【2019年整理】电源管理芯片
- 格式:doc
- 大小:401.50 KB
- 文档页数:13
液晶常⽤电源管理芯⽚1200AP40 1200AP60、1203P60200D6、203D6 DAP8A 可互代203D6/1203P6 DAP8A2S0680 2S08803S0680 3S08805S0765 DP104、DP7048S0765C DP704加24V得稳压⼆极管ACT4060 ZA3020LV/MP1410/MP9141ACT4065 ZA3020/MP1580ACT4070 ZA3030/MP1583/MP1591MP1593/MP1430ACT6311 LT1937ACT6906 LTC3406/A T1366/MP2104AMC2576 LM2576AMC2596 LM2596AMC3100 LTC3406/AT1366/MP2104AMC34063A AMC34063AMC7660 AJC1564AP8012 VIPer12AAP8022 VIPer22ADAP02 可⽤SG5841 /SG6841代换DAP02ALSZ SG6841DAP02ALSZ SG6841DAP7A、DP8A 203D6、1203P6DH321、DL321 Q100、DM0265RDM0465R DM/CM0565RDM0465R/DM0565R ⽤cm0565r代换(取掉4脚得稳压⼆极管) DP104 5S0765 DP704 5S0765DP706 5S0765DP804 DP904FAN7601 LAF0001LD7552 可⽤SG6841代(改4脚电阻)LD7575PS 203D6改1脚100K电阻为24KOB2268CP OB2269CPOB2268CP SG6841改4脚100K电阻为2047KOCP1451 TL1451/BA9741/SP9741/AP200OCP2150 LTC3406/AT1366/MP2104OCP2160 LTC3407OCP2576 LM2576OCP3601 MB3800OCP5001 TL5001OMC2596 LM2596/AP1501PT1301 RJ9266PT4101 AJC1648/MP3202PT4102 LT1937/AJC1896/AP1522/RJ9271/MP1540SG5841SZ SG6841DZ/SG6841DSM9621 RJ9621/AJC1642SP1937 LT1937/AJC1896/AP1522/RJ9271/MP1540STRG5643D STRG5653D、STRG8653DTEA1507 TEA1533TEA1530 TEA1532对应引脚功能接⼊THX202H TFC719THX203H TFC718STOP246Y TOP247YV A7910 MAX1674/75 L6920 AJC1610VIPer12A VIPer22A[audio01]ICE2A165(1A/650V、31W);ICE2A265(2A/650V、52W);ICE2B0565(0、5A/650V、23W):ICE2B165(1A/650V、31W);ICE2B265(2A/650V、52W);ICE2A180(1A/800V、29W);ICE2A280(2A/800、50W)、KA5H0365R, KA5M0365R, KA5L0365R, KA5M0365RN# u) t! u1 W1 B) R, PKA5L0365RN, KA5H0380R, KA5M0380R, KA5L0380R1、KA5Q1265RF/RT(⼤⼩两种体积)、KA5Q0765、FSCQ1265RT、KACQ1265RF、FSCQ0765RT、FSCQ1565Q这就是⼀类得,这些型号得引脚功能全都⼀样,只就是输出功率不⼀样。
常用8脚开关电源芯片开关电源芯片是电源管理中常见的一种电源管理IC,它通过开关控制电源的开关状态,使得输入电源能够连接到输出负载部分,从而实现对电源的稳定输出和管理。
常用的8脚开关电源芯片有很多种,下面主要介绍其中的几种。
1. LM317LM317是一种调整型电位技术电源芯片,它可以提供1.2V到37V的可调电源输出,并且在负载变化时能够自动调节输出电压。
它的输入电压可以高达40V,最大输出电流为1.5A。
2. LM7805LM7805是一种固定输出电压的线性稳压器,它的输出电压为5V,并且具有较高的输出电流和低的静态功耗。
它的输入电压范围为7V到35V,最大输出电流为1A。
3. LM2596LM2596是一种可调的开关稳压器,它可以在输入电压范围为4.5V到40V时提供可调的输出电压。
它的输出电流最大可以达到3A,具有较高的效率和稳定性。
4. UC3842UC3842是一种常用的开关电源控制芯片,它具有宽的输入电压范围和高的开关频率。
它可以实现对开关管的开关控制,从而实现对输出电流和电压的精确调节。
5. TNY264TNY264是一种集成开关电源控制器,它具有较高的开关频率和低的静态功耗。
它可以实现对输入电压和输出电压的控制,适用于广泛的应用场景。
6. XL4015XL4015是一种高效率的降压型开关稳压器,它可以通过PWM(脉宽调制)控制实现对输出电压的可调。
它的输入电压范围为8V到32V,最大输出电流为5A。
7. MP2307MP2307是一种高效率的降压型开关稳压器,它可以在输入电压范围为4.75V到23V时提供可调的输出电压。
它的最大输出电流为3A。
8. TS4950TS4950是一种高性能的音频功率放大器,它具有低的静态功耗和低的失真。
它可以在输入电压范围为2.7V到5.5V时提供可调的输出功率。
总结:以上介绍了常见的8脚开关电源芯片,它们在不同的工作场景和应用中具有不同的特点和优势。
多路电源管理芯片
嘿,朋友们!今天咱来聊聊这个多路电源管理芯片呀!这玩意儿可真是个神奇的小宝贝呢!
