF =AB ,AB ⊥BM ,∴BM ⊥平面ABEF . ∵AE ⊂平面ABEF ,∴BM ⊥AE .∵BN ∩BM =B ,∴EA ⊥平面BMN .∵AE ⊂平面MAE ,∴平面BMN ⊥平面MAE .15.(2015·湖北)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马PABCD 中,侧棱PD ⊥底面ABCD ,且PD =CD ,点E 是PC 的中点,连结DE 、BD 、BE .(1)证明:DE ⊥平面PBC .试判断四面体EBCD 是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(2)记阳马PABCD 的体积为V 1,四面体EBCD 的体积为V 2,求V 1V 2的值.(1)证明 因为PD ⊥底面ABCD ,所以PD ⊥BC ,由底面ABCD 为长方形,有BC ⊥CD ,而PD ∩CD =D ,所以BC ⊥平面PCD .而DE ⊂平面PCD ,所以BC ⊥DE .又因为PD =CD ,点E 是PC 的中点,所以DE ⊥PC .而PC ∩BC =C ,所以DE ⊥平面PBC .由BC ⊥平面PCD ,DE ⊥平面PBC ,可知四面体EBCD 的四个面都是直角三角形,即四面体EBCD 是一个鳖臑,其四个面的直角分别是∠BCD ,∠BCE ,∠DEC ,∠DEB .(2)解 由已知得,PD 是阳马PABCD 的高,所以V 1=13S ABCD ·PD =13BC ·CD ·PD . 由(1)知,DE 是鳖臑DBCE 的高,BC ⊥CE ,所以V 2=13S △BCE ·DE =16BC ·CE ·DE . 在Rt△PDC 中,因为PD =CD ,点E 是PC 的中点,所以DE =CE =22CD , 于是V 1V 2=13BC ·CD ·PD 16BC ·CE ·DE =2CD ·PD CE ·DE =4.。
性质教师用书文新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学大一轮复习第八章立体几何8.4 直线、平面平行的判定与性质教师用书文新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学大一轮复习第八章立体几何8.4 直线、平面平行的判定与性质教师用书文新人教版的全部内容。
定与性质教师用书文新人教版1.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行⇒线面平行”)∵l∥a,a⊂α,l⊄α,∴l∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行")∵l∥α,l⊂β,α∩β=b,∴l∥b2.面面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)∵a∥β,b∥β,a∩b=P,a⊂α,b⊂α,∴α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行∵α∥β,α∩γ=a,β∩γ=b,∴a∥b【知识拓展】重要结论:(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β;(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b;(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ。
【思考辨析】判断下列结论是否正确(请在括号中打“√"或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.( ×)(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.( ×)(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.(×)(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( √)(5)若直线a与平面α内无数条直线平行,则a∥α。
§8。
4 直线、平面垂直的判定与性质基础篇固本夯基【基础集训】考点一直线与平面垂直的判定与性质1。
已知m和n是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m⊥β的是()A。
α⊥β且m⊂α B.α⊥β且m∥αC。
m∥n且n⊥β D.m⊥n且n∥β答案C2.下列命题中错误的是()A.如果平面α外的直线a不平行于平面α,则平面α内不存在与a平行的直线B.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么直线l⊥平面γC。
如果平面α⊥平面β,那么平面α内所有直线都垂直于平面βD.一条直线与两个平行平面中的一个平面相交,则必与另一个平面相交答案C3.如图,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上一点,E、F分别是A在PB、PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确命题的序号是.答案①②③4.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑。
如图,在阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE。
证明:PB⊥平面DEF.试判断四面体DBEF是不是鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由.解析因为PD⊥底面ABCD,所以PD⊥BC,由底面ABCD为长方形,得BC⊥CD,因为PD∩CD=D,所以BC⊥平面PCD,因为DE⊂平面PCD,所以BC⊥DE。
又因为PD=CD,点E是PC的中点,所以DE⊥PC.因为PC∩BC=C,所以DE⊥平面PBC。
因为PB⊂平面PBC,所以PB⊥DE.又PB⊥EF,DE∩EF=E,所以PB⊥平面DEF.由DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体DBEF是一个鳖臑,其四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB.考点二平面与平面垂直的判定与性质5.如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为正方形,给出下列结论:①AD∥平面PBC;②平面PAC⊥平面PBD;③平面PAB⊥平面PAC;④平面PAD⊥平面PDC.其中正确结论的序号是.答案①②④6.如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E-BCD的体积。
