电力系统谐波及其治理措施
- 格式:doc
- 大小:25.50 KB
- 文档页数:3
电力系统中谐波问题如何治理在当今的电力系统中,谐波问题日益凸显,给电力设备的正常运行和电力质量带来了诸多挑战。
那么,究竟什么是谐波?它又是如何产生的?更重要的是,我们应该如何有效地治理它呢?首先,让我们来了解一下谐波的概念。
简单来说,谐波是指在电力系统中,电流或电压的频率不是基波频率(通常为 50Hz 或 60Hz)整数倍的分量。
这些谐波分量会导致电力系统中的电流和电压波形发生畸变,从而影响电力设备的性能和使用寿命。
谐波的产生原因是多种多样的。
其中,电力电子设备的广泛应用是主要原因之一。
例如,变频器、整流器、逆变器等在工作时会产生大量的谐波电流注入到电力系统中。
此外,电弧炉、电焊机等非线性负载也会产生谐波。
那么,谐波问题会给电力系统带来哪些危害呢?一方面,它会增加电力设备的损耗,导致设备发热、效率降低,缩短设备的使用寿命。
例如,变压器在谐波的作用下,铁芯损耗会显著增加,容易出现过热现象。
另一方面,谐波会影响电力系统的稳定性,可能导致继电保护装置误动作,影响电力系统的安全可靠运行。
同时,谐波还会对通信系统产生干扰,影响通信质量。
既然谐波问题如此严重,我们应该如何治理呢?目前,主要的治理方法可以分为无源滤波和有源滤波两大类。
无源滤波是一种传统的谐波治理方法,它通过电感、电容等无源元件组成滤波器,对特定频率的谐波进行滤波。
无源滤波器结构简单、成本较低,但存在一些局限性。
例如,它的滤波效果容易受到系统参数变化的影响,而且只能对固定频率的谐波进行有效滤波。
有源滤波则是一种较为先进的谐波治理技术。
它通过实时检测电力系统中的谐波电流,并产生与之大小相等、方向相反的补偿电流注入到系统中,从而实现谐波的动态补偿。
有源滤波器具有响应速度快、滤波效果好、能够适应系统参数变化等优点,但成本相对较高。
除了滤波技术,改善电力系统的设计和运行管理也是治理谐波的重要措施。
在电力系统规划和设计阶段,应合理选择电力设备,尽量减少非线性负载的接入。
谐波,这个新鲜的电力系统名词,在当今的电力行业中,已广为“传播”,几乎在电力行业工作,以及与电力行业有直接关系的人,都对这个名词不陌生,尤其是用电大户单位,谈之色变,一是“谐波”直接影响了工厂的正常工作,由于谐波的存在,工厂的负荷上不去,即便上去了,无功也特高,而传统的“无功补偿”又不能凑效。
而是即便无功补偿达到了要求,但谐波含量超标,管理部门不答应,自身的电费多交了不说,还讨不了好。
那么,是否拿“谐波”的肆虐就没有办法了,不!“办法总比问题多”,上海坤友电气有限公司集多年治理“谐波”的经验,针对不同的工况,总结了几种解决问题的方法,公布如下,与各位同仁共勉。
首先,我们讨论谐波的产生原因:近年来,电力网中非线性负载的逐渐增加是全世界共同的趋势,如变频驱动或晶闸管整流直流驱动设备、计算机、重要负载所用的不间断电源(UPS)、节能荧光灯系统等,这些非线性负载导致电网污染,电力品质下降,引起供、用电设备故障,甚至引发严重火灾事故等。
电力污染及电力品质恶化主要表现在以下方面:电压波动、浪涌冲击、谐波、三相不平衡等。
其次,我们讨论谐波的危害:电源污染会对用电设备造成严重危害,主要有:增加输、供和用电设备的额外附加损耗,使设备的温度过热,降低设备的利用率和经济效益:谐波电流使输电线路的电能损耗增加。
当注入电网的谐波频率位于在网络谐振点附近的谐振区内时,对输电线路和电力电缆线路会造成绝缘击穿。