你想想看,咱们的生活里到处都离不开电,各种电子设备就像我们的亲密小伙伴一样。
而多路电源管理芯片呢,就像是这些小伙伴们的大管家!它能把电安排得妥妥当当,让每个设备都能得到恰到好处的电量。
就好比一个大家庭,家里有好多电器,电视呀、冰箱呀、电脑呀等等。
要是没有一个好的管理,那岂不是乱套啦?要么这个电器没电了,要么那个电器电太多了。
但是有了多路电源管理芯片,就不用担心啦!它会合理地分配电能,就像一个聪明的管家一样,把一切都安排得井井有条。
你说它是不是很厉害呀?而且哦,这多路电源管理芯片还特别耐用呢!它能在各种环境下坚守岗位,不管是炎热的夏天,还是寒冷的冬天,它都不会轻易“撂挑子”。
这要是换成人,说不定早就喊累啦!
咱再打个比方,这多路电源管理芯片就像是交通警察。
马路上车来车往,要是没有交警指挥,那不得乱成一锅粥呀?而芯片就像交警一样,指挥着电能的流向,让它们有序地去到该去的地方。
它还特别小巧玲珑呢,不占多少地方,但发挥的作用可大啦!小小的身体里蕴含着大大的能量,这难道不令人惊叹吗?
现在的科技发展得这么快,多路电源管理芯片也在不断进步呢!它变得越来越智能,越来越高效。
说不定以后呀,它还能自己学习,根据我们的使用习惯来更好地管理电源呢!那可就太棒啦!
总之呢,多路电源管理芯片就是我们生活中不可或缺的一部分。
没有它,我们的电子世界可就要乱套咯!所以呀,我们真得好好感谢这个小小的芯片,给我们的生活带来这么多的便利和舒适。
它可真是个了不起的小英雄呢!你们说是不是呀?。
1200AP40 1200AP60、1203P60200D6、203D6 DAP8A 可互代203D6/1203P6 DAP8A2S0680 2S08803S0680 3S08805S0765 DP104、DP7048S0765C DP704加24V得稳压二极管ACT4060 ZA3020LV/MP1410/MP9141ACT4065 ZA3020/MP1580ACT4070 ZA3030/MP1583/MP1591MP1593/MP1430ACT6311 LT1937ACT6906 LTC3406/A T1366/MP2104AMC2576 LM2576AMC2596 LM2596AMC3100 LTC3406/AT1366/MP2104AMC34063A AMC34063AMC7660 AJC1564AP8012 VIPer12AAP8022 VIPer22ADAP02 可用SG5841 /SG6841代换DAP02ALSZ SG6841DAP02ALSZ SG6841DAP7A、DP8A 203D6、1203P6DH321、DL321 Q100、DM0265RDM0465R DM/CM0565RDM0465R/DM0565R 用cm0565r代换(取掉4脚得稳压二极管) DP104 5S0765DP704 5S0765DP706 5S0765DP804 DP904FAN7601 LAF0001LD7552 可用SG6841代(改4脚电阻)LD7575PS 203D6改1脚100K电阻为24KOB2268CP OB2269CPOB2268CP SG6841改4脚100K电阻为2047KOCP1451 TL1451/BA9741/SP9741/AP200OCP2150 LTC3406/AT1366/MP2104OCP2160 LTC3407OCP2576 LM2576OCP3601 MB3800OCP5001 TL5001OMC2596 LM2596/AP1501PT1301 RJ9266PT4101 AJC1648/MP3202PT4102 LT1937/AJC1896/AP1522/RJ9271/MP1540SG5841SZ SG6841DZ/SG6841DSM9621 RJ9621/AJC1642SP1937 LT1937/AJC1896/AP1522/RJ9271/MP1540STRG5643D STRG5653D、STRG8653DTEA1507 TEA1533TEA1530 TEA1532对应引脚功能接入THX202H TFC719THX203H TFC718STOP246Y TOP247YV A7910 MAX1674/75 L6920 AJC1610VIPer12A VIPer22A[audio01]ICE2A165(1A/650V、31W);ICE2A265(2A/650V、52W);ICE2B0565(0、5A/650V、23W):ICE2B165(1A/650V、31W);ICE2B265(2A/650V、52W);ICE2A180(1A/800V、29W);ICE2A280(2A/800、50W)、KA5H0365R, KA5M0365R, KA5L0365R, KA5M0365RN# u) t! u1 W1 B) R, PKA5L0365RN, KA5H0380R, KA5M0380R, KA5L0380R1、KA5Q1265RF/RT(大小两种体积)、KA5Q0765、FSCQ1265RT、KACQ1265RF、FSCQ0765RT、FSCQ1565Q这就是一类得,这些型号得引脚功能全都一样,只就是输出功率不一样。
