代谢调节的名词解释
- 格式:docx
- 大小:37.28 KB
- 文档页数:2
代谢控制发酵名词解释代谢控制是指通过调控细胞内多个代谢途径的活性,以达到对生物体生理状态的调节。
在发酵过程中,代谢控制是实现产物合成和细胞能量供应的关键。
下面我将针对代谢控制和发酵的相关名词进行解释。
1. 代谢(Metabolism):代谢是指生物体内发生的一系列物质转化过程,涉及能量的产生与消耗以及有机物的合成与降解等。
代谢包括两个相互依赖的过程,即合成(Anabolism)和降解(Catabolism)。
2. 代谢途径(Metabolic pathways):代谢途径是由一系列相互连接的酶催化反应组成的网络。
它们能够协同合作,将底物转化为产物,并产生能量或合成特定产物。
3. 代谢调节(Metabolic regulation):代谢调节是通过对代谢途径中关键酶的活性进行调控,以适应环境条件和维持生理平衡的过程。
代谢调节能够使细胞对外部信号做出响应,从而合理分配代谢物,调节能量产生和物质合成。
4. 酶(Enzyme):酶是催化生物体内化学反应的蛋白质。
在发酵过程中,酶能够加速底物转化的速率,从而促进产物的合成。
5. 代谢产物(Metabolites):代谢产物是在代谢过程中生成的化学物质。
在发酵中,代谢产物可以是所需的产品(如酒精、酸类),也可以是副产物(如乳酸、CO2等)。
6. 基因调控(Gene regulation):基因调控是通过对基因表达的调控,实现细胞代谢活动的调节。
在发酵中,通过操纵产物代谢途径上的关键基因,可以调节特定发酵产物的产生。
7. 底物浓度(Substrate concentration):底物浓度是指代谢途径中反应底物的浓度。
底物浓度的增加或减少会影响酶催化反应的速率,进而影响代谢途径的活性和产物的合成。
8. 产物抑制(Product inhibition):产物抑制是指在代谢过程中,产物的积累对酶的活性产生抑制作用。
产物抑制是一种重要的负反馈调控机制,可以通过抑制产物合成途径上的酶活性,调节代谢活动。
第十三章代谢调节一、填空题:1.生物体内的代谢调节在三种不同的水平上进行,即、和。
2.代谢途径的终产物浓度可以控制自身形成的速度,这种现象被称为。
3.酶对细胞代谢的调节是最基本的代谢调节,主要有二种方式:和。
构通糖、脂代谢的关键化合物是。
4.不同代谢途径可以通过交叉点代谢中间物进行转化,在糖、脂、蛋白质及核酸的相互转化过程中三个最关键的代谢中间物是、和。
5.1961年,法国生物学家Monod和Jacob提出了关于原核生物基因结构及表达调控的学说。
6.正调控和负调控是基因表达的两种最基本的调节形式,其中原核细胞常用调控,而真核细胞常用调控模式。
7.乳糖操纵子的天然诱导物是,实验室里常用作为乳糖操纵子的安慰诱导物诱导β-半乳糖苷酶的产生。
8.许多代谢途径的第一个酶是限速酶,终产物多是它的,对它进行,底物多为其。
9.原核细胞酶的合成速率主要在水平进行调节。
10.乳糖操纵子的诱导物是,色氨酸操纵子的辅阻遏物是。
二、选择题(只有一个最佳答案):1.下列与能量代谢有关的过程除哪个外都发生在线粒体中?()A、糖酵解B、三羧酸循环C、脂肪酸的β-氧化D、氧化磷酸化2.IPTG可以诱导乳糖操纵子(lacOperon)的表达,这是因为:()A、IPTG与乳糖操作子(lacoperator)结合,诱导转录B、IPTG与LACI基因产物结合,并抑制其活性C、抑制β-半乳糖苷酶的活性D、促进Lac阻遏物的活性E、IPTG与LACI基因产物结合,并激活其活性3.在什么情况下,乳糖操纵子的转录活性最高?()A、高乳糖,低葡萄糖B、高乳糖,高葡萄糖C、低乳糖,低葡萄糖D、低乳糖,高葡萄糖4.真核细胞参与基因表达调节的调控区比原核细胞复杂是因为()A、真核细胞的细胞核具有双层膜B、原核细胞的基因总是以操纵子的形式存在C、原核细胞调节基因表达主要是在翻译水平D、真核细胞需要控制细胞特异性的基因表达E、真核细胞基因组含有太多的重复序列5.调节物质代谢体内最基础的层次是()A、细胞水平B、激素水平C、神经调节D、整体水平E、器官水平6.磷酸果糖激酶是什么代谢途径中的别构调节酶()A、三羧酸循环B、糖异生C、葡萄糖分解D、糖原合成E、糖原分解7.三羧酸循环中的别构调节酶是()A、柠檬酸合成酶B、α-酮戊二酸脱氢酶C、琥珀酸脱氢酶D、延胡索酸酶E、苹果酸脱氢酶8.催化糖酵解与磷酸戊糖途径的酶主要分布在细胞中什么部位()A、核B、胞质C、线粒体D、微粒体E、质膜9.催化三羧酸循环与脂肪酸β-氧化的酶分布在细胞内的什么部位()A、胞质B、胞膜C、胞核D、内质网E、线粒体10.