干扰通讯设备、计算机系统等电子设备的正常工作,造成数据丢失或死机。
影响无线电发射系统、雷达系统、核磁共振等设备的工作性能,造成噪声干扰和图像紊乱。
引起电气自动装置误动作,甚至发生严重事故。
使电气设备过热,振动和噪声加大,加速绝缘老化,使用寿命缩短,甚至发生故障或烧毁。
造成灯光亮度的波动(闪变),影响工作效益。
导致供电系统功率损耗增加。
谐波与电力系统中基波叠加,造成波形的畸变,畸变的程度取决于谐波电流的频率和幅值。
非线性负载产生陡峭的脉冲型电流,而不是平滑的正弦波电流,这种脉冲中的谐波电流引起电网电压畸变,形成谐波分量,进而导致与电网相联的其它负载产生更多的谐波电流。
谐波、谐振的危害及防治措施前言随着电气自动化的迅速发展,工业生产中对电能质量的要求更高,但由于电能的复杂性和不稳定性,电力企业和电力用户都会面临许多问题。
其中一个关键问题就是谐波和谐振的危害,它们会对电力系统带来很多问题,同时也会对设备和工作人员的安全产生影响。
因此,谐波和谐振的危害需要引起我们的重视,有必要采取相应的措施进行防治。
谐波的危害谐波是指频率为整数倍基波频率的倍频波,当电网中出现谐波时,会对电力系统造成很多负面影响,主要表现在以下几个方面:1. 降低电网功率因数谐波会对电力系统的功率因数产生影响,使功率因数降低。
功率因数越低,电子设备就越难以正常工作,同时还会导致电能损失和电费增加。
因此,谐波应尽量减小。
2. 损害设备大量谐波会给设备带来很大的损害,造成设备寿命减少,安全储备降低和可靠性下降,这对生产带来很大的风险和影响。
谐波带来的损害主要包括:•电机过热损坏•物理变形•变压器局部过热•电容器和电感器损坏3. 干扰通信系统谐波会引起通信系统(尤其是无线电通信系统)的干扰,影响通信质量。
这种干扰会干扰射频通信的接收机、起伏机、响应器、发射机以及其他电子部件,使通信信号受到严重干扰,从而影响通信过程的稳定性和可靠性。
谐振的危害谐振是指电力系统在特定频率下的共振现象。
虽然谐振一般在正常运行条件下不会出现,但当出现谐振时,会对电力系统造成很大的威胁,主要表现在以下几个方面:1. 破坏电力设备谐振波能量巨大,一旦出现谐振,就会对电力设备造成破坏,严重时甚至会导致设备停产,影响生产。
因此,谐振的出现需要引起注意。
2. 对安全产生威胁谐振波会对人员和设备的安全产生威胁,严重时会导致设备火灾、电击事故等。
电力系统中所有的设备,不仅要承受电压和电流的冲击,还要承受谐振波的冲击,如果谐振波过大,会对设备造成严重威胁。
3. 影响电网稳定性谐振波的存在会破坏电力系统的稳定性,使电网不稳定,从而引起负荷不均衡、跳闸等故障,进一步危及电网的供电能力和稳定性。
电力谐波治理的几种方法
随着现代化程度的不断提高,电力谐波问题日益突出,给电力系统的安全稳定运行带来了极大的威胁。
为此,电力谐波治理成为了电力系统建设和运行中必不可少的一项工作。
电力谐波的治理主要有以下几种方法:
1. 滤波器法
采用电力滤波器对电力谐波进行滤波处理,以减小其对电力系统的干扰。
常见的电力滤波器包括L-C滤波器、谐振滤波器和有源滤波器等。
滤波器法具有费用低、性能稳定等优点,适用于小功率电器的电力谐波治理。
2. 变压器法
采用特殊结构的变压器进行电力谐波治理,包括隔离变压器、耦合变压器等。
变压器法可以有效地降低电力谐波对电力系统的影响,但需要投入较大的资金,适用于大功率电器的电力谐波治理。
3. 电容器法
通过电容器的串联或并联方式,对电力谐波进行电容滤波处理。