本文简要介绍了BCD的新一代2合1电源管理芯片AP3968/69/70的特点及工作原理。
AP3968/69/70的特点:(1)原边控制方式,无须光耦以及副边恒压恒流控制器;(2)内置高压功率三极管,700V以上耐压;(3)内置高压线补偿和输出电源线补偿;(4) DIP-8和SOIC-7封装,满足爬电距离安规;(5)恒压恒流精度高,均满足±5%的充电器和LED应用;(6)低待机功率(<100mW)和高转换效率,轻松满足EPS2.0等国际标准;(7)整体方案元件少,成本低;(8)是小家电、路由器、充电器、LED以及机顶盒的优选方案。
AP3968/69/70的工作原理图 1,AP368/69/70功能框图图2,AP3968/69/70的应用简图图1是AP3968/69/70的内部功能框图, 图2是相应的应用简图。
这是一款原边控制模式的的脉冲频率调制(PFM)控制器芯片,启动时首先从与电网连接的外接启动电阻Rst获得初始电流,供电源端VCC,然后从芯片外围的变压器的辅助绕组供给正常工作时的足够能量。
UVLO比较器确保了AP68/69/70在一定的开启电压和关断电压区间内可靠运行。
AP3968/69/70工作分为恒压和恒流模式两部分,而且均为变压器电流断续(DCM)运行方式。
恒压是通过辅助绕组接收电压反馈信号,电压采样时间固定,通过开关频率调节来稳定输出电压。
恒流工作则是固定变压器输出绕组的开通时间与关断时间比来实现。
另外,AP3968/69/70增加了噪音抑制电路,这是迄今面市的其他PFM电源管理芯片不能具有的特色。
图3,AP3968/69/70的典型单输出应用及电压电流特性图4,AP3968/69/70的典型双输出应用图3和图4分别是AP3968/69/70的典型单输出和双输出应用线路。
具体地,目前市场的几类主要应用见表1。
表1,AP3968/69/70在当前市场的几类主要应用及特点表1是对AP3968/69/709的典型应用的特色概括。
电源管理芯片目录大全1.高效3A开关稳压器AP15012.低噪声电荷泵DC-DC电源转换器AAT31143.高性能降压式DC-DC电源转换器ISL64204.高效率DC-DC电源转换控制器IRU30375.小功率极性反转电源转换器ICL76606.单片降压式开关稳压器L49607.1A高效率升压/降压式DC-DC电源转换器L59708.2A高效率单片开关稳压器L49789.大功率开关稳压器L4970A10.1.5A降压式开关稳压器L497111.高效率5A开关稳压器LM267812.3A降压开关稳压器LM259613.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV14.3A降压单片开关稳压器LM2576/LM2576HV15.可调升压开关稳压器LM257716.低噪声升压式电源转换器LM275017.电流模式升压式电源转换器LM273318.小型75V降压式稳压器LM500719.升压式DC-DC电源转换器LM2703/LM270420.电流模式升压式电源转换器LM273321.低功耗升/降压式DC-DC电源转换器LT107322.升压式DC-DC电源转换器LT161523.隔离式开关稳压器LT172524.大电流高频降压式DC-DC电源转换器LT176525.低噪声高效率降压式电荷泵LTC191126.大电流升压转换器LT193527.高效升压式电荷泵LT193728.低噪声电荷泵LTC320029.微型低功耗电源转换器LTC175430.高压输入降压式电源转换器LT195631.1.5A升压式电源转换器LT196132.高压升/降压式电源转换器LT343333.单片3A升压式DC-DC电源转换器LT343634.通用升压式DC-DC电源转换器LT346035.高效率低功耗升压式电源转换器LT346436.1.1A升压式DC-DC电源转换器LT346737.大电流高效率升压式DC-DC电源转换器LT378238.1.5A单片同步降压式稳压器LTC187539.降压式同步DC-DC电源转换控制器LTC377040.无电感的降压式DC-DC电源转换器LTC325141.同步整流/升压式DC-DC电源转换器LTC340142.双2相DC-DC电源同步控制器LTC380243低功耗同步整流升压式DC-DC电源转换器LTC340244.同步整流降压式DC-DC电源转换器LTC340545.双路同步降压式DC-DC电源转换器LTC340746.高效率同步降压式DC-DC电源转换器LTC341647.微型2A升压式DC-DC电源转换器LTC342648.2A两相电流升压式DC-DC电源转换器LTC342849.单电感升/降压式DC-DC电源转换器LTC344050.大电流升/降压式DC-DC电源转换器LTC344251.1.4A同步升压式DC-DC电源转换器LTC345852.直流同步降压式DC-DC电源转换器LTC370353.双输出降压式同步DC-DC电源转换控制器LTC373654.