氨基酸分解代谢调节的别构酶是()A、转氨酶B、脱羧酶C、转甲基酶D、己糖激酶E、谷氨酸脱氨酶11.糖异生限速酶的别构调节激活剂是()A、A TPB、ADPC、AMPD、dA TPE、cAMP 12.各种分解途径中,放能最多的途径是:()A、糖酵解B、三羧酸循环C、 -氧化D、氧化脱氨基13.操纵子调节系统属于哪一种水平的调节?()A、复制水平的调节B、转录水平的调节C、转录后加工的调节D、翻译水平的调节14.下列关于操纵基因的论述哪个是正确的?()A、能专一性地与阻遏蛋白结合B、是RNA聚合酶识别和结合的部位C、是诱导物和辅阻遏物的结合部位D、能于结构基因一起转录但未被翻译15.以下有关阻遏蛋白的论述哪个是正确的?()A、阻遏蛋白是调节基因表达的产物B、阻遏蛋白妨碍RNA聚合酶与启动子结合C、阻遏蛋白RNA聚合酶结合而抑制转录D、阻遏蛋白与启动子结合而阻碍转录的启动16.糖酵解中,下列哪一个催化的反应不是限速反应?()A、丙酮酸激酶B、磷酸果糖激酶C、己糖激酶D、磷酸丙糖异构酶17.磷酸化酶通过接受或脱去磷酸基而调节活性,因此它属于:()A、别(变)构调节酶B、共价调节酶C、诱导酶D、同工酶18.下列与能量代谢有关的途径不在线粒体内进行的是:()A、三羧酸循环B、脂肪酸β氧化C、氧化磷酸化D、糖酵解作用19.关于共价修饰调节酶,下列哪种说法是错误的?()A、这类酶一般存在活性和无活性两种形式,B、酶的这两种形式通过酶促的共价修饰相互转变C、伴有级联放大作用D、是高等生物独有的代谢调节方式20.阻遏蛋白结合的位点是:()A、调节基因B、启动因子C、操纵基因D、结构基因21.下面哪一项代谢是在细胞质内进行的:()A、脂肪酸的β-氧化B、氧化磷酸化C、脂肪酸的合成D、TCA22.在乳糖操纵子模型中,操纵基因专门控制是否转录与翻译。
能量代谢名词解释能量代谢是细胞在不同的环境条件下将代谢废物及生命活动所需要的能量转化为热能、动能和静息电位的过程,在此过程中,还伴随着氧化磷酸化和光合磷酸化。
能量代谢的调节:许多神经细胞内含有乙酰胆碱等多种神经递质,当细胞膜受到刺激后,就会发出神经冲动,沿着轴浆运输方向传递到细胞的不同部位,将信息传递给分布在胞体内的其他神经细胞。
每一个神经细胞都可以通过一系列的机制对这些神经冲动加以反应,最终传送给其它神经细胞或整个神经系统,从而完成一次神经信息传递的过程。
在神经冲动传递过程中,神经递质必须进入突触间隙才能发挥作用。
1、神经细胞释放递质进入突触间隙。
(外界的各种刺激通过感受器传入)2、突触后膜上存在许多突触小泡,递质与突触后膜上的受体结合后进入小泡内,再与突触前膜上的特异性识别部位相互作用,使突触后膜兴奋,突触小泡膜释放递质进入突触间隙。
3、与突触前膜上相应的受体结合,引起突触后膜的兴奋或抑制。
4、抑制性突触后电位可与突触前膜上相应的受体结合,使突触后膜去极化。
这种电位很快消失,导致突触后膜的超极化。
这时如果再给予适宜的刺激,则又可以引起突触后电位的产生。
这是因为突触小泡膜上带正电的水合氯离子浓度大于其周围钠离子浓度,这样当递质穿过突触小泡膜进入突触间隙时,就与处于膜两侧的钠离子竞争而降低了膜的表面电位,当达到阈值时,突触小泡膜去极化,最终引起突触后膜的兴奋。
由此可见,神经递质参与了神经系统能量代谢的调节。
目前,神经递质的作用机制已经研究得较清楚,主要有以下几种作用方式: 1、激活多种酶类,促进一系列代谢过程。
(特异性蛋白酶A、 B等) 2、参与信号转导。
(细胞骨架蛋白、核孔复合体等) 3、影响神经元的功能状态。
( 5-羟色胺、去甲肾上腺素、乙酰胆碱等)4、直接作用于突触后膜,改变膜电位。
( Ach、 GABA、 Ach2等) 5、参与某些疾病的治疗。
(抗利尿激素、血管紧张素Ⅱ、血栓素等) 6、其它作用,比如影响某些激素的分泌。
代谢调节(一)名词解释1.诱导酶(Inducible enzyme)2.标兵酶(Pacemaker enzyme)3.操纵子(Operon)4.衰减子(Attenuator)5.阻遏物(Repressor)6.辅阻遏物(Corepressor)7.降解物基因活化蛋白(Catabolic gene activator protein)8.腺苷酸环化酶(Adenylate cyclase)9.共价修饰(Covalent modification)10.级联系统(Cascade system)11.反馈抑制(Feedback inhibition)12.交叉调节(Cross regulation)13.前馈激活(Feedforward activation)14.钙调蛋白(Calmodulin)(二)英文缩写符号1. CAP(Catabolic gene activator protein):2. PKA(Protein kinase):3. CaM(Calmkdulin):4. ORF(Open reading frame):(三)填空题1. 哺乳动物的代谢调节可以在、、和四个水平上进行。
