高二上学期期中考试卷(含答案)
- 格式:doc
- 大小:88.50 KB
- 文档页数:10
天津市2024-2025学年度第一学期期中学情调研高二年级英语学科本试卷分共100分,考试时间为100分钟。
答卷前,请务必将自己的姓名、考号、座位号填写在答题卡上相应位置。
答卷时,务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将答题卡和答题纸一并收回。
祝各位同学考试顺利!第Ⅰ卷 (共65分)第一部分:听力理解 (共15 小题;每小题0.5分,满分7.5分)第一节听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What does the man want to know?A. Where the woman works out.B. How the woman stays fit.C. How to stay healthy.2. What is the man interested in?A. Whether people in China bargain everywhere.B. How to get a better price when doing the shopping in China.C. Where Chinese people usually go shopping.3. What's the most probable relationship between the two speakers?A. Old friends.B. Boss and secretary.C. Colleagues.4. What do we know about the woman?A. She is severely stressed.B. She is the man's doctor.C. She falls asleep easily.5. When was the woman scheduled to go to China at first?A. This Friday.B. This Saturday.C. This Sunday第二节听下面几段材料。
注意事项1.答题前在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区域内作答卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑在答题卡上作答4.考试结束后5.本卷主要考查内容~第三章.一8小5分40分有一项是符合题目要求的.1.抛物线y =8x 2的焦点到其准线的距离为()A.132B.116C.18D.42.已知椭圆x 29+y 24=1上有一点P 到右焦点的距离为4,P 到左焦点的距离为()A.6B.3C.4D.23.双曲线y 23-x 26=1的焦点坐标为()A.±3,0B.0,±3C.±3,0D.(0,±3)4.已x 216+y 2m=1(0<m <8)的F 1,F 2,P 是△PF 1F 2的面积的最大值为37,m =()A.7B.3C.7D.95.若方程x 24-m 2-y 21+m =1表示焦点在y 轴上的双曲线m 的取值范围为()A.-∞,-2 B.-2,-1 C.-2,2 D.-1,16.已A 在y 2=2px (p >0)上A 到6,离是10,p 的值是()A.2或4 B.6或12C.4或16D.2或187.如2024-2025学年河北省邯郸市高二上学期12月期中考试数学检测试题看成是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一部分绕其虚轴所在直线旋转所形成的曲面.若该花瓶横截面圆的最小直径为40cm ,最大直径为60cm ,双曲线的离心率为6,则该花瓶的高为()A.90cmB.100cmC.110cmD.120cm8.已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左,右顶点分别为A ,B ,且椭圆C 的离心率为306,点P 是椭圆C 上的一点,且tan ∠P AB =14,则tan ∠APB ()A.-109 B.-1110 C.1110 D.109二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.关于双曲线x 24-y 26=1与双曲线x 24+t -y 26-t=1(-4<t <6),下列说法不正确的是()A.实轴长相等B.离心率相等C.焦距相等D.焦点到渐近线的距离相等10.设点F 1,F 2分别为椭圆C :x 29+y 25=1的左、右焦点,点P 是椭圆C 上任意一点,若使得PF 1 ⋅PF 2=m 成立的点恰好是4个,则实数m 的取值可以是()A.1B.3C.5D.411.已知抛物线C :y 2=12x ,点F 是抛物线C 的焦点,点P 是抛物线C 上的一点,点M (4,3),则下列说法正确的是()A.抛物线C 的准线方程为x =-3B.若PF =7,则△PMF 的面积为23-32C.PF -|PM |的最大值为10D.△PMF 的周长的最小值为7+10三、填空题:本题共3小题,每小题5分,共15分.12.双曲线x 210-y 26=1的一个焦点在抛物线y 2=2px (p >0)的准线上,则抛物线的标准方程为13.已知椭圆C:x24+y2b2=1(0<b<2),偶函数f x =m-1x3+x2-3,且f b≤2,则椭圆C的离心率的取值范围是.14.我国著名数学家华罗庚说“数缺形时少直观,形少数时难入微:数形结合百般好,隔离分家万事休”,包含的意思是:几何图形中都蕴藏着一定的数量关系,数量关系又常常可以通过几何图形做出直观的反映和描述,通过“数”与“形”的相互转化,常常可以巧妙地解决问题,所以“数形结合”是研究数学问题的重要思想方法之一.比如:(x-a)2+(y-b)2这个代数问题可以转化为点A x,y与点B a,b之间的距离的几何问题.结合上述观点可得,方程y2-8y+25-y2+8y+25=27的解为.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.求适合下列条件的椭圆的标准方程:(1)经过P(-3,0),Q(0,-2)两点;(2)长轴长等于20,离心率等于35.16.已知圆C的方程为x2+y2-4x+6y-m=0.(1)求实数m的取值范围;(2)若圆C与直线l:x+y+3=0交于M,N两点,且MN=23,求m的值.17.已知点A(-4,2),B(2,8),C(4,2)中恰有两个点在抛物线E::x2=2py(p>0)上,(1)求E的标准方程;(2)若点M x1,y1,N x2,y2在E上,且x1x2=-16,证明:直线MN过定点.18.在平面直角坐标系xOy中,点M x,y到点F1,0与到直线x=5的距离之比为5 5,记点M的轨迹为曲线C.(1)求曲线C的方程;(2)若点P是圆x2+y2=5上的一点(不在坐标轴上),过点P作曲线C的两条切线,切点分别为A,B,记直线P A,PB的斜率分别为k1,k2,且k1=-4-k2,求直线OP的方程.19.已知双曲线C:x2a2-y2b2=1(a>0,b>0)的一条渐近线的倾斜角为π3,C的焦距为8.(1)求双曲线C的标准方程;(2)过右焦点F的直线l与双曲线C交于M,N两点,A(-2,0).求证:点A在以线段MN为直径的圆上.参考答案1.B【分析】将抛物线方程转化为标准方程求解.【详解】解:抛物线的标准方程为x 2=18y ,所以焦点坐标为F 0,132 ,其准线方程为y =-132,所以抛物线y =8x 2的焦点到其准线的距离为d =132--132 =116,故选:B 2.D【分析】根据椭圆的定义即可求出.【详解】由椭圆x 29+y 24=1,得a 2=9,即a =3,设左焦点为F 1,右焦点为F 2,则PF 1 +PF 2 =2a =6,因为PF 2 =4,所以PF 1 =2,即点P 到左焦点的距离为2.故选:D .3.D【分析】根据题意,结合双曲线的几何性质,即可求解.【详解】由双曲线y 23-x 26=1,可得a =3,b =6,则c =a 2+b 2=3,且双曲线的焦点在y 轴上,所以双曲线的焦点坐标为(0,±3).故选:D .4.A【分析】利用点P 的纵坐标表示△PF 1F 2的面积,再借助范围求出最大值即可.【详解】依题意,椭圆半焦距c =16-m ,设点P (x 0,y 0),y 0≠0,则0<|y 0|≤m ,因此△PF 1F 2的面积S =12⋅2c ⋅|y 0|≤16-m ⋅m =16m -m 2,则16m -m 2=37,即m 2-16m +63=0,而0<m <8,解得m =7,所以m =7.故选:A 5.A【分析】原方程可变形为y 2-m -1-x 2m 2-4=1,根据已知有-1-m >0-4+m 2>0 ,解出即可.【详解】因为方程x 24-m2-y 21+m =1表示焦点在y 轴上的双曲线,x 24-m 2-y 21+m =1可变形为y 2-m -1-x 2m 2-4=1.所以有-1-m >0-4+m 2>0 ,即m +1<0m 2-4>0 ,解得m <-2.故选:A .6.D【分析】设A x ,6 ,根据抛物线的定义求解;【详解】设A x ,6 ,代入抛物线y 2=2px (p >0),解得:x =18p,又因为点到焦点的距离是10,根据抛物线的定义,得:18p +p 2=10,化简得:p 2-20p +36=0,解得:p =2或18.故选:D .7.B【分析】由a ,b ,c 关系以及离心率、a =20可得双曲线方程,进一步代入x =30即可求解.【详解】由该花瓶横截面圆的最小直径为40cm ,有a =20,又由双曲线的离心率为6,有c =206,b =205,可得双曲线的方程为x 2400-y 22000=1,代入x =30,可得y =±50,故该花瓶的高为100cm .故选:B .8.B【分析】设P x 0,y 0 是椭圆上的点,设k 1=tan ∠P AB =14,k 2=-tan ∠PBA 求出k 1⋅k 2为定值,从而能求出tan ∠PBA 的值,然后根据tan ∠APB =-tan ∠P AB +∠PBA求解.【详解】设P x 0,y 0 代入椭圆方程,则x 02a 2+y 02b2=1a >b >0整理得:y 20=b 2a2a 2-x 20 ,设k 1=tan ∠P AB =14,k 2=-tan ∠PBA 又k 1=y 0x 0+a ,k 2=y 0x 0-a ,所以k 1⋅k 2=y 0x 0+a ⋅y 0x 0-a =y 20x 20-a 2=-b 2a 2=-a 2-c 2a 2=-1-e 2=-16而k 1=tan ∠P AB =14,所以k 2=-tan ∠PBA =-23,所以tan ∠PBA =23tan ∠APB =-tan ∠P AB +∠PBA =-tan ∠P AB +tan ∠PBA 1-tan ∠P AB ⋅tan ∠PBA=-14+231-14×23=-1110故选:B 9.ABD【分析】利用双曲线的性质对每个选项逐个判断即可【详解】双曲线x 24-y 26=1中,实轴长为2a 1=4,虚轴长为2b 1=26,焦距长为2c 1=24+6=210,右焦点为10,0 ,所以离心率e 1=c 1a 1=102,渐近线方程为y =±62x ,不妨取y =62x 即6x -2y=0,所以焦点到渐近线的距离为d 1=6×106+4=6,双曲线x 24+t -y 26-t =1(-4<t <6)中实轴长为2a 2=24+t ,虚轴长为2b 2=26-t ,焦距长为2c 2=210,右焦点为10,0 ,所以离心率e 2=c 2a 2=104+t =40+10t 4+t ,渐近线方程为y =±6-t4+tx ,不妨取y =6-t4+tx 即6-t x -4+t y =0,所以焦点到渐近线的距离为d 2=6-t ×1010=6-t ,综上,两条双曲线只有焦距相等,故选:ABD 10.BD【分析】首先设点P x 0,y 0 ,得到PF 1 =-2-x 0,-y 0 ,PF 2=2-x 0,-y 0 ,结合点P 在椭圆上得到x 20=9m -94,若成立的点有四个,则x 0在-3,3 有两实数解,则有0<9m -94<9,解出其范围结合选项即得.【详解】设P x 0,y 0 ,∵F 1-2,0 ,F 22,0 ,∴PF 1 =-2-x 0,-y 0 ,PF 2=2-x 0,-y 0 ,由PF 1 ⋅PF 2 =m 可得x 20+y 20=m +4,又∵点P 在椭圆C 上,即x 209+y 205=1,∴x 20=9m -94,要使得PF 1 ⋅PF 2 =m 成立的点恰好是4个,则0<9m -94<9,解得1<m <5.故选:BD 11.ACD【分析】根据抛物线的标准方程可得准线方程为x =-3,即可判断A ,根据抛物线定义得到x P =4,故P 点可能在第一象限也可能在第三象限,分情况计算三角形面积即可判断B ,利用三角形任意两边之差小于第三边结合三点一线的特殊情况即可得到∴|PF |-|PM | max=MF ,计算即可判断C ,三角形PMF 的周长=PM +MF +PF =PM +PF +10,再结合抛物线定义即可求出|PM |+|PF |的最小值,即得到周长最小值.【详解】∵y 2=12x ,∴p =6,∴F 3,0 ,准线方程为x =-3,故A 正确;根据抛物线定义得PF =x P +p2=x P +3=7,x P =4,∵M 4,3 ,∴PM ⎳y 轴,当x =4时,y =±43,若P 点在第一象限时,此时P 4,43 ,故PM =43-3,△PMF 的高为1,故S △PMF =12×43-3 ×1=23-32,若点P 在第四象限,此时P 4,-43 ,故PM =43+3,△PMF 的高为1,故S △PMF =12×43+3 ×1=23+32,故B 错误;∵|PF |-|PM |≤MF ,∴|PF |-|PM | max =MF =4-3 2+3-0 2=10,故C 正确;(连接FM ,并延长交于抛物线于点P ,此时即为|PF |-|PM |最大值的情况,图对应如下)过点P 作PD ⊥准线,垂足为点D ,△PMF 的周长=PM +MF +PF =PM +PF +10=PM +PD +10,若周长最小,则PM +PD 长度和最小,显然当点P ,M ,D 位于同一条直线上时,PM+MF 的和最小,此时PM +MF =PD =7,故周长最小值为7+10,故D 正确.故选:ACD .12.y 2=16x【分析】由双曲线的方程可得双曲线的焦点坐标,由抛物线的方程可得准线方程,再由题意可得p 的值,进而求出抛物线的方程.【详解】由双曲线x 210-y 26=1的方程可得c 2=10+6=16,解得c =4,所以双曲线的焦点坐标为±4,0 ,抛物线的准线方程为x =-p2,由题意可得-p2=-4,解得p =8,所以抛物线的方程为:y 2=16x ,故答案为:y 2=16x .13.0,32【分析】根据奇偶性求m ,由f b ≤2可得b 的范围,然后可得离心率范围.【详解】∵f x 是偶函数,∴f -x =1-m x 3+x 2-3=f x =m -1 x 3+x 2-3,∴1-m =0,解得m =1,f x =x 2-3,∴f b =b 2-3 ≤2,∴-2≤b 2-3≤2,1≤b 2≤5,又∵0<b <2,∴1≤b <2,∴e =c a=a 2-b 2a =4-b 22,∴e ∈0,32.故答案为:0,3214.±14【分析】将原方程配方,方程的解转化为直线x =3与双曲线y 27-x 29=1的交点的纵坐标。