高效率升压式DC-DC电源转换器MAX164255.驱动白光LED的升压式DC-DC电源转换器MAX158356.高性能升压式DC-DC电源转换器MAX151357.精简型升压式DC-DC电源转换器MAX1522/MAX1523/MAX152458.高效率40V升压式DC-DC电源转换器MAX1553/MAX155459.高效率升压式LED电压调节器MAX1561/MAX159960.高效率5路输出DC-DC电源转换器MAX156561.双输出升压式DC-DC电源转换器MAX158262.升/降压式电荷泵MAX175963.具有复位功能的升压式DC-DC电源转换器MAX194764.2A降压式开关稳压器MAX164465.高效率升压式DC-DC电源转换器MAX1674/MAX1675/MAX167666.高效率双输出DC-DC电源转换器MAX167767.低噪声1A降压式DC-DC电源转换器MAX1684/MAX168568.高效率升压式DC-DC电源转换器MAX169869.高效率双输出降压式DC-DC电源转换器MAX171570.小体积升压式DC-DC电源转换器MAX1722/MAX1723/MAX172471.输出电流为50mA的降压式电荷泵MAX173072.高效率PWM降压式稳压器MAX1992/MAX199373.低功耗升压或降压式DC-DC电源转换器MAX62974.3A同步整流降压式稳压型MAX1830/MAX183175.双输出开关式LCD电源控制器MAX187876.电流模式升压式DC-DC电源转换器MAX189677.PWM升压式DC-DC电源转换器MAX668/MAX66978.大电流PWM降压式开关稳压器MAX724/MAX72679.大电流输出升压式DC-DC电源转换器MAX61880.高效率升压式DC-DC电源转换器MAX756/MAX75781.隔离式DC-DC电源转换器MAX8515/MAX8515A82.高效率大电流DC-DC电源转换器MAX761/MAX76283.高性能24V升压式DC-DC电源转换器MAX872784.大电流高速稳压器RT9173/RT9173A85.高效率DC-DC电源转换器UCC3942186.高频脉宽调制降压稳压器MIC220387.大功率DC-DC升压电源转换器MIC229588.5A升压/降压/反向DC-DC电源转换器MC33167/MC3416789.升/降压式DC-DC电源转换器MC33063A/MC34063A90.低噪声无电感电荷泵MCP1252/MCP125391.单片微型高压开关稳压器NCP1030/NCP103192.低功耗升压式DC-DC电源转换器NCP1400A93.高压DC-DC电源转换器NCP140394.单片微功率高频升压式DC-DC电源转换器NCP141095.同步整流PFM步进式DC-DC电源转换器NCP142196.高效率大电流开关电压调整器NCP1442/NCP144397.新型双模式开关稳压器NCP150198.高效率大电流输出DC-DC电源转换器NCP155099.高效率升压式DC-DC电源转换器NCP5008100.新型高效率DC-DC电源转换器TPS54350101.无电感降压式电荷泵TPS6050x102.高效率升压式电源转换器TPS6101x103.28V恒流白色LED驱动器TPS61042104.具有LDO输出的升压式DC-DC电源转换器TPS6112x 105.低噪声同步降压式DC-DC电源转换器TPS6200x106.三路高效率大功率DC-DC电源转换器TPS75003107.PWM控制升压式DC-DC电源转换器XC6371108.白光LED驱动专用DC-DC电源转换器XC9116109.500mA同步整流降压式DC-DC电源转换器XC9215/XC9216 110.稳压输出电荷泵XC98021.具有可关断功能的多端稳压器BAXXX2.多路输出稳压器KA7630/KA76313.三端低压差稳压器LM29374.可调输出低压差稳压器LM29915.三端可调稳压器LM117/LM3176.低压降CMOS500mA线性稳压器LP38691/LP386937.输入电压从12V到450V的可调线性稳压器LR88.300mA非常低压降稳压器(VLDO)LTC30259.大电流低压差线性稳压器LX861010.200mA负输出低压差线性稳压器MAX173511.150mA低压差线性稳压器MAX887512.带开关控制的低压差稳压器MC3337513.带有线性调节器的稳压器MC3399814.1.0A低压差固定及可调正稳压器NCP111715.低静态电流低压差稳压器NCP562/NCP56316.带线性稳压器的升压式电源转换器TPS6110x17.低功耗50mA低压降线性稳压器TPS760xx18.高输入电压低压差线性稳压器XC620219.高速低压差线性稳压器XC620420.高速低压差线性稳压器XC6209F21.双路高速低压差线性稳压器XC64011.新型XFET基准电压源ADR291/ADR292/ADR2932.低功耗低压差大输出电流基准电压源MAX610x3.低功耗1.2V基准电压源MAX61204.2.5V精密基准电压源MC14035.2.5V/4.096V基准电压源MCP1525/MCP15416.低功耗精密低压降基准电压源REF30xx/REF31xx7.精密基准电压源TL431/KA431/TLV431A。