2. 酶水平的调节包括、和。
其中最灵敏的调节方式是。
3. 酶合成的调节分别在、和三个方面进行。
4. 合成诱导酶的调节基因产物是,它通过与结合起调节作用。
5. 在分解代谢阻遏中调节基因的产物是,它能与结合而被活化,帮助与启动子结合,促进转录进行。
6. 色氨酸是一种,能激活,抑制转录过程。
7. 乳糖操纵子的结构基因包括、和。
8. 在代谢网络中最关键的三个中间代谢物是、和。
9. 酶活性的调节包括、、、、和。
10.共价调节酶是由对酶分子进行,使其构象在和之间相互转变。
11.真核细胞中酶的共价修饰形式主要是,原核细胞中酶共价修饰形式主要是。
(四)选择题1. 利用操纵子控制酶的合成属于哪一种水平的调节:A.翻译后加工 B.翻译水平 C.转录后加工 D.转录水平2. 色氨酸操纵子调节基因产物是:A.活性阻遏蛋白 B.失活阻遏蛋白C.cAMP受体蛋白 D.无基因产物3. 下述关于启动子的论述错误的是:A.能专一地与阻遏蛋白结合 B.是RNA聚合酶识别部位C.没有基因产物 D.是RNA聚合酶结合部位4. 在酶合成调节中阻遏蛋白作用于:A.结构基因 B.调节基因 C.操纵基因 D.RNA聚合酶5. 酶合成的调节不包括下面哪一项:A.转录过程 B.RNA加工过程C.mRNA翻译过程 D.酶的激活作用6. 关于共价调节酶下面哪个说法是错误的:A.都以活性和无活性两种形式存在 B.常受到激素调节C.能进行可逆的共价修饰 D.是高等生物特有的调节方式7. 被称作第二信使的分子是:A.cDNA B.ACP C.cAMP D.AMP8.反馈调节作用中下列哪一个说法是错误的:A.有反馈调节的酶都是变构酶 B.酶与效应物的结合是可逆的C.反馈作用都是使反速度变慢 D.酶分子的构象与效应物浓度有关(五)是非判断题()1.分解代谢和合成代谢是同一反应的逆转,所以它们的代谢反应是可逆的。
代谢调节知识要点代谢调节是生物在长期进化过程中,为适应外界条件而形成的一种复杂的生理机能。
通过调节作用细胞内的各种物质及能量代谢得到协调和统一,使生物体能更好地利用环境条件来完成复杂的生命活动。
根据生物的进化程度不同,代谢调节作用可在不同水平上进行:低等的单细胞生物是通过细胞内酶的调节而起作用的;多细胞生物则有更复杂的激素调节和神经调节。
因为生物体内的各种代谢反应都是通过酶的催化作用完成的,所以,细胞内酶的调节是最基本的调节方式。
酶的调节是从酶的区域化、酶的数量和酶的活性三个方面对代谢进行调节的。
细胞是一个高效而复杂的代谢机器,每时每刻都在进行着物质代谢和能量的转化。
细胞内的四大类物质糖类、脂类、蛋白质和核酸,在功能上虽各不相同,但在代谢途径上却有明显的交叉和联系,它们共同构成了生命存在的物质基础。
代谢的复杂性要求细胞有数量庞大、功能各异和分工明确的酶系统,它们往往分布在细胞的不同区域。
例如参与糖酵解、磷酸戊糖途径和脂肪酸合成的酶主要存在胞浆中;参与三羧酸循环、脂肪酸β-氧化和氧化磷酸化的酶主要存在于线粒体中;与核酸生物合成有关的酶大多在细胞核中;与蛋白质生物合成有关的酶主要在颗粒型内质网膜上。
细胞内酶的区域化为酶水平的调节创造了有利条件。
生物体内酶数量的变化可以通过酶合成速度和酶降解速度进行调节。
酶合成主要来自转录和翻译过程,因此,可以分别在转录水平、转录后加工与运输和翻译水平上进行调节。
在转录水平上,调节基因感受外界刺激所产生的诱导物和辅阻遏物可以调节基因的开闭,这是一种负调控作用。
而分解代谢阻遏作用通过调节基因产生的降解物基因活化蛋白(CAP)促进转录进行,是一种正调控作用,它们都可以用操纵子模型进行解释。
操纵子是在转录水平上控制基因表达的协调单位,由启动子(P)、操纵基因(O)和在功能上相关的几个结构基因组成;转录后的调节包括,真核生物mRNA转录后的加工,转录产物的运输和在细胞中的定位等;翻译水平上的调节包括,mRNA本身核苷酸组成和排列(如SD序列),反义RNA 的调节,mRNA的稳定性等方面。
细胞的新陈代谢名词解释
1 细胞的新陈代谢
细胞的新陈代谢是指活细胞中所有的代谢反应汇集在一起的过程,其中包括能量转化及原料代谢等。
细胞新陈代谢可以保证细胞及其所
有机制的正常运转,是为细胞存活及发展所不可或缺的过程。
2 能量代谢