电容器法具有构造简单、成本低等优点,适用于小功率电器的电力谐波治理。
4. 谐波抑制器法
采用谐波抑制器对电力谐波进行抑制处理。
常见的谐波抑制器包括谐波电流抑制器、谐波电压抑制器等。
谐波抑制器法具有能够有效抑制电力谐波、无需改变电路结构等优点,适用于各类电器的电力谐
波治理。
在电力谐波治理中,需要综合考虑电力系统的实际情况和治理成本,选择合适的治理方法,并采取科学有效的措施加以实施,以确保电力系统的安全稳定运行。
煤矿电力系统谐波分析及治理煤矿作为我国能源产业中重要的一环,对电力的需求量较大。
在煤矿电力系统中,谐波问题是一个常见的电能质量问题,会给电力系统带来一系列的影响和安全隐患。
对煤矿电力系统中的谐波进行分析和治理是非常必要的。
谐波是指周期性变化的电压或电流信号中含有频率为整数倍于基波频率的分量。
在煤矿电力系统中,谐波主要由电力设备产生,如变压器、电动机、电弧炉等。
这些设备在工作过程中,可能会因非线性特性而产生谐波,进而污染供电网络。
谐波会引起电力系统中的多种问题,如电流过载、电压波动、设备故障等。
谐波电压会导致设备绝缘损坏加剧,使设备寿命缩短,甚至引发火灾和爆炸等重大事故。
谐波电流会引起导线发热、设备损坏,降低谐波设备的效率。
谐波还会对附近的通信系统和其他电子设备造成干扰。
为了减小谐波的影响,需要进行谐波分析和治理。
谐波分析是通过测量和分析电力系统中的谐波电压和电流,确定谐波的频率、幅值和相位等参数,从而找出谐波主要来源和传播途径。
谐波分析的方法有频谱分析、波形分析、功率谐波分析等。
频谱分析是最常用的方法,可以通过使用示波器、频谱分析仪等测量设备,对电压和电流信号进行频谱分析。
谐波治理主要包括提高设备的质量和选择合适的补偿措施。
对于电力设备,可以通过增加设备的系数和降低设备的谐波特性来提高设备的质量。
对于非线性负载设备,可以选择合适的补偿装置,如有源滤波器、被动滤波器、谐波抑制器等,来消除谐波。
还可以通过合理设计供电系统,降低谐波对电力系统的影响。
在供电系统中增加合适的阻抗来减小谐波电流的幅值;通过合理设置接地电阻和接地网,降低谐波电压的幅值;合理选择电缆和导线,减小谐波损耗等。
煤矿电力系统中的谐波问题需要引起足够的重视,并采取相应的治理措施。
通过谐波分析,可以找出谐波的来源和传播途径,并确定合适的治理方法。
通过谐波治理,可以保证电力系统的正常运行,减小设备损坏风险,提高供电质量。
对于我国煤矿电力系统的发展和安全具有重要意义。
电力电子中的谐波问题如何解决?在当今的电力系统中,电力电子技术的广泛应用带来了诸多便利和效率提升,但同时也引发了一个不容忽视的问题——谐波。
谐波的存在不仅会影响电力设备的正常运行,还可能导致电能质量下降,增加能耗,甚至危及整个电力系统的安全稳定。
那么,如何有效地解决电力电子中的谐波问题呢?要解决谐波问题,首先我们得明白谐波是怎么产生的。
电力电子设备在工作时,由于其非线性的特性,会使得电流和电压的波形发生畸变,从而产生谐波。
比如常见的整流器、逆变器、变频器等,它们在将交流电转换为直流电或者改变交流电的频率和电压时,就容易引入谐波。
既然知道了谐波的来源,那我们就可以有针对性地采取措施来减少谐波的产生。
一种常见的方法是优化电力电子设备的设计。
通过改进电路结构、采用更先进的控制策略以及选择合适的电力电子器件,可以在源头上降低谐波的含量。
例如,在整流电路中,采用多脉冲整流技术,如 12 脉冲、18 脉冲甚至更高脉冲数的整流,可以显著减少谐波的产生。