1200AP40 1200AP60、1203P60200D6、203D6 DAP8A 可互代203D6/1203P6 DAP8A2S0680 2S08803S0680 3S08805S0765 DP104、DP7048S0765C DP704加24V得稳压二极管ACT4060 ZA3020LV/MP1410/MP9141ACT4065 ZA3020/MP1580ACT4070 ZA3030/MP1583/MP1591MP1593/MP1430ACT6311 LT1937ACT6906 LTC3406/A T1366/MP2104AMC2576 LM2576AMC2596 LM2596AMC3100 LTC3406/AT1366/MP2104AMC34063A AMC34063AMC7660 AJC1564AP8012 VIPer12AAP8022 VIPer22ADAP02 可用SG5841 /SG6841代换DAP02ALSZ SG6841DAP02ALSZ SG6841DAP7A、DP8A 203D6、1203P6DH321、DL321 Q100、DM0265RDM0465R DM/CM0565RDM0465R/DM0565R 用cm0565r代换(取掉4脚得稳压二极管) DP104 5S0765DP704 5S0765DP706 5S0765DP804 DP904FAN7601 LAF0001LD7552 可用SG6841代(改4脚电阻)LD7575PS 203D6改1脚100K电阻为24KOB2268CP OB2269CPOB2268CP SG6841改4脚100K电阻为2047KOCP1451 TL1451/BA9741/SP9741/AP200OCP2150 LTC3406/AT1366/MP2104OCP2160 LTC3407OCP2576 LM2576OCP3601 MB3800OCP5001 TL5001OMC2596 LM2596/AP1501PT1301 RJ9266PT4101 AJC1648/MP3202PT4102 LT1937/AJC1896/AP1522/RJ9271/MP1540SG5841SZ SG6841DZ/SG6841DSM9621 RJ9621/AJC1642SP1937 LT1937/AJC1896/AP1522/RJ9271/MP1540STRG5643D STRG5653D、STRG8653DTEA1507 TEA1533TEA1530 TEA1532对应引脚功能接入THX202H TFC719THX203H TFC718STOP246Y TOP247YV A7910 MAX1674/75 L6920 AJC1610VIPer12A VIPer22A[audio01]ICE2A165(1A/650V、31W);ICE2A265(2A/650V、52W);ICE2B0565(0、5A/650V、23W):ICE2B165(1A/650V、31W);ICE2B265(2A/650V、52W);ICE2A180(1A/800V、29W);ICE2A280(2A/800、50W)、KA5H0365R, KA5M0365R, KA5L0365R, KA5M0365RN# u) t! u1 W1 B) R, PKA5L0365RN, KA5H0380R, KA5M0380R, KA5L0380R1、KA5Q1265RF/RT(大小两种体积)、KA5Q0765、FSCQ1265RT、KACQ1265RF、FSCQ0765RT、FSCQ1565Q这就是一类得,这些型号得引脚功能全都一样,只就是输出功率不一样。
电源管理芯片引脚定义1、 VCC 电源管理芯片供电2、 VDD 门驱动器供电电压输入或初级控制信号供电源3、VID-4 CPU 与 CPU 供电管理芯片 VID 信号连接引脚,主要指示芯片的输出信号,使两个场管输出正确的工作电压。
4.RUN SD SHDN EN 不同芯片的开始工作引脚。
5、PGOOD PG cpu 内核供电电路正常工作信号输出。
6、VTTGOOD cpu 外核供电正常信号输出。
7、 UGATE 高端场管的控制信号。
8、 LGATE 低端场管的控制信号。
9、 PHASE 相电压引脚连接过压保护端。
10、VSEN 电压检测引脚。
11、FB 电流反馈输入即检测电流输出的大小。
12、COMP 电流补偿控制引脚。
13、 DRIVE cpu 外核场管驱动信号输出。
14、 OCSET 12v 供电电路过流保护输入端。
15、BOOT 次级驱动信号器过流保护输入端。
16、 VIN cpu 外核供电转换电路供电来源芯片连接引脚。
17、 VOUT cpu 外核供电电路输出端与芯片连接。
18、SS 芯片启动延时控制端,一般接电容。