福州一中2024-2025学年第一学期第一学段模块考试高二历史半期考试卷(完卷75分钟满分100分)一、选择题(本大题共有16小题,每小题3分,共48分。
在每小题给出的四个选项中,只有一项是最符合题目要求的,请将正确答案填写在答题卷上。
)1.商朝的外服方国要定期向商缴纳贡物,所贡多是象、犀、虎、贝玉、卜龟等珍禽异兽和珍稀之物。
一些方国也进贡谷物和牲畜,多用于祭祀,而不是供商人日常食用。
由此可知A.商与方国财政关系紧密 B.商朝贵族日常生活腐化C.贡纳关系昭示政治姿态 D.祭祀体现商王权力集中2.表1关于“杯酒释兵权”故事的不同记载,对此合理解释是表1记载来源作者经历重大事件故事演变情况丁谓(966—1037年)《丁晋公谈录》赵光义北伐失败赵普奏“石守信、王审琦皆不可令主兵”,太祖悟而从之。
王曾(978—1038年)《王文正公笔录》杨家将北伐失败,澶渊之盟太祖召“守信等曲宴”,提出“莫若各守外藩”“优游卒岁”“守信等咸顿首称谢”。
司马光(1019—1086年)《涑水记闻》宋夏庆历和议,王安石变法若身临其境,对酒宴和“屏左右”后君臣对话、动作描写细致入微。
后人常引用此版本,并评曰:“宋之弱,由削节镇之权故。
”A.个人记载具有较强主观性,可信度差B.司马光的记载最为详细,可信度最高C.三则史料记载的内容一致,可靠性大D.故事演变随着时代的变迁而有所变化3.表2所示为明代内阁首辅中加官概况(部分)。
据此可知,明代表2时间首辅官衔官品正统年间曹鼐侍郎低于正二品天顺年间徐有贞、许彬、李贤翰林学士正二品及以上成化年间陈文、商辂大学士正二品及以上A.封建官僚体系日益完备 B.内阁的地位得到提升C.内阁辅政逐渐趋向合法 D.内阁的决策权力增强4.1934年11月,中央红军到达广西北部瑶、苗少数民族地区,面对复杂的民族问题,红军颁发了《关于瑶苗民族中工作的原则指示》:我们对瑶民(或苗民)的基本主张,是反对一切汉族压迫与剥削、汉民与瑶民的民族平等、给瑶民彻底的自决权。
2024~2025学年上学期期中考试26届高二(语文)试题说明:1.答卷前,考生务必将自己的姓名、班级、考场号、座位号、考生号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.本试卷满分150分,考试时间150分钟。
一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,18分)阅读下面的文字,完成1~5题。
①对于“过去之事、眼前之事、将来之事”,新闻和文学都有自己不同的表现方式。
然而,在当今商业化的趋势下,各类叙事成了大众文化的重要内容,新闻报道也进入了叙事的时代——一个让人眼花缭乱的“新闻故事化”时代。
虽然“新闻故事化”未必不好,但新闻叙事和文学叙事有着本质的区别。
②有人曾戏言:文学是“人学”,新闻是“事学”。
就文本而言,新闻与文学是两个不同类别的人文学科。
新闻反映的是客观事实,而文学表达的是主观情感。
从叙事内容来看,文学叙事的基础是“母题”,新闻叙事的基础是“事实”。
韦斯坦因认为文学叙事的母题数量和结构相对稳定,主要可以归结为生与死、爱与恨、美与丑三项二元组合结构,由此对应的基本题材就是战争、爱情与世俗生活,绝大部分文学作品的叙事主题都是由此产生的变体。
③文学叙事主题大多以情感发展为主线,通过性格、感情冲突塑造人物形象。
文学叙事的母题不论生与死、爱与恨还是美与丑,都带有强烈的感情判断色彩。
文学作品在安排情节时需要理性地建立大家的常识性认识,但感性是文学打动人的核心因素,文学叙事的成功与否在很大程度上取决于这种感性叙事能否充分激发读者的代入感和感情共鸣。
文学叙事作品中的“事”一般而言是虚构的,亚里士多德说:“诗人的职责不在于描述已发生的事,而在于描述可能发生的事,即按照可然律或必然律可能发生的事。
”而新闻作品所叙之事,依据新闻的本质,则是已经发生和正在发生的事,即事实。
2024-2025学年四川省自贡市高二上学期期中考试数学检测试卷一、单选题(本大题共8小题)1.圆,圆,则圆与圆的位置关系为( ()22125C x y ++=()2222(2)5C x y -+-=1C 2C )A .相交B .相离C .内切D .外切2.直线的倾斜角为( )310y --=A .B .C .D .30︒135︒60︒150︒3.从2名男生和2名女生中任意选出两人参加冬奥知识竞赛,则选出的两人恰好是一名男生和一名女生的概率是( )A .B .C .D .231213144.椭圆的焦点在y 轴上,长轴长是短轴长的2倍,则m 的值为( )221y x m +=A .B .2C .D .412145.已知直线,双曲线,则( ):28l y x =-22:14x C y -=A .直线与双曲线有且只有一个公共点l C B .直线与双曲线的左支有两个公共点l C C .直线与双曲线的右支有两个公共点l C D .直线与双曲线的左右两支各有一个公共点l C 6.已知两点,,过点的直线与线段AB (含端点)有交点,则()3,2A -()2,1B ()0,1P -l 直线的斜率的取值范围为( )l A .B .(][),11,-∞-+∞ []1, 1-C .D .[)1,1,5⎛⎫-∞-+∞ ⎪⎝⎭ 1,15⎡⎤-⎢⎥⎣⎦7.倾斜角为的直线经过双曲线的左焦点,交双曲线于30 l ()2222100x y a b a b -=>,>1F 两点,线段的垂直平分线过右焦点 ),A B AB 2FA .B .C .D .y x =±12y x=±y =y =8.已知,直线,直线,若为(0,0),(0,1)O Q 1:240l kx y k -++=2:420l x ky k +++=P 的交点,则的最小值为( )12,l l 2||||PO PQ +A .B .C .D.6-9-3二、多选题(本大题共3小题)9.若是空间的一个基底,则下列各组中能构成空间一个基底的是(){},,a b cA .B .,2,3a b c,,a b b c c a+++ C .D .2,23,39++-a b b c a c,,a b c b c c+++10.如图,已知点,是以OD 为直径的圆上的一段()()()()2,0,1,11,12,0A B C D --,,CD 圆弧,是以BC 为直径的圆上的一段圆弧,是以OA 为直径的圆上的一段圆弧,CBBA 三段圆弧构成曲线,则( )ΩA .曲线与轴围成的面积等于Ωx 3π2B .与的公切线的方程为 CBBA 10x y +-=C .所在圆与所在圆的相交弦所在直线的方程为BA CB 0x y -=D .所在圆截直线所得弦的弦长为CD y x=11.已知椭圆:(),,分别为其左、右焦点,椭圆的离心C 22219x y b +=0b >1F 2F C 率为,点在椭圆上,点在椭圆内部,则以下说法正确的是()eM (N A .离心率的取值范围为e ⎛ ⎝B .不存在点,使得M 120MF MF += C .当时,的最大值为12e =1MF MN +152D .的最小值为11211MF MF +三、填空题(本大题共3小题)12.若,,则.()1,2,1a =()2,1,3b =-()()a b a b -⋅+=13.在平面直角坐标系中,已知点点的轨xOy ())1212,,2F F MF MF-=,M 迹为.则的方程为.C C 14.已知椭圆:,,为其左、右焦点,为椭圆上任一C ()222210+=>>x y a b a b 1F 2F P C 点,的重心为G ,I 是内心,且有(其中为实数),椭圆的离心12F PF 12IG F F λ=λC 率.e =四、解答题(本大题共5小题)15.已知圆的圆心在直线上,并且经过点,与直线相切.M 2y x =-(2,1)P -10x y +-=(1)求圆的方程;M (2)经过点的直线与圆交于两点,且,求直线的方程.(2,1)l M ,A B ||2AB =l 16.某学校组织全校学生进行了一次“两会知识知多少”的问卷测试.已知所有学生的测试成绩均位于区间,从中随机抽取了40名学生的测试成绩,绘制得到如图[]50,100所示的频率分布直方图.(1)求图中a 的值,并估算这40名学生测试成绩的平均数(同一组中的数据用该组区间的中点值代替);(2)现学校准备利用比例分配的分层随机抽样方法,从和的学生中抽取[)80,90[]90,1007人组成两会知识宣讲团.①求应从和学生中分别抽取的学生人数;[)80,90[]90,100②从选定的7人中随机抽取2人对高一同学进行宣讲,设事件“至少有1人测试A =成绩位于区间”,求事件A 的概率.[]90,10017.已知双曲线的焦点到一条渐近线的距2222:1(0,0)x y C a b a b -=>>(),0(0)F c c >y =离为(1)求的方程;C (2)若直线交双曲线于两点,是坐标原点,若是弦的中点,求l C ,A B O ()4,2M AB 的面积.OAB 18.如图,在四棱锥中,PA 平面P ABCD -⊥ABCD ,AD CD ,AD BC ,PA =AD =CD =2,BC=3.E 为PD 的中点,点F 在PC 上,⊥//且.13PF PC =(1)求证:CD 平面PAD ;⊥(2)求二面角的余弦值;F AE P --(3)设点G 在线段PB 上,且直线AG 在平面AEF 内,求的值.PGPB 19.已知椭圆的两个焦点分别为,其离心率为2222:1(0)y x E a b a b +=>>12(0,),(0,)F c F c -,过点且平行于的直线与椭圆交于,且1F x ,M N MN =(1)求椭圆的方程;E (2)过点且相互垂直的两条直线分别与椭圆交于.2F E AB CD 、①若直线斜率存在,过点向直线引垂线,垂足为,求证:直线过AB A :2l y =H BH 定点,并求出定点坐标;②求四边形面积的取值范围.ACBD答案1.【正确答案】D求出两圆圆心以及半径,再由圆心距与两圆半径的关系确定位置关系.【详解】由题意圆的圆心,半径的圆心,半径1C 1(2,0)C -1r =2C 2(2,2)C 2r =,即两圆外切1212C C r r ===+故选:D2.【正确答案】A【详解】设直线的倾斜角为,α因为该直线的斜率为,所以,所以,tan 180αα=︒≤<︒30α=︒故选:A3.【正确答案】A【分析】根据给定条件,利用列举法求出古典概率即可.【详解】记2名男生为,2名女生为,,a b 1,2任意选出两人的样本空间,共6个样本点,{,1,2,1,2,12}ab a a b b Ω=恰好一男一女生的事件,共4个样本点,{1,2,1,2}A a a b b =所以选出的两人恰好是一名男生和一名女生的概率是.42()63P A ==故选A.4.【正确答案】D【分析】根据椭圆标准方程的形式,求出,根据,解出的值即可.,a b 2a b =m【详解】椭圆的焦点在y 轴上,∴,可得.∵长轴长是221y x m +=221y x m +=a 1b =短轴长的2倍,,解得2=4m =故选:D.5.【正确答案】C 【分析】发现点在双曲线的右顶点的右边,联立直线与双曲线方程并画()4,0Q ()2,0A 出图形即可得到答案.【详解】在同一平面直角坐标系中分别画出与的图象如图所示::28l y x =-22:14x C y -=由图可知直线过点,它在双曲线的右顶点的右边,:28l y x =-()4,0Q ()2,0A 联立直线与双曲线方程得,解得或,222814y x x y =-⎧⎪⎨-=⎪⎩10343x y ⎧=⎪⎪⎨⎪=-⎪⎩265125x y ⎧=⎪⎪⎨⎪=⎪⎩则直线与双曲线的右支有两个公共点.l C ,B C 故选:C.6.【正确答案】A【分析】求出直线、的斜率后可求直线的斜率的范围.PA PB l 【详解】,而,12103PA k --==-+11102PB k --==-故直线的取值范围为.l (],1(1,)-∞-+∞ 故选A.7.【正确答案】A【分析】由垂直平分线性质定理可得,运用解直角三角形知识和双曲线的定22AF BF =义,求得,结合勾股定理,可得a ,c 的关系,进而得到a ,b 的关系,即可4AB a=得到所求双曲线的渐近线方程.【详解】解:如图为线段AB 的垂直平分线,2MF 可得,22AF BF =且,1230MF F ∠=可得,,22sin30MF c c=⋅=12cos30MF c =⋅=由双曲线的定义可得,,122BF BF a-=212AF AF a-=即有,()1122224AB BF AF BF a AF a a=-=+--=即有,,2MA a=2AF =112AF MF MA a =-=-由,可得,212AF AF a-=)22a a -=可得,即,22243a c c +=c =,则渐近线方程为.b a ==y x =±故选A .本题考查双曲线的方程和性质,渐近线方程的求法,考查垂直平分线的性质和解直角三角形,注意运用双曲线的定义,考查运算能力,属于中档题.8.【正确答案】B【详解】直线过定点,1:240l kx y k -++=(2,4)M -直线过定点,2:420l x ky k +++=(2,4)N --且直线与直线垂直,所以点的轨迹是以为直径的圆,1l 2l P MN 故圆心是,半径为则点的方程是(2,0)C -4P 22(2)16x y ++=令,因为,2||||PO PA =22(2)16x y ++=所以,2222441212163438x y x y x x +=⇔+++++=则2222424361y x y x x ++=-+所以,可得点=()6,0A则2||||PO PQ +=||||||PA PQ AQ +≥==9.【正确答案】ABD【详解】由于是空间的一个基底,所以不共面,{},,a b c,,a b c 对于A ,向量分别与共线,所以不共面,能构成空间一个基底;2,3b c ,b c ,2,3a b c 对于B ,不存在实数满足,因此不共面,能构,x y ()()a b x b c y c a+=+++r r r r r r ,,a b b c c a +++ 成空间一个基底;对于C ,由于,因此这三个向量是共面的,不能构成基底.