浅谈对DSP的认识和DSP发展前景

  • 格式:doc
  • 大小:35.50 KB
  • 文档页数:7

下载文档原格式

  / 7
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈对DSP的认识和DSP

发展前景

概念的理解

DSP一方面是Digital Signal Processing的缩写,意思是数字信号处理,就是指数字信号理论研究。DSP另一方面是Digital Signal Processor,意思是数字信号处理器,就是用来完成数字信号处理的器件。

DSP的发展概况

最初的DSP器件只是被设计成用以完成复杂数字信号处理的算法。DSP器件紧随着数字信号理论的发展而不断发展。在20世纪60年代,数字信号处理技术才刚刚起步。60年代中期以后,快速傅里叶算法的出现及大规模集成电路的发展大大促进了DSP技术与器件的飞速发展。DSP器件的发展大致可分为三个阶段:(1)1980年前后的雏形阶段。(2)1990年前后的成熟阶段。(3)2000年之后的完善阶段

DSP器件的特点

1.高速、高精度运算能力

(1)硬件乘法累加操作,在一个指令周期内可完成一次乘法和一次加法。

(2)哈弗结构和流水线结构。哈佛结构的主要特点是将程序和数据存储在不同的存储空间中,即程序存储器和数据存储器是两个相互独立的存储器,每个存储器独立编址,独立访问。与两个存储器相对应的是系统中设置了程序总线和数据总线,从而使数据的吞吐率提高了一倍。由于程序和存储器在两个分开的空间中,因此取指和执行能完全重叠。流水线与哈佛结构相关,DSP芯片广泛采用流水线以减少指令执行的时间,从而增强了处理器的处理能力。使取指、译码和执行等操作可以重叠执行,处理器可以并行处理二到四条指令,每条指令处于流水线的不同阶段。

(3)硬件循环控制。大多数的DSP都有专门的硬件,用于零开销循环。所谓零开销循环是指处理器在执行循环时,不用花时间去检查循环计数器的值、条件转移到循环的顶部、将循环计数器减1。

(4)特殊的寻址模式。DSP处理器往往都支持专门的寻址模式,它们对通常的信号处理操作和算法是很有用的。例如,模块(循环)寻址(对实现数字滤波器延时线很有用)、位倒序寻址(对FFT很有用)。

(5)具有丰富的外设。DSP具有DMA(有一组或多组独立的DMA 总线,与CPU的程序、数据总线并行工作,在不影响CPU工作的条件下,DMA速度已达800Mbyte/s以上)、串口、定时器等外设。

2.强大的数据通信能力。

3.灵活的可编程性。DSP骗内设置RAM和ROM,可以方便地拓展程序、数据及I/O空间,同时允许ROM和RAM直接数据传送。可编程

DSP芯片可使设计人员在开发过程中灵活方便地对软件进行修改和升级

4.低功耗设计。DSP可以工作在省电状态,节省了能源。

DSP处理器与通用处理器(GPP)的比较

1 对密集的乘法运算的支持。GPP不是设计来做密集乘法任务的,即使是一些现代的GPP,也要求多个指令周期来做一次乘法。而DSP 处理器使用专门的硬件来实现单周期乘法。DSP处理器还增加了累加器寄存器来处理多个乘积的和。累加器寄存器通常比其他寄存器宽,增加称为结果bits的额外bits来避免溢出。

同时,为了充分体现专门的乘法-累加硬件的好处,几乎所有的DSP 的指令集都包含有显式的MAC指令。

2 存储器结构。传统上,GPP使用冯.诺依曼存储器结构。这种结构中,只有一个存储器空间通过一组总线(一个地址总线和一个数据总线)连接到处理器核。通常,做一次乘法会发生4次存储器访问,用掉至少四个指令周期。

大多数DSP采用了哈佛结构,将存储器空间划分成两个,分别存储程序和数据。它们有两组总线连接到处理器核,允许同时对它们进行访问。这种安排将处理器存贮器的带宽加倍,更重要的是同时为处理器核提供数据与指令。在这种布局下,DSP得以实现单周期的MAC 指令。

还有一个问题,即现在典型的高性能GPP实际上已包含两个片内高速缓存,一个是数据,一个是指令,它们直接连接到处理器核,以加快运行时的访问速度。从物理上说,这种片内的双存储器和总线的

结构几乎与哈佛结构的一样了。然而从逻辑上说,两者还是有重要的区别。

GPP使用控制逻辑来决定哪些数据和指令字存储在片内的高速缓存里,其程序员并不加以指定(也可能根本不知道)。与此相反,DSP 使用多个片内存储器和多组总线来保证每个指令周期内存储器的多

次访问。在使用DSP时,程序员要明确地控制哪些数据和指令要存储在片内存储器中。程序员在写程序时,必须保证处理器能够有效地使用其双总线。

此外,DSP处理器几乎都不具备数据高速缓存。这是因为DSP的典型数据是数据流。也就是说,DSP处理器对每个数据样本做计算后,就丢弃了,几乎不再重复使用。

3 零开销循环

如果了解到DSP算法的一个共同的特点,即大多数的处理时间是花在执行较小的循环上,也就容易理解,为什么大多数的DSP都有专门的硬件,用于零开销循环。所谓零开销循环是指处理器在执行循环时,不用花时间去检查循环计数器的值、条件转移到循环的顶部、将循环计数器减1。

与此相反,GPP的循环使用软件来实现。某些高性能的GPP使用转移预报硬件,几乎达到与硬件支持的零开销循环同样的效果。

4 定点计算

大多数DSP使用定点计算,而不是使用浮点。虽然DSP的应用必须十分注意数字的精确,用浮点来做应该容易的多,但是对DSP来说,廉价也是非常重要的。定点机器比起相应的浮点机器来要便宜(而且更快)。为了不使用浮点机器而又保证数字的准确,DSP处理器在指令集和硬件方面都支持饱和计算、舍入和移位。

5 专门的寻址方式

DSP处理器往往都支持专门的寻址模式,它们对通常的信号处理操作和算法是很有用的。例如,模块(循环)寻址(对实现数字滤波器延时线很有用)、位倒序寻址(对FFT很有用)。这些非常专门的寻址模式在GPP中是不常使用的,只有用软件来实现。

DSP器件的应用

自从DSP芯片诞生以来,DSP芯片得到了飞速的发展。DSP芯片高速发展,一方面得益于集成电路的发展,另一方面也得益于巨大的市场。在短短的十多年时间,DSP芯片已经在信号处理、通信、雷达等许多领域得到广泛的应用。目前,DSP芯片的价格也越来越低,性能价格比日益提高,具有巨大的应用潜力。DSP芯片的应用主要有:(1)信号处理--如,数字滤波、自适应滤波、快速傅里叶变换、相关运算、频谱分析、卷积等。

(2)通信--如,调制解调器、自适应均衡、数据加密、数据压缩、回坡抵消、多路复用、传真、扩频通信、纠错编码、波形产生等。

(3)语音--如语音编码、语音合成、语音识别、语音增强、说话人辨认、说话人确认、语音邮件、语音储存等。

(4)图像/图形--如二维和三维图形处理、图像压缩与传输、图像增强、动画、机器人视觉等。

(5)军事--如保密通信、雷达处理、声纳处理、导航等。

(6)仪器仪表--如频谱分析、函数发生、锁相环、地震处理等。

(7)自动控制--如引擎控制、深空、自动驾驶、机器人控制、磁盘控制。