另外,增加滤波装置也是解决谐波问题的重要手段。
滤波装置可以分为无源滤波器和有源滤波器两大类。
无源滤波器通常由电感、电容和电阻等元件组成,通过谐振原理对特定频率的谐波进行吸收和抑制。
这种滤波器结构简单、成本较低,但存在滤波效果受系统参数影响较大、可能与系统发生谐振等缺点。
相比之下,有源滤波器则具有更好的滤波性能和适应性。
它能够实时检测电网中的谐波电流,并产生与之大小相等、方向相反的补偿电流,从而有效地消除谐波。
有源滤波器虽然性能优越,但成本相对较高,在一些对电能质量要求极高的场合应用较为广泛。
除了在设备端采取措施,合理的系统规划和运行管理也有助于减轻谐波的影响。
在电力系统的设计阶段,就应该充分考虑谐波的问题,合理分配负载,避免谐波源集中在某一区域。
同时,加强对电力设备的运行监测,及时发现和处理谐波超标问题,也是保障系统稳定运行的重要环节。
此外,提高电力用户的谐波意识也非常重要。
谐波产生的根本原因及治理对策谐波是指在电力系统中产生的频率为基波频率的整数倍的波动。
它是电力系统中普遍存在的一种现象,但过多的谐波会对电力系统的正常运行和设备的安全性产生很大影响,因此需要采取相应的治理对策来解决这个问题。
1.非线性负载:当电力系统中存在非线性负载时,如电弧炉、电焊机、电子设备等,其工作特性会产生谐波。
这是谐波产生的主要原因之一2.电力电子装置:现代电力系统中广泛使用的各种电力电子装置,如变频器、整流装置等,也会引入大量谐波。
3.潮流分布不均匀:当电力系统中的潮流分布不均匀时,也会导致谐波的生成和传播。
针对谐波的治理对策主要有以下几方面:1.使用滤波器:在电力系统中安装滤波器可以消除或降低谐波对系统的影响。
滤波器的选择要根据谐波的频率和大小来确定。
2.设计合理的系统:在电力系统的设计阶段,应考虑到非线性负载和电力电子装置可能带来的谐波问题,采取相应的额外措施来减少谐波的产生。
3.提高设备的抗谐波能力:针对电力系统中的关键设备,如变压器、电容器等,可以采用提高抗谐波能力的设计和制造技术,使其能够更好地耐受谐波的影响。
4.加强监测和控制:定期对电力系统进行谐波监测,及时发现和解决问题。
对于频繁发生谐波问题的系统,可以采用自动生成谐波的设备进行实时控制,以减小谐波的影响。
5.加强人员培训和管理:加强对电力系统人员的培训,提高其对谐波问题的认识和处理能力。
同时,建立健全的管理体系,制定相应的管理规范和操作程序,以确保谐波问题得到科学有效的控制。
总之,谐波问题存在于电力系统中,会对系统的正常运行和设备的安全性产生不利影响。
通过采取相应的治理对策,如使用滤波器、设计合理的系统、提高设备的抗谐波能力等,可以有效地解决谐波问题,确保电力系统的稳定和可靠运行。
同时,需要加强人员培训和管理,提高人员的谐波处理能力,确保谐波问题得到及时有效的解决。
低压谐波治理方案引言低压谐波是指电力系统中频率为50Hz的基波之外的频率成分。
低压谐波的存在会给电力系统带来一系列问题,如电能表计量误差、设备损坏、电能质量下降等。
因此,为了保证电力系统的正常运行,需要采取一定的措施来治理低压谐波。
本文将介绍一种低压谐波治理方案,旨在帮助读者了解低压谐波的治理原理及实施方法。
低压谐波的原因低压谐波的产生主要有以下几个原因:1.非线性负载:非线性负载设备,如电子设备、变频器等会引入谐波电流,进而产生低压谐波。
2.谐振:电力系统中存在谐振回路,当谐振频率与低压电网的频率相差较小时,会引起谐振电流,进而产生低压谐波。