()()322339a b b c a c+-+=- 对于D ,不存在实数满足,因此不共面,能构,x y ()x a b b c y c c ++=++ ,,a b c b c c +++ 成空间一个基底.故选:ABD10.【正确答案】BC【详解】对于A ,,,所在圆的方程分别为,,CD CB BA 22(1)1x y ++=22(1)1y x +-=,曲线与轴围成的图形为一个半圆、一个矩形和两个圆,22(1)1x y -+=Ωx 14其面积为,故A 错误;ππ22π224++⨯=+对于B ,设与的公切线方程为,则,CBBA y kxb =+0k <0b >1==所以,与的公切线的方程为,1k =-1b = CBBA 1yx =-+即,故B 正确;10x y +-=对于C ,由及两式相减得,22(1)1y x +-=22(1)1x y -+=0x y -=即公共弦所在直线方程,故C 正确;对于D ,所在圆的方程为,圆心为,CD 22(1)1x y ++=(1,0)-圆心到直线的距离为(1,0)-y x =d=则所求弦长为,故D 错误.=故选BC.11.【正确答案】ABC 【分析】A :根据点在椭圆内部可得,从而可得的取值范围,从(N 24219b +<2b 而可求离心率的取值范围;B :根据相反向量的概念即可求解;C :求出c 和,利2F 用椭圆定义将化为,数形结合即可得到答案;D :利用可得1MF 2MF 122MF MF a+=,利用基本不等式即()2112121212111111222MF MF MF MF MF M M a F a MF MF F MF ⎛⎫⎛⎫+=++=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭可求解.【详解】对于A ,由已知可得,,所以,24219b +<2185b >则A 正确;c e a ===<=对于B ,由可知,点为原点,显然原点不在椭圆上,故B 正确;120MF MF += M 对于C ,由已知,,所以,.12c e a ==3a =32c =23,02F ⎛⎫ ⎪⎝⎭又,则.(N 232NF ==根据椭圆的定义可得,1226MF MF a +==所以,126MFMN MF MN+=-+由图可知,,222NF MN MF NF -≤-≤所以126MF MN MF MN +=-+21562NF ≤+=当且仅当,,三点共线时,取得等号.M N 2F 故的最大值为,故C 正确;1MF MN +152对于D ,因为,126MF MF +=所以()2112121************MF MF MF MF MF MF MF MF MF MF ⎛⎫⎛⎫+=++=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,12263⎛⎫ ⎪≥=⎪⎝⎭当且仅当,即时,等号成立.2112MF MF MF MF =123MF MF ==所以,的最小值为,故D 错误.1211MF MF +23故选:ABC本题考查点和椭圆为位置关系,考查椭圆定义和基本不等式在计算最值问题里面的应用.12.【正确答案】8-【详解】,()()1,3,23,1,4a b a b -=--+= ,则,()()()()1331248a b a b -⋅+=-⨯+⨯+-⨯=-故8-13.【正确答案】()22119y x x -=≥【详解】由题,点M 的轨迹是为焦点,实轴长为2的双曲线的右支,12,F F 故可设C 的方程为,22221(,0,0)x y x a a b a b -=≥>>由题:,解得:,22222,10a c a b ==+=1,3a b ==故C 的方程为.221(1)9y x x -=≥故.221(1)9y x x -=≥14.【正确答案】/0.512【详解】设为的重心,点坐标为,00(,),P x y G 12F PF G ∴00,33x y ⎛⎫ ⎪⎝⎭∵,∴IG ∥x 轴或 IG 两点重合, ∴I 的纵坐标为,12IG F F λ=03y 在中,,12F PF 1212||||2,||2PF PF a F F c +==,121201||||2F PF F F y S =⋅⋅∴△又∵I 为△F1PF2的内心,∴I 的纵坐标 即知内切圆半径,3y 内心I 把分为三个底分别为的三边,高为内切圆半径的小三角形,12F PF 12F PF 12011221(||||||)||.23F PF y S PF F F PF ∴=++△,0120112211||||(||||||)||223y F F y PF F F PF ∴⋅⋅=++即,, 00112||(22)||223y c y a c ⨯⋅=+2a c ∴= ∴椭圆C 的离心率12c e a ==故答案为: 1215.【正确答案】(1)22(1)(2)2x y -++=(2)或2x =4350x y --=【详解】(1)由题意,设圆心,半径,(),2M a a -r ∵圆M 经过点,∴(2,1)P -r MP ==∵圆M 与直线相切,10x y +-=∴圆心到直线的距离,M 10xy +-=d r,解得,2210a a -+=1a =则圆心,半径()1,2M -r MP ===所以圆M 的方程为.22(1)(2)2x y -++=(2)由题意,圆心到直线的距离,()1,2M -l 1d ===若直线的斜率不存在,其方程为,显然符合题意;l 2x =若直线的斜率存在,设直线的方程为,即,l l 1(2)y k x -=-120kx yk -+-=则圆心到直线的距离由,解得,()1,2M -l 1d ==43k =则直线的方程为,即,l 41(2)3y x -=-4350x y --=综上,直线的方程为或.l 2x =4350x y --=16.【正确答案】(1),0.030a =74.5(2)①5人,2人;②.1121【详解】(1)由频率分布直方图,得,解得(0.0150.0200.0250.010)101a ++⨯++=;0.030a =所以估算这40名学生测试成绩的平均数为;550.15650.2750.3850.25950.174.5++++⨯⨯⨯⨯⨯=(2)①由图可得和这两组的频率之比为,[)80,90[90,100]02550102..=故应从学生中抽取的学生人数为(人),[)80,905757⨯=应从学生中抽取的学生人数为(人);[)90,1002727⨯=②设从中抽取的5人为,从学生中抽取的2人为1,2,[)80,90,,,,a b c d e [)90,100则这个试验的样本空间,则;,,,,1,2,,,121211,}{2,,,,2,,,,,,12,ab ac ad ae a a bc bd be b b cd ce c c de d d e e Ω=()Ω21n =又,则,{}1,2,1,2,1,2,1,2,1,2,12A a a b b c c d d e e =()11n A =故.()()()11Ω21n A P A n ==17.【正确答案】(1)22143xy -=【分析】(1)利用焦点到渐近线的距离求出c =方程;(2)利用点差法求出直线的斜率,然后联立直线与双曲线的方程,求出弦长l l C 和点到直线的距离,即可求出的面积.ABO l OAB 【详解】(1)由双曲线的一条渐近线方程为,所以C y =b a =故到渐近线的距离,F d ==所以,所以c =222b a bc a =+=2,a b ==故的方程为.C 22143x y -=(2)设点,因为是弦的中点,则()()1122,,,A x y B x y ()4,2M AB 12128,4,x x y y +=⎧⎨+=⎩由于,所以两式相减得,22221122114343x y x y -=-=,()()()()12121212043x x x x y y y y +-+--=所以,即直线的斜率为,()()1212121233834442x x y y x x y y +-==⨯=-+l 32所以直线的方程为,即.l ()3242y x -=-342y x =-联立消去并整理,得,2234,21,43y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩y 2324380x x -+=所以,且,2Δ2443381200=-⨯⨯=>1212388,3x x x x +==所以AB ===点到直线的距离为,O 342y x =-d ==所以的面积为.OAB12=18.【正确答案】(1)证明见解析(3)23【详解】(1)因为PA 平面ABCD ,CD 平面ABCD ,⊥⊂所以PA CD ,又因为AD CD ,PA AD =A ,PA ,AD 平面PAD ,⊥⊥⋂⊂所以CD 平面PAD ;⊥(2)过点A 作AD 的垂线交BC 于点M ,因为PA 平面ABCD ,AM ,AD 平面ABCD ,⊥⊂所以PA AM ,PA AD ,⊥⊥建立如图所示的空间直角坐标系,A xyz -则,,,,, (0,0,0)A (2,1,0)B -(2,2,0)C (0,2,0)D (0,0,2)P 因为E 为PD 的中点,所以,(0,1,1)E 所以,,,(0,1,1)AE = (2,2,2)PC =- (0,0,2)AP = 所以,,1222(,,)3333PF PC ==- 224(,,)333AF AP PF =+= 设平面AEF 的法向量为,则(,,)n x y z =,即,取,00n AE n AF ⎧⋅=⎪⎨⋅=⎪⎩ 02240333y z x y z +=⎧⎪⎨++=⎪⎩(1,1,1)n =-- 又因为平面PAD 的一个法向量为,(1,0,0)p =所以cos ||||n p n p n p ⋅⋅==⋅ 由题知,二面角为锐角,所以二面角的余弦值为.F AE P --F AE P --(3)因为点G 在PB 上,设,PGPB λ=,,,000(,,)G x y z 000(,,2)PG x y z =- (2,1,2)PB =--由得,PG PB λ=000(,,2)(2,1,2)x y z λ-=--即,所以,000222x y z λλλ=⎧⎪=-⎨⎪=-⎩(2,,22)AG λλλ=--由(2)知,平面AEF 的法向量为,(1,1,1)n =--因为直线AG 在平面AEF 内,,得,2220AG n λλλ⋅=-++-= 23λ=综上,的值为.PGPB 2319.【正确答案】(1)2212y x +=(2)①证明见解析,;②302⎛⎫ ⎪⎝⎭,1629S ≤≤【详解】(1)由已知,c a=,a b c ==在方程中,令,则,故2222:1(0)y x E ab a b +=>>yc =-2b xa =±22b a =所以的方程为.1,b c a ===E 2212y x +=(2)设,当直线斜率存在时,设1122()A x y B x y ,,(,)AB :1AB l y kx =+由得:,故,22122y kx x y =+⎧⎨+=⎩22(2)210k x kx ++-=12122221,22k x x x x k k --+==++①由已知,所以直线的斜率为1(,2)H x BH 22212121BH y kx k x x x x --==--则直线的方程为:,即:BH 212112()kx y x x x x --=--22121211(1)2kx kx x y x x x x x --=+---注意到:由韦达定理有:21211212112212121(1)2222kx x x x kx x x x x kx x x x x x x x ---+---==---,12122x x kx x +=所以:1221212121122121212132()(1)232222x x x x x x kx x x x kx x x x x x x x x x +-------====----故直线的方程为:,所以直线过定点,BH 221132kx y x x x -=+-BH 302⎛⎫⎪⎝⎭,②当斜率存在且斜率,AB 0k ≠则AB ===同理以替代得:1k-k CD =,2242422242422224(1)4(21)4(21)41(21)(2)2522(21)212k k k k k S k k k k k k k k k +++++====++++++++++因为:,当且仅当时,即时,等号成立,22124k k ++≥221k k =1k =±,当轴时,,故.22164219212k k∴≤<+++//MN x 2S =1629S ≤≤。
河南省郑州市2023-2024学年高二上学期期中考试英语试卷姓名:__________ 班级:__________考号:__________项。