19、 AGND GND PGND 模拟地,地线,电源地20、FAULT 过耗指示器输出,为其损耗功率:如温度超过 135 度时高电平转到低电平指示该芯片过耗。
21、SET 调整电流限制输入。
22、SKIP 静音控制,接地为低噪声。
23、TON 计时选择控制输入。
24、REF 基准电压输出。
25、OVP 过压保护控制输入脚,接地为正常操作和具有过压保护功能,连VCC 丧失过压保护功能。
26、FBS 电压输出远端反馈感应输入。
27、STEER 逻辑控制第二反馈输入。
28、 TIME/ON 5 双重用途时电容和开或关控制输入29、RESET 复位输出 V1-0v 跳变,低电平时复位。
30、SEQ 选择 PWM 电源电平轮换器的次序: SEQ 接地时 5v 输出在 3.3v 之前。
电源芯片品牌在电子设备中,电源芯片是不可缺少的关键元件,它负责将输入的电源转换为设备所需的电压和电流。
电源芯片品牌众多,每个品牌都有自己的特点和优势。
下面将为您介绍几个知名的电源芯片品牌。
1. 英飞凌(Infineon):作为全球领先的半导体公司,英飞凌提供各种类型的电源芯片,包括AC/DC变换器、DC/DC变换器、LED驱动器等。
其产品具有高度的可靠性和效率,广泛应用于电动汽车、工业自动化、新能源等领域。
2. 德州仪器(Texas Instruments):德州仪器是一家全球知名的半导体公司,其电源芯片产品种类繁多,包括线性稳压器、开关稳压器、电池管理芯片等。
德州仪器的电源芯片具有卓越的电压精度和抗干扰能力,被广泛应用于通信设备、工控设备等领域。
3. 美国安森美半导体(ON Semiconductor):安森美半导体是一家跨国半导体生产商,其产品线包括各类电源管理芯片和模拟前端芯片。
安森美半导体的电源芯片具有高效能和低功耗的特点,适用于移动设备、汽车电子等领域。
4. 美国芯风科技(Exar):芯风科技是专注于高性能电源管理和接口技术的公司,主要产品包括直流电源解决方案、电池管理芯片等。
芯风科技的电源芯片具有高度集成、高效能和低功耗的特点,适用于平板电脑、智能手机等高端消费电子产品。
5. 台湾维新电子(Winbond):维新电子是全球领先的集成电路供应商,其产品线涵盖了多种电源芯片,如电源管理芯片、电池保护芯片等。
维新电子的电源芯片在性能、可靠性和成本方面都有较高的竞争力,被广泛应用于汽车电子、电动工具等领域。
总结起来,电源芯片品牌众多,每个品牌都有自己独特的特点和优势。
无论是在可靠性、效率还是功耗方面,这些品牌的产品都有着出色的表现。
在选择电源芯片时,应根据实际需求和应用场景综合考虑各个品牌的特点,以选取最适合的电源芯片品牌。
九阳电磁炉,用什么管子可代换ACT30BHT,与13003塔配用的直接代换IC型号为:AX950.自己动手检修九阳电磁炉一台九阳USB2514-AEZG型电磁炉,通电后USB2514-AEZG电磁炉不能工作。
经检查,保险管未熔断,估计是电源电路有故障,在某电子杂志上找到相关的电路图。
逐一检查相关元器件,发现限流电阻R503开路、开关管VT502 (13003)击穿、VD502(1N4148)击穿,更换这3个元件后,通电,指示灯仍不亮,开关电源不工作,说明还有故障未解决。
怀疑IC500(型号ACT30BHT)不良,拆下来用500型万用表的R×1kC)挡检测。
ACT30BHT采用T0-92封装,打号的一面朝向自己,自左而右依次是:1脚为取样,2脚为接地,3脚为输出。
黑表笔接2脚,红表笔接1脚,阻值为5.5kC/,反之,阻值为40 kfl;黑表笔接2脚,红表笔接3脚,阻值为6kQ反之,阻值为无穷大;黑表笔接1脚,红表笔接3脚,阻值为60k(l,反之,阻值为无穷大。
开始以为ACT30BHT 是一只三极管,但上网一查才知道是集成电路,在本地售后服务部购得该件,测得电阻与旧件的差不多。
换上新件,故障现象不变,看来元件未损坏,对照图纸检查并未发现故障元件。
检测开关管基极对地电压,电压为OV,断电测检测开关管基极对地电阻,阻值很小,显然不正常,在路检查,原来C502两端并有一只稳压管ZD503(类似1N41 48,管上标注141),而图纸上未标,试用1N4148代换,通电,一切正常。
小结:维修时不能绝对迷信资料,这样容易走弯路。
该机开关管的发射极、集电极间未击穿,而ACT30BHT的输出端又是接在开关管的发射极上,所以幸免遇难;如果开关管的3个电极间都击穿了,ACT30BHT-定要换。
资料中给的开关电源部分的原理图有多处错误,正确电路图如附图所示。
这是厂家故弄玄虚,搞得电源复杂化,也没看在好到哪里,还不如22A.12A.201。