3.电网供电问题:电网供电不稳定、电压波动或谐波电流畸变时,会引入低压谐波。
低压谐波的影响低压谐波对电力系统造成的影响主要体现在以下几个方面:1.电能表计量误差:低压谐波会导致电能表计量误差增大,从而影响用户电能计量的准确性。
2.设备损坏:低压谐波会导致设备电压、电流畸变增大,使设备的热损耗增加,加剧设备的老化速度,甚至引发设备故障。
3.电能质量下降:低压谐波会导致电网电压畸变、电网电流畸变增大,从而影响电能质量,引起其他设备故障,降低电力系统的可靠性。
低压谐波治理方案为了治理低压谐波,可以采取以下方案:1. 滤波器滤波器是最常用的低压谐波治理设备之一,可以有效地滤除谐波电流。
滤波器根据需要选择合适的谐波阶次和容量,安装在低压谐波严重的用电设备前或电源入口处。
滤波器可以是主动式滤波器、被动式滤波器或混合式滤波器。
2. 变压器设计优化变压器是低压谐波的主要损害对象之一。
通过合理设计和选择变压器,可以减少低压谐波对变压器的损害。
在变压器设计中,考虑降低磁流密度、增加谐波电流容量和合理选择材料等因素,可以有效减少低压谐波的影响。
3. 电网电压及电流监测通过对电网电压及电流进行监测,可以及时发现低压谐波问题,并采取相应的措施进行治理。
监测可以采用电力监测仪等设备,实时监测电网的电压、电流波形及谐波含量,并进行数据分析,为低压谐波治理提供依据。
电力谐波的产生原因及其抑制方法电力谐波指的是电力系统中出现的非正弦波形,是由于电力系统中的非线性负载和电力设备等产生的。
它会对电力系统的稳定性和运行质量产生不利影响,因此需要采取相应的抑制方法来减小谐波水平。
1.非线性负载:电力系统中广泛使用的非线性负载设备,如电弧炉、变频器、电子设备等,其负载特性是非线性的,会导致电流与电压的失配,产生谐波。
2.电力设备:电力系统中的电力设备,如变压器、发电机、变电设备等,其磁化和饱和特性也会引起谐波。
3.电力系统的并联谐振:当电容、电感等元件在电力系统中呈并联连接时,会出现谐振现象,从而产生谐波。
4.电力系统的不对称操作:电力系统中的不对称运行,如三相电流不平衡、电压不平衡等,也会引起谐波的产生。
为了减小电力谐波的影响,可以采取以下几种抑制方法:1.滤波器和补偿器:通过安装合适的谐波滤波器和补偿器,将谐波电流或电压引入这些设备中,并通过调节参数来抑制谐波。
2.谐波控制器:使用专门的谐波控制器,通过对电流进行监测和控制,实现对谐波的有效消除和抑制。
3.谐波发生器:使用谐波发生器对电力系统进行谐波注入,从而实现对谐波的消除或者切除。
4.谐波滤波器:在电力系统中添加谐波滤波器,通过对谐波进行吸收或变换,并将其回馈到电网中,以减小谐波的扰动。
5.调整电力设备:对电力设备进行调整和优化,减小非线性特性,从而降低谐波的产生。
总结起来,电力谐波的产生是由于电力系统中的非线性负载和电力设备等因素所致。
为了有效抑制电力谐波,可以采取滤波器、补偿器、控制器等方法,以减小谐波的影响。
此外,对电力设备进行调整和优化也是降低谐波的有效手段。
对于电力系统的设计和运行,应该重视谐波抑制的问题,从而保证电力系统的正常运行和供电质量。
电力系统中的谐波与畸变分析电力系统是现代社会中至关重要的基础设施之一,它为各行各业的正常运转提供了能源支持。
然而,在电力系统中,谐波和畸变的存在会给系统的稳定性和可靠性带来一定的影响。
因此,对电力系统中的谐波和畸变进行分析和研究是非常必要的。
1. 谐波的概念和产生原因谐波是指频率为整数倍于基波频率的电压或电流成分。