(共15小题;每小题2.5分,满分37.5分)阅读理解The Four Most Famous Bike Trails in the WorldFor vacation seekers who love to ride their bikes, these are the mostfamous cycling trails in the world.La Route Verte, CanadaRecently completed, this incredible route runs the length of QuebecProvince from east to west and features more than 2,485 miles of bicycle trailsthat have been carefully marked. The ever-changing terrain (地形) makes thisthe best route to cycle from the St. Lawrence River to the mountains of theLaurentides.The Karakoram Highway, China-PakistanEasily the highest international road in the world, the Karakoram is alsoone of the most breathtaking in terms of incredible views of mountainouscountryside. The snow-capped Karakoram Mountains are your constantcompanion as you travel this amazing countryside. There are many villagesalong the way as well, and some of the glaciers (冰川) reach the roadway.Mont Ventoux and Luberon, Provence, FranceWhile the hills of Luberon are a challenge for cyclists, the rewards (回报)of visiting ancient Roman ruins are certainly well worth the trip. The mixtureof sun, pine forests and blue fields of lavender that stretch on for miles is asplendid sight. The legendary Mont Ventoux, the sight of many great runsduring the Tour de France, is the highlight of a trip to this region.The Great Ocean Road, Victoria, AustraliaThe Great Ocean Road is one of the engineering wonders of this country.The 283-kilometer road is windy most of the time, but offers beautiful views ofthe ocean and amazing geographic features such as the famous TwelveApostles. If you don't have time for the full run, the 60-kilometer journeybetween Torquay and Bells Beach can be ridden in a single day.1.What is special about La Route VerteA.It's the newest cycling route among the four trails.B.It has incredible views of mountainous countryside.C.It makes you visit ancient Roman ruins during the trip.D.It's the highest international cycling road in the world.2.Which trail best suits people who enjoy ancient culture?A.La Route Verte.B.Mont Ventoux and Luberon.C.The Great Ocean Road.D.The Karakoram Highway.3.Where can the text be found?A.In a history book.B.In a geography textbook.C.In an art magazine.D.In a travel brochure.阅读理解Compared with physicists such as Marie Curie or Richard Feynman, WuChien-shiung is not a household name in China but she was one of the mostinfluential nuclear physicists of the 20th century, one that "completely"changed human's view of the universe.Wu's father, Wu Zhongyi, founded the first school for girls in Taicang,aiming to break the old idea that it was women's virtue to have no talents,which had the greatest influence on Wu Chien-shiung's life. Working in thescientific world dominated (支配) by men, she never gave up or lowered herstandards even if unequally treated. After graduating from the former NationalCentral University in Nanjing in 1926, Wu registered at the University ofCalifornia, Berkeley at the age of 24 to continue her study in physics.During her 44-year career as a nuclear physicist, Wu's pioneeringachievements won her nicknames such as "Chinese Madame Curie", "queen ofnuclear research" and "first lady of physics". She was the first woman to bepresident of American Physical Society, the first female winner of theComstock Prize in physics given by the US National Academy of Sciences, thefirst person to receive the Wolf Prize in physics, the first honorary doctorateawarded by Princeton University to a woman, and the first female professor ofphysics in the history of Columbia University.To get accurate results from experiments, she worked very hard day andnight at a laboratory and gained a reputation (名声) for accuracy. There was asaying among physicists: If the experiment was done by Wu, it must be correct.She was always very careful in experiments, spending a great deal of timecalibrating (校准) instruments. She didn't start collecting data until she fullyunderstood the instruments. Her experiments overturned many previousexperimental results and theories, said Samuel Chao Chung Ting, Americanphysicist and Nobel Prize winner.On Feb 16, 1997, Wu died in the US. According to her will, she wasburied in her hometown Taicang. She was a distinguished world citizen, andwas forever a Chinese.4.What influenced Wu Chien-shiung when she was young?A.Her life in America.B.Her interest in physics.C.Her family background.D.Marie Curie's achievements.5.What does the author intend to show in paragraph 3?A.Awards are usually gained through great efforts.B.Wu Chien-shiung was "a pioneer" in many ways.C.No scientists were better than Wu Chien-shiung.D.We cannot stress the importance of physics enough.6.Which of the following can best describe Wu Chien-shiung?A.Caring and responsible.B.Courageous and creative.C.Stubborn and sensitive.D.Cautious and hardworking.7.What is the text mainly about?A.An influential woman nuclear physicist.B.An important contribution to physics.C.The influence of modern education.D.Nuclear researches in scientific world.阅读理解I have learned a great many things from playing football. And it haschanged my entire attitude towards life.In my freshman year at high school, I was shy, had low self-confidenceand turned away from seemingly impossible challenges. On the first day offreshman practice, the team warmed up with a game of touchfootball.However, during the game, I didn't run as hard as I could, nor did I try toescape from my defender (防守者) and get open. The fact of the matter wasthat I really didn't want to be the one to make mistakes if I dropped the ball andthe play didn't succeed. I didn't want to take the responsibility of helping theteam because I was too afraid of making a mistake. That aspect of my characterled the first year of my high school life. I avoided asking questions in class,afraid they might be considered too stupid by my classmates.During my second-year season, my position at backup guard(替补后卫)led me to play in the games since another backup guard on my team wasseriously injured. From then on, I made mistakes sometimes and was criticised(批评) by my coaches indeed. However, those criticisms didn't make myteammates look down upon me, but they helped me a lot. At times I made greatplays, for which I was congratulated. Now, I feel like a changed person.Over the years, playing football has taught me what it takes to succeed.From months of tough practices, I have learned to work hard. From my coachesand teammates, I have learned to work well with others in a group. But mostimportantly, I have attained self-confidence. I realize that it is necessary to riskfailure in order to obtain success. Now, I welcome the challenge.8.What sort of boy was the author in his early years of high school?A.Determined.B.Energetic.C.Alarmed.D.Adaptable.9.What do you know about the teammates?A.They were seriously injured during the games.B.They took the author as the best backup guard.C.They are unwilling to perform with the author.D.They are completely warm-hearted and helpful.10.What was the most important thing the author learned from playing footballA.You can not judge a tree by its bark.B.Self-confidence is the key to success.C.The last drop makes the cup run over.D.There is a small choice in rotten apples.11.What's the author's purpose in writing the textA.To share his growth experience.B.To look back upon his school days.C.To express his love for football.D.To thank his coaches and teammates.