能量代谢是细胞新陈代谢的一个子系统,介绍的主要是细胞从外
界所获得的营养物质如糖和脂肪,如何分解成葡萄糖,以便于进行细
胞内的系统代谢。
通过这些代谢反应,葡萄糖可以通过呼吸链最终转
化为能量,既可以提供细胞内所需的能量,也可以供给其他细胞性反
应所需的能量。
3 原料代谢
原料代谢是指细胞从外界获得的一些物质如氨基酸,脂肪和糖,
经过代谢反应后会转化成细胞内可被使用的物质如蛋白质,氨基酸等。
这些物质不仅可以满足细胞的生理需求,也可以提供细胞内新陈代谢
的关键原料。
4 调节代谢
调节代谢是细胞新陈代谢的一个重要的部分,也是控制细胞新陈
代谢的机制之一。
它主要起调节作用,即保证细胞新陈代谢的稳定性,通过多种方式来确保新陈代谢的正常运行,避免新陈代谢的异常。
细胞的新陈代谢是每个活细胞都必须进行的过程,它涉及到能量代谢、原料代谢及调节代谢等方面,不仅能保证细胞及其内部环境的动态平衡,也具有重要的生物学意义。
生理学【内分泌】重点名词解释汇总(一)(一)引言概述:生理学是研究生物体各种生命活动的一门科学,而内分泌学则是研究机体内分泌系统的结构、功能以及内分泌激素的合成、分泌和调节等方面的学科。
本文将对生理学中与内分泌有关的重点名词进行解释和汇总,以帮助读者深入了解内分泌的相关知识。
正文:一、内分泌系统的组成1. 内分泌腺体:指能合成、分泌和释放内分泌激素的细胞团和器官,如下丘脑垂体系统、甲状腺、胰岛等。
2. 内分泌激素:由内分泌腺体分泌的化学物质,可通过血液循环或神经系统传递到作用部位,调节或控制机体的生理功能。
二、内分泌激素的合成和分泌1. 前体激素:指在体内转化为活性激素的一种未成熟的激素,如促黄体生成素、胰高血糖素等。
2. 编码基因:指编码内分泌激素的基因,通过转录和翻译过程合成出内分泌激素的前体物质。
3. 内分泌反馈调节:指机体内分泌腺体受到上游激素的刺激后分泌激素,从而抑制或促进下游腺体分泌激素的一种调节机制。
三、内分泌系统的调节与协调1. 负反馈调节:指机体通过反馈机制自我调节内分泌激素的分泌,使其维持在一定的平衡状态,如甲状腺激素的分泌调节。
2. 正反馈调节:指某些特定的生理过程或应激情况下,内分泌激素的分泌被刺激后,会进一步促进激素的分泌,从而形成正向的反馈调节。
四、内分泌疾病与常见疾病1. 内分泌失调:指内分泌系统中某些激素的水平异常,比如糖尿病、甲状腺功能亢进症等。
2. 内分泌肿瘤:指在内分泌腺体或相关器官中发生的恶性肿瘤,如垂体腺瘤、甲状腺乳头状癌等。
五、内分泌系统与其他生理功能的关系1. 生长发育调节:内分泌激素在人体生长发育过程中起着重要的调节作用,如生长激素、促性腺激素等。
2. 代谢调节:内分泌激素参与机体的代谢调节,如胰岛素和胰高血糖素对血糖水平的调控。
总结:以上是生理学中与内分泌有关的重点名词解释。
通过对内分泌系统的组成、激素的合成和分泌、调节与协调、内分泌疾病以及内分泌系统与其他生理功能的关系的解析,我们可以更好地理解内分泌系统的重要性和它在机体中的作用。
代谢调节A一、名词解释∶1. 关键酶(标兵酶)2. 操纵子3. 酶的反馈阻遏与反馈抑制4. 诱导作用5. 前馈激活6. 顺序反馈抑制7. 转录因子8. 结构基因9. 代谢调节二、填空∶1.在乳糖操纵子的调控中,由基因编码的阻遏蛋白与DNA上的部位结合,使结构基因不能转录。
2.无活性的磷酸化酶b经共价修饰接上基团,便转变为有活性的磷酸化酶a。
3.乳糖操纵子的正控制需要cAMP。
cAMP是由 (化合物)在酶催化下生成的。
当cAMP与蛋白结合形成的复合物与DNA上的部位结合后,促进酶也在该部位结合,引起结构基因的转录。
4.在酶活性的调节中,有些反应序列的可对该序列的酶发生抑制作用,这种作用称为反馈抑制。
5.正调控和负调控是基因表达的两种最基本的调节形式,其中原核细胞常用调控,而真核细胞常用调控模式。
6.β-半乳糖苷酶基因的表达受到和两种机制的调节。
7.乳糖操纵了的天然诱导物是,实验室里常用作为乳糖操纵子的安慰诱导物诱导β-半乳糖苷酶基因的表达。
8.代谢途径的终产物浓度可以控制自身形成的速度,这种现象为。
三、选择题(注意∶有些题不止一个正确答案)∶1.乳糖操纵子如下图。