它们由非线性负载设备,例如电弧炉、变频器等产生,并通过电力系统传递。
谐波的产生主要是由于非线性电气负载设备对电力系统的电流需求不是正弦波形的结果,使得系统中存在额外的频率成分。
2. 谐波对电力系统的影响谐波会对电力系统产生一系列的负面影响。
首先,谐波会导致电力系统的额定电压和电流失真,使得设备的运行不稳定,并增加电力设备的损耗。
其次,谐波会引起变压器和电动机的振动和噪声,进一步降低设备的寿命。
最重要的是,谐波会对其他用户产生干扰并降低电力系统的供电可靠性。
3. 谐波与畸变的分析方法为了有效地分析电力系统中的谐波和畸变,需要使用一些专门的测试设备和算法。
目前,市场上有各种各样的谐波分析仪和畸变分析仪,可以用来监测和测量电力系统中的谐波和畸变。
基于这些测量数据,可以采用傅里叶变换、小波分析等数学方法,对谐波和畸变的频率和幅度进行分析和计算。
4. 谐波和畸变的治理措施为了降低电力系统中谐波和畸变的影响,需要采取一系列的治理措施。
首先,可以通过合理的设计和选择电气设备,减少非线性负载设备的使用,从源头上减少谐波的产生。
其次,可以采用滤波器、谐波抑制器等装置,对系统中的谐波进行衰减和消除。
此外,也可以通过改进电网的结构和增加电容器等手段,提高系统的电力质量,减少谐波和畸变的影响。
5. 谐波与畸变的国际标准随着对谐波和畸变问题的不断重视,国际上也陆续制定了相关的标准和规范。
例如,国际电工委员会(IEC)发布的IEC 61000系列标准,规定了电力系统中的谐波和畸变的测试方法和限值要求。
这些标准的制定和遵守,对于确保电力系统的稳定和可靠运行有着重要的作用。
电网谐波整改方案1. 引言随着电力系统的快速发展和电力负荷的不断增加,电网中的谐波问题日益突出。
电网谐波对电力设备的安全运行和电能质量产生了不可忽视的影响。
因此,制定一套完善的电网谐波整改方案,对于确保电力系统的稳定运行具有重要意义。
本文将从谐波问题的定义和影响、谐波源的分类、谐波分析与评估、整改方案的制定等方面,对电网谐波整改方案进行详细阐述。
2. 谐波问题的定义和影响2.1 谐波问题的定义谐波是指在电力系统中频率是基波频率整数倍的电压和电流波形成分。
谐波分为奇次谐波和偶次谐波,其中奇次谐波对电力系统影响较大,如3次谐波、5次谐波等。
2.2 谐波问题的影响电网谐波问题会导致以下影响:•降低电能质量:谐波会导致电压、电流波形畸变,使得功率因数下降,影响电能质量。
•损害电力设备:谐波会使电力设备产生过热、振动、噪音等问题,加速设备老化,缩短设备寿命。
•影响电网稳定运行:谐波容易引起电网谐振现象,导致电网电压、电流不稳定,影响电网的稳定运行。
谐波源分为内部谐波源和外部谐波源。
3.1 内部谐波源内部谐波源指电网系统本身的设备或负载引起的谐波,包括电弧炉、电弧炼钢炉、大功率变频器等。
内部谐波源是可以通过控制和优化设备来减少谐波产生的。
3.2 外部谐波源外部谐波源指电网系统的电力互联或共享电力系统中其他用户设备引起的谐波。
外部谐波源是不可控制的,只能通过隔离和滤波等方式进行控制。
4.1 谐波分析谐波分析是通过采集电网中的电压和电流数据,进行频谱分析,识别出谐波的类型、含量和分布情况。
谐波分析的结果可以帮助我们定位谐波问题的源头。
4.2 谐波评估谐波评估是根据谐波分析结果,对谐波问题的影响程度进行评估。
评估结果将指导我们确定合适的整改方案。