阅读理解Chinese astronauts have successfully grown rice seedlings (幼苗) aboardthe Tiangong space station and this experiment may offer key insights into howastronauts can grow food to support long-term space missions, experts saidon Monday. This experiment is the first to produce the complete life cycle ofthe plant, which begins with a seed and ends with a mature () plantproducing new seeds.The breakthrough was conducted in the Wentian space laboratory, whichwas launched into orbit on July 28, 2022. Three astronauts were conducting theexperiment smoothly and testing the plants according to the plan."The rice seedlings are growing very wel," said Zheng Huiqiong, aresearcher of the task, adding that the experiment also contained seedlings of asmall flowering plant often used by scientists to study mutations (变异). "Theastronauts will keep monitoring the plants, and if it is successful, they willcollect the newly produced seeds and bring them back to Earth for furtherstudies," she noted.The flowering stage is crucial for plant reproductive development. "Wewant to investigate how micro-gravity can affect the plant flowering time andwhether it is possible to use the micro-gravity environment to control therelated process," she said.Since the 1980s, China has been taking seeds of rice and other crops tospace to help them mutate and produce higher yields once they were planted onEarth. But growing rice in orbit is a different challenge due to the toughconditions of space such as micro-gravity and lack of air.Rice has been a main food for astronauts since the early days of spaceexploration. Freeze-dried chicken and rice was the menu for the Apollo /mission, which carried the first humans to land on the moon in July 1969."But if we want to land on and explore Mars, bringing food from Earth isnot enough to provide for the astronauts' long journey and mission in space.We have to find a food source for long term space explorations, Zheng added. 12.What's the significance of Chinese recent space rice experiment?A.It enables human beings to move to another planet.B.It helps other countries to plant rice out of the globe.C.Human beings is likely to explore further outer space.D.It inspires more countries to join in space explorations.13.What does the underlined word "it" in paragraph 3 refer to?A.The mutation.B.The experiment.C.The transport.D.The exploration.14.Why have crop seeds been brought to space since the last century?A.To figure out how to create an earth-like environment.B.To develop new crop species with strong ability to adapt.C.To examine the impact of micro-gravity on crop-planting.D.To promote conventional crops and increase crop harvest.15.Where is the text most probably taken from?A.A science newspaper.B.A medical magazine.C.A history website.D.A fashion programme.二、第二部分阅读理解,第二节任务型阅读(共5小题;每小题2.5分,满分12.5分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。
蓝山二中2024年下期高二期中考试试卷语文一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成1~5题。
材料一:春秋战国时期,诸子竞秀,百家争鸣,儒、道、法、墨、名、兵、农、阴阳、纵横诸家,以卓越的智慧,奠定了中国传统优秀文化的根基。
汉武帝用董仲舒“罢黜百家,独尊儒术”的策略,其余各家或隐于山林,或潜入民间,或消于无形,以至逮于今日,传统优秀文化在一定程度上等同于传统儒家文化。
实现中华民族伟大复兴,包括全面实现中华传统优秀文化的复兴,就是要把诸子百家中优秀的、可以为今日所用的内容重新发掘出来,成为先进文化建设、民族精神凝聚、优秀人才培养的重要资源。
比如,墨子注重科学技术,墨子及其弟子在生产实践中发现了小孔成像、滑轮受力、光线直射、杠杆原理、天平原理、点线面体圆的概念等。
连发出“李约瑟之问”的英国科技史学家李约瑟也感叹“墨家的科学水平,超过了整个古希腊”。
法家首重法律制度,蕴含“依法治国”的思想精髓。
名家具有严谨的逻辑学思维。
道家对宇宙起源的思考和自然哲学成就,炼丹术之于化学,风水之于环境科学,堪舆术之于地理学,兵家之于军事科学,纵横家之于外交和政治学等;以及王朝治理的科学性和对现代治理的启示,如科举之于现代公务员选拔,丝绸之路之于现代国际贸易,晋商之于股份制和金融信用体系建设等,让今天的人,看到中国古人天才的超前创新,在古人身上看到自己的影子,变“我注六经”为“六经注我”,既符合现代人以自我为中心的认知特点,情感上也更加亲切,容易获得认同。
还有一个重要领域需要发掘复兴,那就是实学传统。
长期以来,中国传统文化被标签化为“无事袖手谈心性,临危一死报君王”,有道德,重气节,但无能力,轻事功。
这一形象的固化,如果不是有意为之,也是极大的误解。
很难想象,没有扎实的现实功用,中华文明如何能经历几千年风雨而长存。
鲁迅说:“我们从古以来,就有埋头苦干的人,有拼命硬干的人,有为民请命的人,有舍身求法的人……这就是中国的脊梁。
2023级普通高中学科素养水平监测试卷英语2024.11本试卷分选择题和非选择题两部分。
满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
在试卷上作答无效。
第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C 三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What is the main topic of the conversationA. A reusable bag.B. A change in daily habits.C. A potential danger to animals.2. When does the woman usually wake upA. At 6:00 a. m.B. At 7:00 a. m.C. At 8:00 a. m.3. Where will the kite festival take placeA. By the sea.B. At the park.C. On the square.4. What does the man ask the woman for advice onA. How to do schoolwork.B. How to be organized.C. How to set goals.5. In which country did the woman experience culture shockA. Spain.B. Japan.C. America.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
四川省2024-2025学年上学期期中调研测试高二数学试卷(答案在最后)试卷共4页,19小题,满分150分.考试用时120分钟.注意事项:1,考查范围:必修第二册第十章,选择性必修第一册第一章和第二章.2.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡指定位置上.3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.4.考生必须保持答题卡的整洁.考试结束后,请将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线2025π:cos4l x =的倾斜角为()A.π2 B.2025π4 C.π4D.0【答案】A 【解析】【分析】根据直线的方程可得出其倾斜角.【详解】因为2025πcos 4为常数,故直线2025π:cos 4l x =的倾斜角为π2.故选:A.2.直线3230x y +-=与320x y +=之间的距离为()A.5B.13C.9D.13【答案】D 【解析】【分析】根据两平行直线的距离公式计算即可求解.【详解】因为直线3230x y +-=和320x y +=平行,由两条平行直线间的距离公式可得13d ===.故选:D .3.圆221:4C x y +=与圆222:(2)(3)9C x y -+-=的公切线条数为()A.0B.1C.2D.3【答案】C 【解析】【分析】根据两圆的位置关系可判断两圆公切线的条数.【详解】圆221:4C x y +=,则圆心()10,0C ,半径12r =,圆222:(2)(3)9C x y -+-=,则圆心()22,3C ,半径23r=,则12CC ==15<,即211212r r C C r r -<<+,故圆1C 与圆2C 相交,其公切线条数为2.故选:C .4.过点()1,3P -作圆22(1)(1)2x y -++=的切线,则切线的斜率为()A.1-或7-B.1- C.2-或7- D.2-【答案】A 【解析】【分析】设出直线的方程,由点到直线距离得到方程,求出1k =-或7k =-.【详解】因为圆22(1)(1)2x y -++=的圆心为()1,1-,易知过点()1,3P -的切线l 斜率存在,设l 的方程为()31y k x -=+,即30kx y k -++=,则d ==,解得1k =-或7k =-.故选:A .5.若连续抛掷一枚质地均匀的骰子两次,则两次抛掷骰子的点数之积为奇数的概率为()A.12B.14C.15D.16【答案】B【解析】【分析】利用列举法写出满足题意的样本点,结合古典概型的概率公式计算即可求解.【详解】连续抛掷一枚质地均匀的骰子两次,基本事件总数为6636⨯=个.其中事件“两次抛掷骰子的点数之积为奇数”包含的样本点有:()()()()()()()()()1,1,3,3,5,5,1,3,1,5,3,1,3,5,5,1,5,3,共9个,故91364P ==.故选:B .6.在正方体1111ABCD A B C D -中,Q 为11B C 的中点,则平面ABQ 与平面11ACC A 夹角的余弦值为()A.63B.4C.15D.5【答案】D 【解析】【分析】设正方体的棱长为1,利用向量法求平面ABQ 与平面11ACC A 夹角的余弦值.