转录开始前,RNA聚合酶和σ因子首先与哪个字母所表示的位点结合↑↑↑↑↑↑A B C D E F(A) A (B) B (C) C (D) D (E) E (F)F2.操纵基因具有的功能有(A)σ因子的识别部位 (B)影响结构基因的表达(C)直接编码决定AA顺序 (D)编码调节蛋白3.下列化合物中,哪些能结合到乳糖操纵子的启动子附近的DNA上,促进RNA聚合酶的转录(A)诱导物 (B)cAMP-CAP (C)激活剂 (D)ATP4.由相应底物所促进的酶的合成过程称为(A)激活 (B)去阻遏 (C)去抑制 (D)诱导 (E)活化5.右图是一条生物合成线路,当某种酶缺陷的微生物在含有X的培养基上生长时,发现它积累了大量的M和L,但没有Z,说明该微生物突变发生在(A)酶A (B)酶B (C)酶C (D)酶D (E)酶E6.在大肠杆菌中,嘧啶的反馈抑制作用控制下列什么酶的活性(A)二氢乳清酸还原酶 (B)乳清酸焦磷酸化酶 (C)还原酶(D)天冬氨酸转氨甲酰酶 (E)羟甲酰胞苷酸合成酶7.大肠杆菌乳糖操纵子的控制系统有(A)可阻遏的负控制 (B)可诱导的负控制(C)可阻遏的正控制 (D)可诱导的正控制8.阻遏蛋白通过与下列什么物质结合才阻止蛋白质的合成(A)fMet-tRNA (B)核糖体 (C)RNA聚合酶(D)mRNA的特殊区域 (E)DNA上的特殊区域9.基因剔除(knock out)的方法主要用证明(A) 基因的调控 (B) 基因的结构(C) 基因的表达 (D) RNA的特殊区域 (E) 基因的功能10. 在转录时DNA分子上被RNA聚合酶特异性识别的作用顺式元件为(A) 操纵子 (B)启动子 (C) 终止子 (D) 增强子11.识别转录起点的蛋白因子为(A) 核心酶 (B) σ因子 (C) ρ因子 (D) ω因子12. 下列哪些不是操纵子的组成部分(A) 启动了 (B) 操纵基因 (C) 阻遏物 (D) 结构基因 (E) 转录因子13. 关于转录的叙述下列哪一项是正确的?(A) mRNA翻译的模板,转录只是指合成mRNA的过程(B) 转录需要RNA聚合酶,但这种RNA聚合酶对利福平不敏感(C) 逆转录也需要RNA聚合酶(D) DNA复制中合成RNA引物也一个转录过程(E) 转录需要RNA聚合酶,是一种酶促的核苷酸聚合过程14. 可被蛋白激酶磷酸化的氨基酸残基是()A.酪氨酸/甘氨酸 B.甘氨酸/苏氨酸 C.苏氨酸/丝氨酸 D.甘氨酸/丝氨酸15. 别构调节时酶分子发生的改变是()A.一级结构 B.空间结构发 C. 辅酶的结合 D.与金属离子的结合四问答题1.简要说明代谢调节中酶活性调节。
初生代谢途径:一般将微生物从外界吸收的各种营养物质,通过分解代谢和合成代谢,生成维持生命活动的物质和能量的途径,称为初生代谢途径。
微生物代谢的调节:微生物细胞内各种代谢途径错综复杂,各个反应过程之间相互制约,彼此协调可随环境调节的变化,而迅速改变代谢反应的速度,叫做微生物代谢的调节。
细菌生长曲线:以时间为横坐标,以菌数为纵坐标,,根据不同时间内细菌数量的变化,可以做出一条反应细菌在整个培养期间菌数变化规律的曲线,叫做生长曲线。
生长:微生物生长是细胞物质有规律的、不可逆的增加,导致细胞体积扩大的生物学过程。
繁殖:繁殖是微生物生长到一定阶段,由于细胞结构的复制和重建并通过特定方式产生新的生命个体,既引起生命个体数量增加的生物学过程。
比生长率:单位时间单位体积内的产物量。
迟缓期:细菌接种到新鲜培养基而处于一个新的生长环境,因此在一段时间内并不马上分裂,细菌数量维持恒定,或增加很少。
稳定期:由于营养物质的消耗,代谢产物积累和PH值变化环境条件逐渐不适宜细菌生长,导致细菌生长率降低直至零,对数生长期结束,进入稳定生长期。
衰亡期:营养物质耗尽和有毒代谢产物的大量积累,细菌死亡速率逐步增加或细菌逐步减少,标志细菌的群体进入衰亡期。
代时:在细菌个体生长里,每个细菌分裂繁殖一代所需要的时间。
同步培养:是一种培养方法,它使群体不同步的细胞转变成能同时进行生长或分裂的群体细胞。
连续培养:是在微生物的整个培养期间,通过一定的方式是微生物能以恒定的比生长速率并能维持生长下去的培养方法。
分批培养:是指微生物在封闭系统中进行的培养。
培养过程中不对培养基进行更换。
同步生长:以同步培养方法使群体细胞处于同一生长阶段并同时进行分裂的生长方式。
恒浊器:通过连续培养装置中的供电系统保持培养基中菌体浓度恒定,是细菌生长连续进行的一种培养系统。
恒化器:通过保持培养基中某种营养物质浓度基本恒定的方式,使微生物的生长速度恒定的培养系统。
断裂繁殖:菌丝断裂成断片,这些断片生长成新的菌丝,菌丝在固体培养基或在液体培养基中静止培养时形成菌落。
第十一章代谢和代谢调控总论一、名词解释1.新陈代谢:是机体与外界环境不断进行物质交换的过程;2.同化作用:从外界环境摄取营养物质,通过消化吸收并在体内进行一系列复杂而有规律的化学变化,转化为自身物质,就是同化作用;3.异化作用:机体自身原有的物质也不断转化为废物而排出体外的作用;4.基础代谢:指人体处于适宜温度以及清醒而安静的状态中,同时没有食物消化与吸收活动的情况下,所消耗的能量称为基础代谢;5.抗代谢物:指在化学结构上与天然代谢物类似,进入人体可与正常代谢物相拮抗,从而影响正常代谢的物质;6.代谢激活剂:指能激活机体代谢某一反应或某一过程的物质;7.代谢抑制剂:指能抑制机体代谢某一反应或某一过程的物质;8.激素:指体内的某一细胞、腺体、或者器官所产生的可以影响机体内其他细胞活动的化学物质。