5. 整改方案的制定5.1 内部谐波源整改对于内部谐波源,可以采取以下措施来减少谐波的产生:•选择低谐波电力设备:在选型时考虑设备的谐波特性,选择低谐波产生的设备。
•添加滤波器:通过安装谐波滤波器,将谐波电流从电网中滤除,减少谐波的产生。
目前常用的谐波治理的方法
首先,振动源消除法是通过改变设备的电气参数或结构参数,来抑制
或消除设备产生的谐波。
例如,通过改变幅值或相位,或者通过增加阻尼
来减少振动源产生的谐波。
其次,谐波滤波法是通过在电网中增加谐波滤波器来消除谐波。
谐波
滤波器通常由串联的电感和并联的电容组成,可以选择性地过滤掉特定频
率的谐波。
再次,变压器抗谐波处理法是通过在变压器的次级侧或高压侧增加谐
波处理设备,例如谐波滤波器或谐波消除器,来抑制或消除谐波。
另外,有源谐波抑制法是通过在电网中增加有源谐波抑制装置来消除
谐波。
有源谐波抑制装置可以根据实时的谐波电流信息,发出与谐波电流
相反相位的电流,从而相消谐波。
此外,谐波电流注入法是通过在电网中注入一个与谐波相同频率但反
相的电流,从而抵消谐波电流。
还有一种方法是谐波发生器消除法,即通过在电网上增加一个与谐波
相同频率但反相的谐波发生器,来抵消谐波。
最后,无功滤波器抑制法是通过在电网中增加无功滤波器来抑制谐波。
无功滤波器可以通过控制电流的幅值和相位来抑制谐波。
总结起来,目前常用的谐波治理方法包括振动源消除法、谐波滤波法、变压器抗谐波处理法、有源谐波抑制法、谐波电流注入法、谐波发生器消
除法以及无功滤波器抑制法等。
这些方法可以根据具体情况选择合适的方
法来抑制或消除谐波,以确保电网的稳定运行。
电力系统谐波及其治理措施
随着现代信息技术,计算机技术和电子技术的发展,电能质量问题已越来越
引起用户和供电部门的重视。应用先进的电能质量测试仪器不仅能大大提高电能
质量的监测与治理水平,同时还可建立先进可靠的电能质量监测网络,及时分析
和反映电网的电能质量水平,找出电网中造成电能质量谐波及故障的原因,采取
相应的措施,为保证电网的安全、稳定、经济运行提供重要的保障。
标签:电力系统;谐波;治理措施
1 谐波的危害
1.1 对旋转电动机的影响
在电力系统的运行过程中,受到谐波的干扰,旋转电动机的电流将会产生变
化,进而使旋转电动机产生固定数的振动转矩,同时旋转的速度也会产生周期性
的变化。这样一来,电动机的工作效率将会受到影响,发热量也会不断增加,进
而直接影响到旋转电动机的使用期限。
1.2 对变压器的影响
和旋转电动机的受损情况有点相似,变压器等电气设备将会产生较大的谐波
电流,这加大了变压器的损耗。在这一环节中,由于损耗过大,发热量将会增大,
绝缘介质将会老化,最后使绝缘体遭到破坏,从而影响工作效率。
1.3 对并联电容器的影响
并联电容器具备阻抗这一特性,在一般情况下,其频率越高,阻抗越低。受
谐波的干扰,在一段时间内电容器将会吸收谐波电流,导致过载,发热量增加。
当电容器的阻抗和电网系统中的感应阻抗相匹配时,就会产生谐波谐振,同时增
加了绝缘体被击穿的概率,影响并联电容器的正常运行。除此之外,还存在基波
电压和谐波电压峰值重叠的情况,这会加大局部放电的几率,破坏绝缘体;当基
波电压和谐波电压重叠时,电压波动幅度将会明显增大,同时增大了每个周期中
局部放电的功率,而从理论的角度上说,局部放电功率越大,绝缘体的寿命越短,
所以这种情况是不利于电网系统运行的。
1.4 对断路器的影响
谐波电流的发热作用大于有效值相等的工频电流,能减少热元件的发热动作
电流。如果某种电流的高次谐波含量过高,那么其断路器的工作效率将会降低。