【详解】1,,DA DC DD 两两垂直,故以D 为坐标原点,1,,DA DC DD 所在的直线分别为,,x y z 轴建立如图所示的空间直角坐标系,设1DA =,取1BB 的中点为P ,连接CP ,则()()()10,1,0,1,1,,1,1,0,0,0,02C P B D ⎛⎫ ⎪⎝⎭,1,1,1,2Q ⎛⎫ ⎪⎝⎭1,0,0,()11,0,1A ,则11,0,1,1,0,,0,22QB CP QB CP QB CP ⎛⎫⎛⎫=-=∴⋅=∴⊥ ⎪ ⎪⎝⎭⎝⎭,()10,1,0,1,0,,0,2AB CP CP AB CP AB⎛⎫==∴⋅=∴⊥ ⎪⎝⎭又因为QB CP ⊥,CP AB ⊥,AB BQ B = ,,QB AB ⊂平面ABQ ,故⊥CP 平面ABQ ,所以11,0,2CP ⎛⎫= ⎪⎝⎭ 为平面ABQ 的一个法向量,设平面11ACC A 的一个法向量为(),,n x y z =,则11001000x n AC x y y z n AA z =⎧⎧⋅=-+=⎧⎪⎪⇒⇒=⎨⎨⎨=⋅=⎩⎪⎪⎩=⎩,所以()1,1,0n =-- ()1,1,0n =--为平面11ACC A 的一个法向量,设平面ABQ 与平面11ACC A 的夹角为α,则P cos 5C nCP nα⋅=== ,故平面ABQ 与平面11ACC A夹角的余弦值为5.故选:D.7.如图,E 是棱长为1的正方体1111ABCD A B C D -内部(含表面)一动点,则EA EB ED ++的最大值为()A.B.C.D.【答案】C 【解析】【分析】建立空间直角坐标系,求出向量坐标,然后根据模的坐标求法求出最值即可.【详解】以A 为坐标原点,1,,AB AD AA 所在的直线分别为,,x y z 轴,建立如图所示的空间直角坐标系,则()()()0,0,0,1,0,0,0,1,0A B D ,设()(),,01,01,01E x y z x y z ≤≤≤≤≤≤,则()(),,,(1,,),,1,EA x y z EB x y z ED x y z =---=---=---,则()13,13,3EA EB ED x y z ++=---.故EA EB ED ++= 1x y z ===.故选:C .8.如图,在直三棱柱111ABC A B C -中,ABC V 为腰长为1的等腰直角三角形,且AB AC >,侧面11ACC A 为正方形,2,AB AE P =为平面1A BC 内一动点,则PA PE +的最小值是()A.62B.32C.D.265【答案】A 【解析】【分析】建立空间直角坐标系,设A 关于平面1A BC 的对称点为A ',利用对称点A 、A '到平面1A BC 距离相等,得出A 关于平面1A BC 的对称点为A ',利用对称点求出最短路径即可【详解】由题意,以C 为坐标原点,1,,CA CB CC 所在的直线分别为,,x y z 轴,建立如图所示的空间直角坐标系-C xyz ,则()()()()1111,0,1,0,1,0,0,0,0,1,0,0,,,022A B C A E ⎛⎫⎪⎝⎭,所以()()()110,1,0,1,0,1,0,0,1CB CA AA ===,设A 关于平面1A BC 的对称点为(),,,0A x y z z >',则()()11,,1,1,,A A x y z AA x y z =---'=-',设平面1A BC 的法向量()111,,n x y z =,则10,0,CB n CA n ⎧⋅=⎪⎨⋅=⎪⎩ 即1110,0,y x z =⎧⎨+=⎩令11x =,则110,1y z ==-,所以()1,0,1n =-为平面1A BC 的一个法向量,所以A 与A '到平面1A BC的距离112AA n A A n d n n ⋅⋅==='=,即1x z -+=①,又AA n '∥,所以1,x z y -=-⎧⎨=⎩②,所以由①②得211z -=,又由0z >可得0,0,1x yz ===,所以()0,0,1A ',所以2PA PE PA PE A E +=+≥==='',当且仅当,,A P E '三点共线时取等号,所以PA PE +的最小值为62.故选:A.二、选择题:本题共3小题,每小题6分,共18分在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在空间直角坐标系O xyz -中,下列叙述正确的是()A.点()1,1,0-与点()1,1,0关于x 轴对称B.点()3,1,6--与点()3,1,6-关于z 轴对称C.点()2,5,7与点()2,5,7-关于平面xOy 对称D.坐标轴两两确定的平面把空间分为12个部分【答案】AC 【解析】【分析】ABC 选项,根据空间直角坐标系内点的坐标特征得到AC 正确,B 错误;D 选项,坐标轴确定的平面把空间分为8个部分.【详解】A 选项,点()1,1,0-与点()1,1,0关于x 轴对称,A 正确;B 选项,点()3,1,6--关于z 轴的对称点是()3,1,6,B 错误;C 选项,点()2,5,7与点()2,5,7-关于平面xOy 对称,C 正确;D 选项,坐标轴两两确定的平面把空间分为8个部分,D 错误.故选:AC .10.已知直线()1:120l ax y a -+-=在x 轴上的截距大于0,直线2:240l x y +-=与y 轴交于点B ,则()A.0a < B.1l 恒过定点2,1C.点B 到直线1l 的距离可能为3 D.不存在a 使得12//l l 【答案】BD 【解析】【分析】运用截距概念求解即可判断A 、C ;运用消去参数判断B ;根据1l 恒过定点判断D 【详解】对于A ,把0y =代入()120ax y a -+-=,得210a x a -=>,所以0a <或12a >,A 错误;对于B ,将直线()120ax y a -+-=改写为()()210x a y -+-+=,所以2010x y -=⎧⎨-+=⎩,所以21x y =⎧⎨=⎩,所以1l 恒过定点()2,1C ,B 正确;对于C ,对于2:240l x y +-=,令0x =可得()0,2B ,易得当1BC l ⊥时,点B 到直线1l 的距离取得最大值=,C 错误;对于D ,因为直线1l 恒过的定点()2,1C 也在直线2l 上,即12,l l 至少有一个交点C ,D 正确.故选:BD .11.已知平面内一动点M 到坐标原点的距离为1,以M 为圆心、1为半径的动圆与圆22:(1)(2)5N x y -+-=交于,A B 两点,则()A.存在唯一的圆M ,使得,A B 两点重合B.1MN ⎤∈-⎦C.若ABN 存在,则其不可能为等边三角形D.tan ANB ∠的最大值为43【答案】BCD 【解析】【分析】由给定条件可得坐标原点与点,A B 之一重合,利用动圆M 与圆N 的位置关系判断A ;由圆上的点与定点距离最值判断B ;求出AB 最大值判断C ;由余弦定理求解判断D.【详解】依题意,坐标原点与点,A B 之一重合,不妨设坐标原点为A ,圆22:(1)(2)5N x y -+-=的圆心(1,2)N ,半径,对于A ,当动圆M 与圆N 内切或外切时,均有,A B 两点重合,A 错误;对于B ,点M 在以A 为圆心、1为半径的圆上运动,||AN =||1]MN ∈+,B 正确;对于C ,||BN =,要使ABN 为等边三角形,则||AB =,而2||||||AB MA MB ≤+=,当且仅当点,,A M B 共线时取等号,则ABN 不可能为等边三角形,C 正确;对于D ,要使tan ANB ∠最大,即ANB ∠最大,只需||AB 取最大值2,此时2223cos5ANB ∠=,44sin ,tan 53ANB ANB ∠=∠=,D 正确.故选:BCD三、填空题:本题共3小题,每小题5分,共15分.12.已知空间向量()()2,1,3,,21,3a b m n =-=+ 满足a b ⊥ ,则m n +=______.【答案】4【解析】【分析】根据空间向量的坐标表示和垂直向量的坐标表示计算即可求解.【详解】因为a b ⊥ ,故()()2,1,3,21,322190m n m n -⋅+=++-=,解得4m n+=.故答案为:413.已知圆P 过()()()1,1,7,3,5,7---三点,则圆P 的面积为______.【答案】25π【解析】【分析】设圆的一般方程,将3点的坐标代入方程,利用待定系数法求解圆的方程,结合圆的面积公式计算即可求解.【详解】设圆P 的方程为220x y Dx Ey F ++++=,代入()()()1,1,7,3,5,7---三点坐标可得110,499730,2549570,D E F D E F D E F +-++=⎧⎪++-+=⎨⎪++-+=⎩解得4,6,12,D E F =-⎧⎪=⎨⎪=-⎩所以圆P 的方程为2246120x y x y +-+-=,其标准方程为22(2)(3)25x y -++=,故其面积2π25πS r ==.故答案为:25π14.在正三棱锥P ABC -中,AB AP =⊥平面PBC ,点P 在底面ABC 内的投影为点,O M 是平面ABC 内以O 为圆心、1为半径的圆上一动点,则异面直线PM 与AB 所成角的余弦值最大为______.【答案】3【解析】【分析】过点O 作AB 的平行线交BC 于点E ,以O 为坐标原点,建立如下图所示的空间直角坐标系,设()[)cos ,sin ,0,0,2πM ααα∈,由异面直线所成角的向量公式结合三角函数的性质即可得出答案.【详解】正三棱锥P ABC -中,因为AP ⊥平面PBC ,又,PB PC ⊂平面PBC ,因此,PA PB PA PC ⊥⊥,故PB PC ⊥,故22sin60223PA PB PC AB AO AB =====︒=,则PO ==,延长CO 交AB 于点D ,过点O 作AB 的平行线交BC 于点E ,易知,,OD OE OP 两两垂直,以O 为坐标原点,建立如下图所示的空间直角坐标系,则()()(1,,,0,0,A B P ,设()[)cos ,sin ,0,0,2πM ααα∈,则(cos ,sin ,PM αα=,()0,AB =,设直线PM 与AB 所成的角为θ,则3cos 3PM AB PM ABθα⋅===≤,当π2α=或3π2时,取最大值3.故答案为:3.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知()()()2,2,2,6,4,2A B C ---三点,点P 在圆22:4E x y +=上运动.(1)若直线PA 与圆E 有唯一公共点,求PA ;(2)求222PA PB PC ++的最小值.【答案】(1)2(2)56【解析】【分析】(1)求出圆心和半径,根据题意得到直线PA 与圆E 相切,且唯一公共点为点P ,由勾股定理求出切线长;(2)设s ,且224x y +=,表达出2228012PA PB PCy ++=-,而22y -≤≤,故当2y =时,取得最小值56.【小问1详解】由题意知,圆E 的圆心为()0,0E ,半径2r =,故2AE ==>,由题意可得直线PA 与圆E 相切,且唯一公共点为点P ,在Rt APE 中,由勾股定理可得2PA ==.【小问2详解】设s ,且224x y +=,故222222222(2)(2)(2)(6)(4)(2)PA PB PC x y x y x y ++=++-+++-+-++()22312681268128012x y y y y =+-+=+-=-,而22y -≤≤,当2y =时,222PA PB PC ++取得最小值56.16.已知在ABC V 中,()()()0,0,2,0,1,3,,A B C D E ,分别在线段,AC AB 上,且//DE BC .(1)求AC 边上的高所在直线的斜截式方程;(2)若ADE V 的面积为ABC V 面积的14,求直线DE 的一般式方程.【答案】(1)1233y x =-+;(2)330x y +-=.【解析】【分析】(1)由AC 的斜率和垂直关系可得AC 边上的高所在直线的斜率,接着由点斜式即可求出所求直线方程,再转化成斜截式即可.(2)先由题意得12AD AE AC AB ==,即E 为AB 的中点,接着由中点坐标公式、直线BC 的斜率和平行关系即可由点斜式求出直线DE 的方程,再转化成一般式即可.【小问1详解】由题直线AC 的斜率为130310k -==-,所以AC 边上的高所在直线的斜率为1113k -=-,所以AC 边上的高所在直线的方程为()1023y x -=--,化为斜截式为1233y x =-+.【小问2详解】因为ADE V 的面积为ABC V 面积的1,,4D E 分别在线段,AC AB 上,且//DE BC ,所以1,2AD AE E AC AB ==为AB 的中点,即()1,0E ,又直线BC 的斜率为30312-=--,所以直线DE 的斜率也为3-,所以直线DE 的方程为()031y x -=--,即330x y +-=,所以直线DE 的一般式方程为330x y +-=.17.如图,在四面体OABC 中,3OA = ,且26,,3OA OB OA OC CD CB G ⋅=⋅== 为AD 的中点,点H 是线段OA 上的动点(含端点).(1)以{},,OA OB OC 为基底表示OG ;(2)求DH OH ⋅的最小值.【答案】(1)111236OG OA OB OC =++ (2)-1【解析】【分析】(1)利用空间向量基本定理得到2133AD OA OB OC =-++ ,111236OG OA AG OA OB OC =+=++ ;(2)设()01OH OA λλ=≤≤ ,得到2133DH OA OB OC λ=-- ,求出()29601DH OH λλλ⋅=-≤≤ ,当13λ=时,DH OH ⋅ 取得最小值1-.【小问1详解】由题意可得()2233AD AC CD AC CB OC OA OB OC =+=+=-+- 2133OA OB OC =-++ ,所以11212233OG OA AG OA AD OA OA OB OC ⎛⎫=+=+=+-++ ⎪⎝⎭111236OA OB OC =++ ;【小问2详解】设()01OH OA λλ=≤≤ ,因为()2133DH OH OD OA OA AD OA OA O B A OC O λλ⎛⎫=-=-+=--++ ⎪⎝⎭ 2133OA OB OC λ=-- ,所以2212()3333DH OH OA OB OC OA OA OA OB OA OC λλλλλ⎛⎫⋅=--⋅=-⋅-⋅ ⎪⎝⎭()29601λλλ=-≤≤,故当13λ=时,DH OH ⋅ 取得最小值,最小值为1196193⨯-⨯=-.18.已知在空间直角坐标系中,点()()()()0,0,0,1,0,1,0,1,1,2,1,1O P Q R --.(1)证明:,,OP OQ OR 不共面;(2)求点O 到平面PQR 的距离;(3)设S 为平面PQR 上的一个动点,且222PS = ,求,PO PS 的夹角θ取得最小值时,OS 的值.