二、填空题1.生物体内物质代谢的特点主要有整体性、途径多样性、阻止特异性、可调节性。
2.体内能量的直接利用形式是ATP 。
在生物体内可产生能量的物质有糖、脂肪、蛋白质等。
3.常用的物质代谢研究方法主要有利用正常机体方法、使用病变动物方法、器官切除法、立体组织器官法、组织切片或匀浆法、酶及其抑制剂法、同位素示踪法、使用亚细胞成分的方法、致突变法、分子生物法。
4.细胞或酶水平的调节方式有两种:一种是酶活力的调节,属快调节;另一种是酶含量的调节,属慢调节。
三、简答题1.简述蛋白质与糖代谢的相互联系。
答:①糖是蛋白质合成的碳源和能源:如糖代谢过程中,产生的许多α-酮酸,通过氨基化或者转氨作用可以生成对应氨基酸;②蛋白质分解产物进入糖代谢:组成蛋白质的20种氨基酸除亮氨酸和赖氨酸外,均可产生糖异生的中间产物,经糖异生作用生成糖。
2.简述糖与脂类代谢的联系。
答:①糖转变为脂肪:如乙酰CoA是唐分解的重要中间产物,正是合成脂肪酸与胆固醇的主要原料;②脂肪转变为糖:脂肪分子中的甘油可通过糖的异生作用转变为糖;③能量的相互利用。
名词解释发酵工程:是利用微生物的生长代谢活动来生产各种有用生物化学产品的技术过程。
代谢调节:是指在代谢途径水平上酶活性和酶合成(酶量)的调节。
组成酶:细胞内总是适量存在的,不依赖于酶底物或底物结构类似物的存在而合成的酶。
诱导酶:依赖于酶底物或底物结构类似物的存在而合成的酶。
其基因以隐性状态存在于染色体中。
分解代谢物阻遏:微生物与容易同化的碳源或氮源相接触,使有些酶的合成速率相对降低的作用。
反馈阻遏:生物合成途径的终点代谢产物极其衍生物在转录的水平上抑制该途径的所有酶的生物合成。
反馈抑制:是微生物细胞中变构调节的典型方式,因此非常重要,应用广泛。
概念:生物合成途径的最终代谢产物抑制该途径的前面第一或第二个酶的催化活性。
通过变构调节进行抑制初级代谢产物:是微生物在生长过程中产生的、为菌体生长所必须的小分子化合物,包括单糖、氨基酸、核苷酸维生素以及用来合成这些物质的小分子物质。
次级代谢产物:又称次生代谢产物或分化代谢物,是由微生物在生长后期产生的,为菌体生长非必须但对产生菌的生存具有一定价值的,分子结构相对复杂的小分子化合物。
操纵子:指启动基因、操纵基因和一系列紧密连锁的结构基因的总称。
转录的功能单位。
很多功能上相关的基因前后相连成串,由一个共同的控制区进行转录的控制,包括结构基因以及调节基因的整个DNA序列。
操纵基因:操纵子中与阻遏物结合的一段特定核苷酸序列。
对相邻的结构基因的转录活动有控制作用。
代谢控制发酵:用人工诱变的方法,有意识地改变微生物的代谢途径,最大限度地积累产物,这种发酵形象地称为代谢控制发酵,最早在氨基酸发酵中得到成功应用。
原生质体:在高渗溶液中出去细胞壁的细胞。
培养基:选用各种营养物质,经配制成适合不同微生物生长繁殖或积累代谢产物的营养基质。
糖化:在工业生产上将淀粉水解为葡萄糖的过程,得到的水解糖液叫淀粉糖。
前体物质:最终所需的代谢产物的前身或其结构中的一部分。
在生物合成中直接结合到产物分子中,自身结构变化不大,能显著提高产量的小分子物质。
第十一章代谢的相互关系及调节控制I 主要内容本章重点讲了两个方面问题,一是生物体内不同物质代谢的相互联系,二是生物体内物质代谢的调控。
一、物质代谢的相互联系糖代谢、脂代谢、蛋白质代谢和核酸代谢是广泛存在于各种生物体内的四大物质代谢途径,不同途径之间的相互关系集中体现为各有所重,相互转化,又相互制约的关系。
二、代谢调节的一般原理代谢的调节控制方式有分子水平调节、细胞水平调节、激素水平调节和神经水平调节四种,其中神经水平调节是高等动物所特有的,细胞水平是所有生物体共有的,各种类型的调节都是由细胞水平来实现的。
细胞水平调控是一切调控的最重要基础,细胞水平调节主要分为酶的区域化分布调节、底物的可利用性、辅因子的可利用性调节、酶活性的调节、酶量调节五种形式。
(一)酶的区域化分布调节(二)底物的可利用性(三)辅助因子的可利用性(四)酶活性调节酶活性调节是通过对现有酶催化能力的调节,最基本的方式是酶的反馈调节,亦即通过代谢物浓度对自身代谢速度的调节作用,反馈调节作用根据其效应的不同分为正反馈调节和负反馈调节。