便携产品电源管理芯片的设计技巧随着便携产品日趋小巧轻薄,对电源管理芯片也提出更高的要求,诸如高集成度、高可靠性、低噪声、抗干扰、低功耗等.本文探讨了在便携产品电源设计的实际应用中需要注意的各方面问题.便携产品的电源设计需要系统级思维,在开发手机、MP3、PDA、PMP、DSC等由电池供电的低功耗产品时,如果电源系统设计不合理,会影响到整个系统的架构、产品的特性组合、元件的选择、软件的设计以及功率分配架构等.同样,在系统设计中,也要从节省电池能量的角度出发多加考虑.例如,现在便携产品的处理器一般都设有几种不同的工作状态,通过一系列不同的节能模式(空闲、睡眠、深度睡眠等)可减少对电池容量的消耗.当用户的系统不需要最大处理能力时,处理器就会进入电源消耗较少的低功耗模式.从便携式产品电源管理的发展趋势来看,需要考虑以下几个问题:1. 电源设计必须要从成本、性能和产品上市时间等整个系统设计来考虑;2. 便携产品日趋小巧轻薄化,必需考虑电源系统体积小、重量轻的问题;3. 选用电源管理芯片力求高集成度、高可靠性、低噪声、抗干扰、低功耗,突破散热瓶颈,延长电池寿命;4. 选用具有新技术的新型电源芯片进行方案设计,这是保证产品先进性的基本条件,也是便携产品电源管理的永恒追求.便携产品常用电源管理芯片包括:低压差稳压器(LDO)、非常低压差稳压器(VLDO)、基于电感器储能的DC/DC转换器(降压电路Buck、升压电路Boost、降压-升压变换器Buck-Boost)、基于电容器储能的电荷泵、电池充电管理芯片、锂电池保护IC.选用电源管理芯片时应注意:选用生产工艺成熟、品质优秀的生产厂家产品;选用工作频率高的芯片,以降低周边电路的应用成本;选用封装小的芯片,以满足便携产品对体积的要求;选用技术支持好的生产厂家,方便解决应用设计中的问题;选用产品资料齐全、样品和DEMO易于申请、能大量供货的芯片;选用性价比好的芯片.LDO线性低压差稳压器LDO线性低压差稳压器是最简单的线性稳压器,由于其本身存在DC无开关电压转换,所以它只能把输入电压降为更低的电压.它最大的缺点是在热量管理方面,因为其转换效率近似等于输出电压除以输入电压的值.LDO电流主通道在其内部是由一个MOSFET加一个过流检测电阻组成,肖特基二极管作反相保护,输出端的分压电阻取出返馈电去控制MOSFET的流通电流大小,EN使能端可从外部去控制它的工作状态,内部还设置过流保护、过温保护、信号放大、Power-OK、基准源等电路,实际上LDO已是一多电路集成的SoC.LDO的ESD>4KV,HBM ESD>8KV.低压差稳压器的应用象三端稳压一样简单方便,一般在输入、输出端各加一个滤波电容器即可.电容器的材质对滤波效果有明显影响,一定要选用低ESR的X7R & X5R陶瓷电容器.LDO布线设计要点是考虑如何降低PCB板上的噪音和纹波,如何走好线是一个技巧加经验的工艺性细活,也是设计产品成功的关键之一.图1说明了如何设计走线电路图,掌握好电流回流的节点,有效的控制和降低噪音和纹波.优化布线方案是值得参考的.图1:LDO布线电路方案如果一个驱动图像处理器的LDO输入电源是从单节锂电池标称的3.6V,在电流为200mA时输出1.8V电压,那么转换效率仅为50%,因此在手机中产生一些发热点,并缩短了电池工作时间.虽然就较大的输入与输出电压差而言,确实存在这些缺点,但是当电压差较小时,情况就不同了.例如,如果电压从1.5V降至1.2V,效率就变成了80%.当采用1.5V主电源并需要降压至1.2V为DSP内核供电时,开关稳压器就没有明显的优势了.实际上,开关稳压器不能用来将1.5V电压降至1.2V,因为无法完全提升MOSFET(无论是在片内还是在片外).LDO稳压器也无法完成这个任务,因为其压差通常高于300mV.理想的解决方案是采用一个VLDO稳压器,输入电压范围接近1V,其压差低于300mV,内部基准接近0.5V.这样的VLDO稳压器可以很容易地将电压从1.5V降至1.2V,转换效率为80%.因为在这一电压上的功率级通常为100mA左右,那么30mW的功率损耗是可以接受的.VLDO的输出纹波可低于1mVP-P.将VLDO作为一个降压型开关稳压器的后稳压器就可容易地确保低纹波.开关式DC/DC升降压稳压器开关式DC/DC升降压稳压器按其功能分成Buck开关式DC/DC降压稳压器、Boost开关式DC/DC升压稳压器和根据锂电池的电压从4.2V降低到2.5V能自动切换降升压功能的Buck-Boost开关式DC/DC升降压稳压器.当输入与输出的电压差较高时,开关稳压器避开了所有线性稳压器的效率问题.它通过使用低电阻开关和磁存储单元实现了高达96%的效率,因此极大地降低了转换过程中的功率损失.Buck开关式DC/DC降压稳压器是一种采用恒定频率、电流模式降压架构,内置主(P沟道MOSFET)和同步(N沟道MOSFET)开关.PWM控制的振荡器频率决定了它的工作效率和使用成本.选用开关频率高的DC/DC可以极大地缩小外部电感器和电容器的尺寸和容量,如超过2MHz的高开关频率.开关稳压器的缺点较小,通常可以用好的设计技术来克服.但是电感器的频率外泄干扰较难避免,设计应用时对其EMI辐射需要考虑.图2给出了Buck开关式DC/DC应用线路设计,需要注图中粗线的部分:粗线是大电流的通道;选用MuRata、Tayo-Yuden、TDK&AVX品质优良、低ESR的X7R & X5R陶瓷电容器;在应用环境温度高,或低供电电压和高占空比条件下(如降压)工作,要考虑器件的降温和散热.必须注意:SW vs. L1距离<4mm;Cout vs. L1距离<4mm;SW、Vin、Vout、GND的线必须粗短.