【答案】(1)证明见解析(2)11(3)62【解析】【分析】(1)用反正法证明即可;(2)求出OP 和平面PQR 的一个法向量,利用空间向量求解即可;(3)求出OP 和平面PQR 的一个法向量,利用空间向量的夹角公式求解余弦值,进而可知正弦值,利用向量的模长公式求解即可.【小问1详解】由题意假设存在,a b ∈R ,使得OR aOP bOQ =+成立,则()()()2,1,11,0,10,1,1a b =-+-,即()()2,1,1,,a b a b =--,可得2,1,1,a b a b =-⎧⎪=⎨⎪=-⎩此方程组无解,所以假设不成立,故,,OP OQ OR 不共面.【小问2详解】由题意可得()()()1,0,1,1,1,2,3,1,0OP PQ PR =-=-= ,设平面PQR 的法向量为 =s s ,所以20,30,x y z x y +-=⎧⎨+=⎩令1x =-,则3,1y z ==,故平面PQR 的一个法向量为()1,3,1n =-,故点O 到平面PQR 的距离21111OP n d n ⋅== .【小问3详解】设,OP n 的夹角为α,则cos OP n OP nαα⋅==== 所以min π2θα=-,所以OS OP PS =+=2=.19.现定义:若圆A 上一动点M ,圆A 外一定点N ,满足MN 的最大值为其最小值的两倍,则称N 为圆A 的“上进点”.若点G 同时是圆A 和圆B 的“上进点”,则称G 为圆“A B ⊗”的“牵连点”.已知圆221:(1)(1)3A x y +++=.(1)若点C 为圆A 的“上进点”,求点C 的轨迹方程并说明轨迹的形状;(2)已知圆22:(2)(2)1B x y -+-=,且,P Q 均为圆“A B ⊗”的“牵连点”.(ⅰ)求直线PQ 的方程;(ⅱ)若圆H 是以线段PQ 为直径的圆,直线1:3l y kx =+与H 交于,I J 两点,探究当k 不断变化时,在y 轴上是否存在一点W ,使得0IW JW k k +=(IW k 和JW k 分别为直线IW 和JW 的斜率)恒成立?若存在,求出点W 的坐标;若不存在,请说明理由.【答案】(1)轨迹方程为22(1)(1)3x y +++=,点C 的轨迹是以()1,1A --为半径的圆.(2)(ⅰ)0x y +=;(ⅱ)存在,()0,3W 【解析】【分析】(1)由“上进点”的定义知C 是圆A 的“上进点”,则()2CA r CA r +=-,(其中r 是圆A 的半径),由此得点C 的轨迹.(2)(ⅰ)由“牵连点”的定义知,若,P Q 均为圆“A B ⊗”的“牵连点”,则,P Q 均同时为圆A 与圆B 的“上进点”,所以,P Q 应为圆A 、圆B 的“上进点”所成的两轨迹(圆)的交点,由此可求直线PQ 的方程;(ⅱ)先求出圆H 的方程,设()()112212,,,,0I x y J x y x x ≠,假设y 轴上存在点()0,W t ,使得0IW JW k k +=.则1212t 0y t y x x --+=,联立221,31,y kx x y ⎧=+⎪⎨⎪+=⎩结合韦达定理可求解.【小问1详解】因为点C 为圆A的“上进点”,所以233CA CA ⎛⎫+=- ⎪ ⎪⎝⎭,即CA =,所以C 的轨迹方程为22(1)(1)3x y +++=,所以点C 的轨迹是以()1,1A --【小问2详解】(ⅰ)∵P 为圆“A B ⊗”的“牵连点”,∴P 同时为圆A 与圆B 的“上进点”,由P 为圆B 的“上进点”,得()121PB PB +=-,所以3PB =,即点P 在圆22(2)(2)9x y -+-=上,由P 为圆A 的“上进点”,得点P 在圆22(1)(1)3x y +++=上;∴点P 是圆22(1)(1)3x y +++=和22(2)(2)9x y -+-=的交点.因为,P Q 均为圆“A B ⊗”的“牵连点”,所以直线PQ 即为圆22(1)(1)3x y +++=和22(2)(2)9x y -+-=的公共弦所在直线,两圆方程相减可得0x y +=,故直线PQ 的方程为0x y +=.(ⅱ)设22(1)(1)3x y +++=的圆心为()1,1S --22(2)(2)9x y -+-=的圆心为()2,2T ,半径为3.直线ST 的方程为y x =,与y 0x +=联立得PQ 的中点坐标为()0,0,点S 到直线0x y +=的距离为=,则12PQ ==,所以圆H 的方程为221x y +=.假设y 轴上存在点()0,W t 满足题意,设()()112212,,,,0I x y J x y x x ≠.则0IW JW k k +=,即1212t 0y t y x x --+=,整理得()()21120x y t x y t -+-=.将11223,113y kx y kx =+=+,代入上式可得211211033x kx t x kx t ⎛⎫⎛⎫+-++-= ⎪ ⎪⎝⎭⎝⎭,整理得()12121203kx x t x x ⎛⎫+-+=⎪⎝⎭①,联立221,31,y kx x y ⎧=+⎪⎨⎪+=⎩可得()222810,Δ039k x kx ++-=>,所以1212222839,11k x x x x k k -+=-=++,代入(1)并整理得2203k kt -+=,此式对任意的k 都成立,所以3t =.故y 轴上存在点()0,3W ,使得0IW JW k k +=恒成立.。
北京交大附中2024—2025学年第一学期期中练习高二语文2024.11本试卷共8页,共120分。
考试时长:120分钟一、本大题共3小题,共9分。
阅读下面文章,完成各题。
中国文化的基本精神在具体阐述中国文化的基本精神之前,需要对“文化基本精神”一词的含义做一点说明。
何谓“精神”?就字源来讲,“精”是细微之义,“神”是能动的作用之义。
文化的基本精神是指文化发展过程中精微的内在动力,也就是指导民族文化不断前进的基本思想。
中国文化丰富多彩,中国思想博大精深,因而中国文化的基本思想也不是单纯的,而是一个包括诸多要素的统一体系。
这个体系的要素主要有四点:(1)刚健有为,(2)和与中,(3)崇德利用①,(4)天人协调。
其中“天人协调”思想主要解决人与自然的关系;【甲】思想主要解决人自身的关系,即精神生活与物质生活的关系;【乙】的思想主要解决人与人的关系,包括民族关系,君臣、父子、夫妇、兄弟、朋友等人伦关系;而“刚健有为”思想则是处理各种关系的人生总原则。
四者以“刚健有为”思想为纲,形成中国文化基本思想的体系。
“刚健有为”的思想源于孔子,到战国时期的《周易大传》已见成熟。
中国文化的基本思想是一个系统,其纲领“刚健有为”思想也自成系统。
粗略地看,《周易大传》提出来的“刚健有为”思想包括“自强不息”和“厚德载物”两个方面。
《象传》说:“天行健,君子以自强不息。
”天体运行,永无已时,故称为“健”。
“健”含有主动性、能动性,以及刚强不屈之义。
君子法天,故应“自强不息”。
“自强不息”也就是努力向上,绝不停止。
此外,刚健还有“独立不惧”“立不易方”之义,也就是孟子所说的“富贵不能淫,贫贱不能移,威武不能屈”的独立人格以及老子“自胜者强”之义。
《象传》又说:“地势坤,君子以厚德载物。
”“坤”即顺,“地势”是顺,“载物”就是包容许多物类。
君子应效法大地的胸怀,包容各个方面的人,容纳不同的意见,使他人和万物都得以各遂其生。
从上述两句话的关系来看,自强不息是自立之道,厚德载物是立人之道;自立是立人的前提,立人是自立的引申。
2015-2016学年高二上学期期中考试英语本试卷分第I卷(选择题)和第II卷(非选择题)两部分,考试结束后,将答题卡交回。
注意事项:1. 答第I卷前,考生务必将自己的姓名、考生号填写在答题卡上。
2. 选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在本试卷上,否则无效。
第I卷第一部分听力(共两节, 满分30分)第二部分阅读理解 (共两节,满分40分)第一节 (共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的四个选项(A、B、C、和D)中,选出最佳选项,并在答题卡上将该项涂黑。
AJohnny Smith was a good math student at a high school. He loved his computer. He came home early every day, then he worked with it till midnight. But Johnny was not a good English student, not good at all. He got an F in his English class. One day after school Johnny joined his computer to the computer in his high school office. The school office computer had the grades of all the students: the math grades, the science grades, the grades in arts and music, and the grades in English. He found his English grade. An F! Johnny changed his English grade from an F to A.Johnny' parents looked at his report card. They were very happy."An A in English!" said Johnny's Dad. "You're a very clever boy, Johnny."Johnny is a hacker. Hackers know how to take information from other computers and put new information in using a modem(调制解调器), they join their computers to other computers secretly. School headmasters and teachers are worried about hackers. So are the police, for some people even take money from bank computer account and put it into their own ones. And they never have to leave home to do it! They are called hackers.21. Johnny changed his English grade with the computer in _______.A. the classroomB. his own houseC. a bank near his houseD. the school office22. When Johnny's parents saw the report, they were happy because _______.A. Johnny was good at mathB. Johnny could join one computer to anotherC. they thought Johnny was not poor in English any longerD. Johnny loved computers23. Who are worried about hackers in the story?A. Johnny's parents.B. School headmasters, teachers and the police.C. The police.D. School headmasters and teachers.24. What should the hackers know well, do you think, after you read this story?A. Information.B. Back computer accounts.C. Grades.D. Computers.BMr. Harris used to work in Dover, but then he changed his work, and he and his wife moved to another town. They did not have many friends there at first, but they soon met a lot of interesting people, and after a few weeks, they often went to dinner o r to parties at other people’s houses.Then Mrs. Harris said to her husband, “We’ve been to a lot of other people’s houses, and now we must invite them to our house, right?”“Yes, certainly,” answered her husband, “A big party will be the easiest thing, won’t it? Then we can start to invite people to dinner in small numbers next month.”So Mrs. Harris said, “Yes, I’ll invite all our friends here to a big party on 5th December.”“How many people will you invite?” Mr. Harris asked, “Don’t invite too many.”Mr s. Harris was beginning to write the invitations when her husband saw that she was writing, “Party: 6:30 to 8:30 p.m.”