反馈是结果对行为本身的调节或输出对输入的调节,在物质代谢调节中引用反馈是指产物的积累对本身代谢速度的调节。
反馈抵制调节包括顺序反馈调节、积累反馈调节、协同反馈调节和同功酶调节四种。
(五) 酶量的调节细胞内的酶可以根据其是否随外界环境条件的改变而改变分为组成酶和诱导酶。
组成酶是催化细胞内各种代谢反应的酶,如糖酵解、三羧酸循环等。
诱导酶则是其含量可以随外界条件发生变化的一些酶类。
它的产生或消失可以使细胞获得或失去代谢某一种物质的能力。
1.原核生物基因表达调控操纵子学说是F. Jacob 和 J. Monod 于1961年首先提出来用于解释原核生物基因表达调控的一个理论。
该理论认为一个转录调控单位包括:结构基因、调节基因、启动子和操纵基因四个部分,其中操纵基因加上它所控制的一个或几个结构基因构成的转录调控功能单位称为操纵子。
第十一章代谢调节一、知识要点代谢调节是生物在长期进化过程中,为适应外界条件而形成的一种复杂的生理机能。
通过调节作用细胞内的各种物质及能量代谢得到协调和统一,使生物体能更好地利用环境条件来完成复杂的生命活动。
根据生物的进化程度不同,代谢调节作用可在不同水平上进行:低等的单细胞生物是通过细胞内酶的调节而起作用的;多细胞生物则有更复杂的激素调节和神经调节。
因为生物体内的各种代谢反应都是通过酶的催化作用完成的,所以,细胞内酶的调节是最基本的调节方式。
酶的调节是从酶的区域化、酶的数量和酶的活性三个方面对代谢进行调节的。
细胞是一个高效而复杂的代谢机器,每时每刻都在进行着物质代谢和能量的转化。
细胞内的四大类物质糖类、脂类、蛋白质和核酸,在功能上虽各不相同,但在代谢途径上却有明显的交叉和联系,它们共同构成了生命存在的物质基础。
代谢的复杂性要求细胞有数量庞大、功能各异和分工明确的酶系统,它们往往分布在细胞的不同区域。
例如参与糖酵解、磷酸戊糖途径和脂肪酸合成的酶主要存在胞浆中;参与三羧酸循环、脂肪酸β-氧化和氧化磷酸化的酶主要存在于线粒体中;与核酸生物合成有关的酶大多在细胞核中;与蛋白质生物合成有关的酶主要在颗粒型内质网膜上。
细胞内酶的区域化为酶水平的调节创造了有利条件。
生物体内酶数量的变化可以通过酶合成速度和酶降解速度进行调节。
酶合成主要来自转录和翻译过程,因此,可以分别在转录水平、转录后加工与运输和翻译水平上进行调节。
在转录水平上,调节基因感受外界刺激所产生的诱导物和辅阻遏物可以调节基因的开闭,这是一种负调控作用。
而分解代谢阻遏作用通过调节基因产生的降解物基因活化蛋白(CAP促进转录进行,是一种正调控作用,它们都可以用操纵子模型进行解释。
操纵子是在转录水平上控制基因表达的协调单位,由启动子(P、操纵基因(O和在功能上相关的几个结构基因组成;转录后的调节包括,真核生物mRNA 转录后的加工,转录产物的运输和在细胞中的定位等;翻译水平上的调节包括,mRNA 本身核苷酸组成和排列(如SD序列,反义RNA的调节,mRNA 的稳定性等方面。
蛋白质学【proteomics】蛋白质组学是指采用各种大规模蛋白质分离和识别技术研究手段来研究蛋白质组的一门科学。
目前,蛋白质组学作为基因组DNA序列与基因功能之间的桥梁,通过蛋白质的鉴定、定量检测、细胞或亚细胞分布、修饰状态、相互作用研究等,揭示蛋白质功能。
代谢组学【metabolomics】代谢组学指通过对某一细胞、组织、器官或者体液内所有代谢物进行高通量检测、定性和定量分析,研究生物体整体或组织细胞系统的动态代谢变化,尤其是内原代谢、遗传变异、环境变化及各种物质进入代谢系统的特征和影响,并寻找代谢物与生理病理变化相对应关系的研究方式的科学。
RNA组学【RNonmics】RNA组学是从基因水平系统研究细胞中全部非编码RNA分子的结构与功能,从整体水平阐明RNA的生物学意义的科学。
RNA组学作为后基因组时代一个重要的前沿科学。
是基因组学和蛋白质组学研究的扩充和延伸。
RNA组学重在揭示由RNA介导的遗传信息表达控制网络,以不同于蛋白质编码基因的角度来注释和阐明人类基因组的结构与功能,为人类疾病的研究和治疗提供理论基础。
生物信息学【Bioinformatics】生物信息学是伴随着基因组的研究加之计算机信息管理技术的快速发展而诞生的一门新兴的交叉学科。
它以生物大分子为研究对象,以计算机为主要工具,发展各种软件,对日益增长的DNA和蛋白质的序列和结构进行收集、整理、储存、发布、提取、检索与分析,揭示大量而复杂的生物数据所赋有的生物学奥秘,已到达理解这些生物大分子信息的生物学意义。
糖复合物【glycoconjugates】糖复合物是由聚糖以共价键与蛋白质或脂类结合形成的化合物。
包括糖蛋白、蛋白聚糖及糖脂。