第八章 立体几何 8.4 直线、平面平行的判定与性质 理 1.线面平行的判定定理和性质定理 文字语言 图形语言 符号语言
判定定理 平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行⇒线面平行”) ∵l∥a,a⊂α,l⊄α,∴l∥α
性质定理 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”) ∵l∥α,l⊂β,
α∩β=b,∴l∥b
2.面面平行的判定定理和性质定理 文字语言 图形语言 符号语言
判定定理 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”) ∵a∥β,b∥β,a∩b=P,a⊂α,b⊂α,∴α∥β
性质定理 如果两个平行平面同时和第三个平面相交,那么它们的交线平行
∵α∥β,α∩γ=a,
β∩γ=b,∴a∥b
【知识拓展】 重要结论: (1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β; (2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b; (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ. 【思考辨析】 判断下列结论是否正确(请在括号中打“√”或“×”) (1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.( × ) (2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.( × ) (3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( × ) (4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( √ ) (5)若直线a与平面α内无数条直线平行,则a∥α.( × ) (6)若α∥β,直线a∥α,则a∥β.( × )
1.(教材改编)下列命题中正确的是( ) A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面 B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行 C.平行于同一条直线的两个平面平行 D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α 答案 D 解析 A中,a可以在过b的平面内;B中,a与α内的直线可能异面;C中,两平面可相交;D中,由直线与平面平行的判定定理知,b∥α,正确. 2.设l,m为直线,α,β为平面,且l⊂α,m⊂β,则“l∩m=∅”是“α∥β”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案 B 解析 当平面与平面平行时,两个平面内的直线没有交点,故“l∩m=∅”是“α∥β”的必要条件;当两个平面内的直线没有交点时,两个平面可以相交,∴l∩m=∅是α∥β的必要不充分条件. 3.(2016·济南模拟)平面α∥平面β的一个充分条件是( ) A.存在一条直线a,a∥α,a∥β B.存在一条直线a,a⊂α,a∥β C.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α D.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α 答案 D 解析 若α∩β=l,a∥l,a⊄α,a⊄β,则a∥α,a∥β,故排除A.若α∩β=l,a⊂α,a∥l,则a∥β,故排除B.若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则a∥β,b∥α,
故排除C.故选D. 4.(教材改编)如图,正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面AEC的位置关系为________.
答案 平行 解析 连接BD,设BD∩AC=O,连接EO,在△BDD1中,O为BD的中点,所以EO为△BDD1的中位线,
则BD1∥EO,而BD1⊄平面ACE,EO⊂平面ACE, 所以BD1∥平面ACE. 5.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.
答案 平行四边形 解析 ∵平面ABFE∥平面DCGH, 又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG, ∴EF∥HG.同理EH∥FG, ∴四边形EFGH的形状是平行四边形.
题型一 直线与平面平行的判定与性质 命题点1 直线与平面平行的判定 例1 如图,四棱锥P-ABCD中,AD∥BC,AB=BC=12AD,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.
(1)求证:AP∥平面BEF; (2)求证:GH∥平面PAD. 证明 (1)连接EC,
∵AD∥BC,BC=12AD, ∴BC綊AE, ∴四边形ABCE是平行四边形, ∴O为AC的中点. 又∵F是PC的中点,∴FO∥AP, FO⊂平面BEF,AP⊄平面BEF,
∴AP∥平面BEF. (2)连接FH,OH, ∵F,H分别是PC,CD的中点, ∴FH∥PD,∴FH∥平面PAD. 又∵O是BE的中点,H是CD的中点, ∴OH∥AD,∴OH∥平面PAD. 又FH∩OH=H,∴平面OHF∥平面PAD. 又∵GH⊂平面OHF,∴GH∥平面PAD. 命题点2 直线与平面平行的性质 例2 (2017·长沙调研)如图,四棱锥P-ABCD的底面是边长为8的正方形,四条侧棱长均为217.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH. (1)证明:GH∥EF; (2)若EB=2,求四边形GEFH的面积. (1)证明 因为BC∥平面GEFH,BC⊂平面PBC, 且平面PBC∩平面GEFH=GH, 所以GH∥BC. 同理可证EF∥BC,因此GH∥EF. (2)解 如图,连接AC,BD交于点O,BD交EF于点K,连接OP,GK.