如果在这个过程中,有更为强大的谐波电流对断路器进行干扰,那么部分断路器
的磁吹线圈将会受到损坏,影响到断路器的开断效果。
1.5 对电子设备的影响
受到谐波的干扰,相位控制设备的信号将会变得不稳定,这可能会导致计算
机收到错误的指示,并进行错误的操作,还有可能造成信号中断,使电子元件等
测试不能正常进行。
1.6 对继电保护的影响
谐波将会导致部分类型的继电保护受到影响,如晶体管型和整流型保护装
置、变压器等会因此而出现拒动作或者误动作的情況。
1.7 对通信线路的影响
谐波将会干扰通信线路,阻碍信息的传递,进而产生噪声,出现问题。
1.8 其他
消弧线圈主要是根据所接的局部电网的工频参数来实现对谐波的调节。但是
在实际过程中,消弧线圈并没有发挥出自身的作用。在这一环节中,谐波产生的
电压将会增大绝缘局部的放电量,缩短电缆的使用期限。
2电力系统谐波治理方法
想要最大限度的减少电力系统的损失,就要研究电力系统中的谐波治理方
案:
2.1装设交流滤波器
在电力系统中加装交流滤波器,当已经确定谐波源设备以后,在近距离谐波
源处安装滤波器是防止谐波电流注入电网的最有效办法。滤波器工作的基本原理
就是在靠近谐波源的地方吸收谐波电流。而等到谐波电流进入高压电网后再采取
措施,无论技术上还是经济上都是不可行的。
2.2装设无源滤波器
无源滤波器曾被人们广泛使用,以实现控制谐波为目的。这种滤波器的主要
组成部分有电抗器、电力电容器和电阻器等,其作用就是为了提供并联低阻通路,
进而实现滤波的效果。除此之外,它还有无功补偿的功能。采用这种滤波器来控
制谐波,具有投资成本低、滤波效果强、维护费用低以及结构简约可靠等优势。
因此,它已成为当下应用最为广泛的一种滤波方式。
2.3装设有源滤波器
这种滤波器的灵活性相对较强,不仅可以实时监督电力系统的负载状况,还
可以对各次谐波进行补偿,改善电压闪变状况,使系统电压保持在一个相对稳定
的状态,而且性价比合理。有源滤波器具有自适应功能,可自动跟踪补偿变化的
谐波。有源滤波器在治理电力系统谐波方面有良好的性能,且在工业系统中具有
便于安装的优点。在当今科学技术快速发展的背景下,动态的有源滤波器将会慢
慢替换过去的滤波器,从而降低对周边环境的污染。
2.4装设隔离变压器
隔离变压器可以消弱均衡的三次谐波电流传回到电源。通常在这种变压器的
使用者会装设一个旁路的电路以避免在进行变压器的维护工作时长时期对负荷
停止供电。使用隔离变压器的时候要适当提高额定值,否则也会产生电压畸变和
过热;
2.4装设电抗器联合无功补偿器
在无功补偿的同时加装电抗器将特定电抗百分率的串联电抗器配置到并联
电容器组中,一般是用来限制谐波对电容器的危害及治理,以及改善电网电压波
形的。谐波在电力系统中造成的各种电力污染,严重威胁着电力系统的安全运行,
要长期坚持对电力谐波的治理措施才能从根本上改变电力现状,提高电力系统运
营的安全性。
3结束语
综上所诉,在电力系统的管理和检测中,应该全面提高电力系统谐波的预防
与治理工作,防止电力系统的电压与电流出现畸变,有效延长电力设备的使用寿
命,减少谐波污染,提供用电质量。
参考文献:
[1]何迈,刘俊勇,任瑞玲,刘洋,刘友波,等.电力系统运行状态大数据分
析实验仿真[J].实验室研究与探索,2017,36(1):73-79.
[2]陈必荣.电力系统谐波危害及其治理措施的分析[J].电气时代,2016(8):
52-55.
[3]刘菲.试析电力系统谐波的检测与治理[J].大科技,2017(18).