N—连接糖链【N-linked glycosylation】糖蛋白分子中,糖链的N—乙酰葡糖胺与多肽链的天冬酰胺残基的酰胺氮连接,形成N—糖苷键,此种糖链为N—连接糖链,也称N—连接聚糖。
连接点的结构为:GlcNAcβ-N-Asn。
代谢的名词解释药理学1.引言1.1 概述概述部分的内容:代谢是生物体维持正常生命活动所必不可少的重要过程。
它是指生物体内发生的一系列化学反应,用以转化和利用能量、合成生命体所需的物质以及排出废物。
代谢过程涉及多个方面,包括能量代谢、物质代谢、信号转导等。
通过调节代谢过程,生物体能够从外界获取所需的能量和物质,同时消耗废物和有害物质,从而保持生命的稳态和健康。
在代谢过程中,大部分的化学反应发生在细胞内,需要通过酶的催化来进行。
酶是生物体内各种化学反应的催化剂,能够加速反应速率,降低能量需求。
代谢过程涉及到多个复杂的步骤和调控机制,其中包括物质的摄取、消化、吸收、分解、合成以及能量的释放、转化和储存等。
代谢的调控对维持生命的平衡和适应环境变化具有重要意义。
生物体在代谢过程中能够根据外界环境的变化做出相应的调整和适应。
例如,在能量代谢中,当外界环境缺乏能量供应时,生物体可以通过降低能量消耗和增加能量存储来维持生命活动;而当外界环境能量充足时,生物体可以加强代谢活动,从而利用和储存更多的能量。
综上所述,代谢是生物体维持正常生命活动和适应环境变化所必不可少的过程。
了解代谢的定义、分类和过程对于深入理解生物体的机制以及研究与药理学相关的问题具有重要意义。
接下来,本文将对代谢的定义和作用以及代谢的分类和过程进行详细阐述。
1.2文章结构文章结构部分的内容应包括以下内容:文章的结构是指整个文章所包含的各个部分以及它们之间的关系。
合理的文章结构能够帮助读者更好地理解文章的内容和逻辑,使文章的思路更加清晰和连贯。
本文的结构包括引言、正文和结论三个部分。
引言部分是文章的开篇,主要是对代谢的名词解释药理学进行概述,并介绍文章的结构和目的。
正文部分是文章的核心内容,主要分为两个部分:代谢的定义和作用,以及代谢的分类和过程。
在第二部分中,要对代谢进行详细的解释和描述,包括代谢的基本概念、生理作用和药理学意义等方面。
同时,还要对代谢的分类进行介绍,如有氧代谢和无氧代谢等,并详细说明代谢的各个过程和关键步骤。
代谢调节的名词解释
代谢调节是一个广泛应用于生物学、医学和生理学领域的概念,指的是机体对内外环境变化进行调整以维持体内代谢平衡的过程。
代谢调节是一种动态的过程,通过调整细胞内外物质的代谢过程,使得机体能够适应环境变化并保持稳定。
代谢调节的基本原理是通过负反馈机制来实现。
负反馈是生物体在代谢调节过程中起到关键作用的一种基本调节机制。
当机体受到某种刺激或变化时,会产生一系列的反应以抵消这种变化,从而使得体内环境保持相对稳定。
例如,当血糖水平升高时,胰岛素的分泌增加,促使血糖水平下降,以保持血糖在正常范围内。
代谢调节在机体内部通过调节能量代谢过程来实现。
能量代谢是生物体生存所必需的基本过程,包括能量的摄取、吸收、分解和利用。
能量的平衡与调节直接关系到机体的健康和生活能力。
当机体处于饥饿或运动等高能耗状态时,代谢调节会促使机体调整能量的分配,以确保重要组织和器官的能量供应。
另外,代谢调节也与体温调节密切相关。
体温是机体内部的一个关键指标,对于维持正常生理功能具有重要意义。
当环境温度升高或降低时,机体会通过调节代谢来适应环境变化。
例如,在寒冷的环境中,机体会通过增加脂肪的分解和糖原的分解来产生更多的热量,以保持体温稳定。
代谢调节也与内分泌系统密切相关。
内分泌系统是一种由内分泌腺和其分泌的激素组成的调节系统,对机体的代谢过程起到重要作用。
内分泌系统通过分泌激素来调节代谢速率、物质的合成和降解,以及维持内环境的平衡。
例如,甲状腺素是一种能够调节基础代谢率的重要激素,它可以促进蛋白质合成和糖原分解,从而影响能量的利用和维持机体代谢平衡。
除了上述内容,代谢调节还与神经系统和免疫系统紧密相连。
神经系统通过神经递质的传递来调节代谢过程,包括食欲、能量摄取和消耗,并对内外环境的变化
做出调整。
免疫系统通过维持机体的免疫平衡来保护机体免受细菌、病毒和其他病原体的侵害,从而维持代谢的正常进行。
总结起来,代谢调节是机体为了适应环境变化和保持内环境的稳定而进行的一系列调整。
它涉及到能量代谢、体温调节、内分泌系统、神经系统和免疫系统等多个方面。
通过负反馈机制,机体能够对内外刺激做出适当的反应,从而保持代谢平衡和健康。
这一过程在人类和其他生物体中起着至关重要的作用,对于我们深入了解机体的生理与病理过程具有重要意义。