因为PA=PC,O是AC的中点,所以PO⊥AC, 同理可得PO⊥BD. 又BD∩AC=O,且AC,BD都在底面内, 所以PO⊥底面ABCD. 又因为平面GEFH⊥平面ABCD, 且PO⊄平面GEFH,所以PO∥平面GEFH. 因为平面PBD∩平面GEFH=GK, 所以PO∥GK,且GK⊥底面ABCD, 从而GK⊥EF. 所以GK是梯形GEFH的高. 由AB=8,EB=2得EB∶AB=KB∶DB=1∶4,
从而KB=14DB=12OB,即K为OB的中点.
再由PO∥GK得GK=12PO, 即G是PB的中点,且GH=12BC=4. 由已知可得OB=42, PO=PB2-OB2=68-32=6, 所以GK=3. 故四边形GEFH的面积S=GH+EF2·GK
=4+82×3=18. 思维升华 判断或证明线面平行的常用方法 (1)利用线面平行的定义(无公共点); (2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α); (3)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β); (4)利用面面平行的性质(α∥β,a⊄α,a⊄β,a∥α⇒a∥β). 如图所示,CD,AB均与平面EFGH平行,E,F,G,H分别在BD,BC,AC,AD上,且CD⊥AB.求证:四边形EFGH是矩形.
证明 ∵CD∥平面EFGH, 而平面EFGH∩平面BCD=EF, ∴CD∥EF. 同理HG∥CD,∴EF∥HG. 同理HE∥GF, ∴四边形EFGH为平行四边形. ∴CD∥EF,HE∥AB, ∴∠HEF为异面直线CD和AB所成的角(或补角). 又∵CD⊥AB,∴HE⊥EF. ∴平行四边形EFGH为矩形.
题型二 平面与平面平行的判定与性质 例3 如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证: (1)B,C,H,G四点共面; (2)平面EFA1∥平面BCHG. 证明 (1)∵G,H分别是A1B1,A1C1的中点, ∴GH是△A1B1C1的中位线, ∴GH∥B1C1. 又∵B1C1∥BC, ∴GH∥BC, ∴B,C,H,G四点共面. (2)∵E,F分别是AB,AC的中点, ∴EF∥BC. ∵EF⊄平面BCHG,BC⊂平面BCHG, ∴EF∥平面BCHG. ∵A1G綊EB, ∴四边形A1EBG是平行四边形, ∴A1E∥GB. ∵A1E⊄平面BCHG,GB⊂平面BCHG, ∴A1E∥平面BCHG. ∵A1E∩EF=E, ∴平面EFA1∥平面BCHG. 引申探究 1.在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA. 证明 如图所示,连接HD,A1B,
∵D为BC1的中点,H为A1C1的中点, ∴HD∥A1B, 又HD⊄平面A1B1BA, A1B⊂平面A1B1BA,
∴HD∥平面A1B1BA. 2.在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D. 证明 如图所示,连接A1C交AC1于点M, ∵四边形A1ACC1是平行四边形, ∴M是A1C的中点,连接MD, ∵D为BC的中点, ∴A1B∥DM. ∵A1B⊂平面A1BD1, DM⊄平面A1BD1,
∴DM∥平面A1BD1. 又由三棱柱的性质知,D1C1綊BD, ∴四边形BDC1D1为平行四边形, ∴DC1∥BD1. 又DC1⊄平面A1BD1,BD1⊂平面A1BD1, ∴DC1∥平面A1BD1, 又∵DC1∩DM=D,DC1,DM⊂平面AC1D, ∴平面A1BD1∥平面AC1D. 思维升华 证明面面平行的方法 (1)面面平行的定义; (2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行; (3)利用垂直于同一条直线的两个平面平行; (4)两个平面同时平行于第三个平面,那么这两个平面平行; (5)利用“线线平行”、“线面平行”、“面面平行”的相互转化. (2016·许昌三校第三次考试)如图所示,四边形ABCD与四边形ADEF都为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:
(1)BE∥平面DMF; (2)平面BDE∥平面MNG.