“That isn’t very nice, is it?” he said. “You’re telling our guests that they must go at 8:30. Maybe it is impolite.” So Mrs. Harris just wrote “Party: 6:30 p.m.”A lot of guests came, and they all had a good time, so they did not go home at 8:30. In fact they were still there at mid-night when the door bell rang and a policeman arrived. He said, “You must stop making a noise, because someone has complained(抱怨).”Mr. Harris said he did not want to quarrel with the policeman, so everyone went home. They were sorry to have to go.When Mr. and Mrs. Harris were alone again, she said to him. “That was a surprise, wasn’t it? Who complained about the noise?”“I did,” Mr. Harris answered in a tired voice.25. What made Mr. and Mrs. Harris hold a party at their house?A. It was easy to hold a big party at home.B. They liked making friends with others.C. They had gone to other people’s parties many times.D. They could ask people to dinner in small numbers.26. When did the party end that evening?A. About twelve o’clock.B. When the policeman talked with Mr. Harris on the phone.C. At about 8:30.D. When someone telephoned the police station.27. Who telephoned the policeman?A. One of the guests.B. Mr. Harris.C. One of the neighbors.D. Mrs. Harris.28. It can be inferred from the passage that ______.A. Mr. Harris was unfriendly to the guestsB. Mrs. Harris was very angry with his husbandC. Mr. Harris didn’t want his friends to stay late at the partyD. The guests were very tired at the partyCIn the past, many disabled Chinese people led very restricted (受限制的) lives. They had little chance to find work or support themselves. But their situation has improved dramatically over recent decades.In the past five years, the government has been stepping up efforts to help employ disabled people. Huge investments have been made in training, and many disabled people have found jobs and become financially independent.When Wu Zihe was growing up, she was like a prisoner in her home. Having a job was something she could only dream about. But now she is famous fo r her art. Wu is working on a landscape. She said, “I can earn 30 or 40 yuan for paintings like this, if they are sold in groups. If I sell them separately, I can get about 100 yuan. It only takes me one day to finish one painting, so I can earn 1,000 to 2,000 yuan a month.”Wu Zihe practices knife-drawing, which originated in her hometown Dunhua. If one has the eyes, the brain and hands, it takes about a year to learn the basic techniques.Dunhua government’s official Zhang Chunhua said, “We think it suits disabled people very well. So thegovernment spent 10 million yuan to set up this knife-painting training center for them.”Training in the center is free. Even the materials are provided by the government. Since last year, the center has trained over 200 disabled persons like Wu Zihe. They usually earn 500 to 1,000 yuan per month. Sometimes they make as much as 5,000 yuan. That’s much higher than average salaries in the area.This year, the city has set up a center to sell these works. Art fans from more than ten countries and regions have bought paintings.29. How was life for the disabled people in the past?A. With the help of the government, they led a comfortable life.B. According to the law, they led very restricted lives.C. They had to stay at home and had little chance to find jobs.D. They had to learn to paint to earn a living.30. From the passage we can learn that ________.A. the disabled people’s living situation has improved greatly in recent yearsB. all the disabled have found jobs and become financially independent these yearsC. the disabled had to earn a living by workingD. more and more disabled people will learn to paint31. From the last paragraph we can conclude that ____.A. Dunhua has set up a center to sell knife-drawing worksB. people who like knife-drawing art have bought the disabled people’s paintingsC. only the disabled people’s paintings could be sold to foreignersD. perhaps some of Wu Zihe’s paintings could be brought abroad32. What would be the best title of the passage?A. A kind of folk art in China.B. Knife-drawing was first developed in Dunhua.C. A knife-painting training center in Dunhua.D. China helps the disabled find jobs.DPerhaps you have heard a lot about the Internet, but what is it, do you know? The Internet is a network. It uses the telephone to join millions of computers together around the world.Maybe that doesn’t sound very interesting. But when you’ve joined to the Internet, there are lots and lots ofthings you can do. You can do with all kinds of information on the World Wide Web (WWW). You can use QQ to chat with your friends, and they will make responses in a few seconds. You can send E-mails to your friends, and they can get them in a few seconds. You can also go shopping by the Internet without going out.There are many different kinds of computers now. They all can be joined to the Internet. Most of them are small machines sitting on people’s desks at home, but there are still many others in schools, offices or l arge companies. These computers are owned by people and companies, but no one really owns the Internet itself.There are lots of places for you to go into the Internet. For example, your school may have the Internet. You can use it during lessons or free time. Libraries often have computers joined to the Internet. You are welcome to use it at your spare time.Thanks to the Internet, the world is becoming smaller and smaller. It is possible for you to work at home with a computer in front, getting and sending the information you need. It is also possible for you to discuss some projects or assign the work on the Internet instead of at a meeting. In addition, you can buy or sell whatever you want by the Internet. But do you know 98% of the information on the Internet is in English? So what will English be like tomorrow?33. What’s the main idea of the second paragraph?A. Doing with information on the Internet.B. Using the Internet to communicate with friends.C. Things we can do by the Internet.D. Going shopping by the Internet.34. Which may be the most possible place for people to work in the future?A. In the office.B. At home.C. At school.D. In the company.35. What does the writer try to tell us with the last two sentences?A. English is important in using the Internet.B. The Internet is more and more popular.C. Most of the information is in English.D. Every computer must have the Internet.第二节 (共5小题; 每小题2分, 满分10 分)根据短文内容, 从短文后的选项中选出能填入空白处的最佳选项。