要得到一个运作稳定和低噪音的高频开关稳压器,需要小心安排PCB板的布局结构,所有的器件必需靠近DC/DC,可以把PCB板按功能分成几块,如图3所示.1. 保持通路在Vin、Vout之间,Cin、Cout接地很短,以降低噪音和干扰;2. R1、R2和CF 的反馈成份必须保持靠近VFB反馈脚,以防噪音;3. 大面积地直接联接2脚和Cin、Cout的负端.图2:Buck开关式DC/DC应用线路设计DC/DC应用举例:1. APS1006为MCU/DSP核(Core)供电;2. APS1006应用于电子矿灯(图3);3. APS1046应用于0.8-1.8微硬盘供电(图4);4. APS1006、APS4070应用于智能手机(图5).图3:APS1006应用于电子矿灯图4:APS1046应用于0.8-1.8微硬盘供电图5:APS1006、APS4070在智能手机上的应用电荷泵及其应用技巧电容式电荷泵通过开关阵列和振荡器、逻辑电路、比较控制器实现电压提升,采用电容器来贮存能量.电荷泵是无须电感的,但需要外部电容器.工作于较高的频率,因此可使用小型陶瓷电容(1μF),使空间占用最小,使用成本低.电荷泵仅用外部电容即可提供±2倍的输出电压.其损耗主要来自电容器的等效串联电阻(ESR)和内部开关晶体管的RDS(ON).电荷泵转换器不使用电感,因此其辐射EMI可以忽略.输入端噪声可用一只小型电容滤除.它输出电压是工厂生产时精密予置的,调整能力是通过后端片上线性调整器实现的,因此电荷泵在设计时可按需要增加电荷泵的开关级数,以便为后端调整器提供足够的活动空间.电荷泵十分适用于便携式应用产品的设计.从电容式电荷泵内部结构来看,它实际上是一个片上系统.电荷泵是一种无幅射的有效升压器件,它不使用电感器而使用电容器作为储能器件.在设计应用时需要注意电容器的容量和材质对输出纹波的影响.外部电容器的容量关系到输出纹波,在固定的工作频率下,太小的电容容量,将使输出纹波增大.输出纹波大小与电容器材料介质有关,外部电容器的材料类型关系到输出纹波.同一电荷泵,使用相同的容量和尺寸而不同材料类型的电容器,输出纹波的结果.在工作频率固定,电容器容量相同的情况下,优良的材料介质,将有效地降低纹波.选用低ESR的X7R & X5R陶瓷电容器是一种比较好的选择.LCD Module(LCM)是目前CP、MP3/MP4、PMP需求量较大的产品,在有限的PCB面积上,需要按装LCD屏、数码相机的镜头和闪光灯、音频DAC等器件,因此它需要封装很小的多芯片组合的电源模块(MCM),以减小电源IC所占PCB的面积,而手机产品又要求这些电源IC对RF几乎无干扰.电池充电管理芯片和锂电池保护IC锂电池充电IC是一个片上系统(SoC),它由读取使能微控制器、2倍涓流充电控制器、电流环误差放大器、电压环误差放大器、电压比较器、温度感测比较器、环路选择和多工驱动器、充电状态逻辑控制器、状态发生器、多工器、LED信号发生器、MOSFET、基准电压、电源开机复位、欠电压锁定、过流/短路保护等十多个不同功能的IC整合在一个晶元上.它是一个高度集成、智能化芯片.锂电智能充电过程:涓流充-->恒流充-->恒压充-->电压检测,因此电路设计的关键是要做到:充分保护、充分充电、自动监测、自动控制.锂电池保护电路是封装在锂电池包内的,它由一颗锂电池保护IC和二颗MOSFET组成.在图6中,OD代表过放电控制;OC 代表过充电控制;P+、P-接充电器;B+、B-接锂电池.锂电池保护电路简单工作原理如下:正常装态M1、M2均导通;过充电时M2 OC 脚由高电位转至低电位,电闸关闭,截止充电,实现过充电保护;充电电流方向P+-->P-;过放电时M1 OD脚由高电位转至低电位,电闸关闭,截止充放电,实现过放电保护;放电电流方向P- -->P+.图6:锂电池保护电路锂电池保护电路的PCB板是很小的,设计时必须注意:1. MOSFET尽可能接近B-、P-;2. ESD防护电容器尽可能接近P+、P-;3. 相邻线间距>0.25mm,通过电流大的线要放宽,地线加宽.电源管理芯片的低功耗OMAP系统设计随着半导体设计和制作工艺技术的不断提高,电路板上的期间运行速度将更快,体积将更小.供电系统要求更多的种类的电压、更低的供电电压和更大的供电电流电源设计不再仅仅局限于提供电流、电压和监控温度,还必须诊断电源供应情况、灵活设定每个输出电压参数.普通的模拟解决方案难以满足这些需求.数字电源的目标就是将电源转换与电源管理用数字方法集成到单个芯片中,实现电源转换、控制和通信.数字电源实现了数字和模拟技术的融合,具有很强的适应性和灵活性,具备直接监视、处理及适应系统条件的能力.数字电源还可通过远程诊断确保持续的系统可靠性,实现故障管理、过压过流保护、自动冗余等功能.但是数字电源不比传统的模拟电源效率更高,而且成本一般较高.目前数字电源需要大滤波器,这使其工作效率比模拟电源低.本文介绍一种在嵌入式数字信号处理器(DSP)OMAP5912上使用简单的数字电源实现系统低功耗设计的方法.使用TI公司的电源转换和电压监控芯片TPS65010实现对DSP系统各种状态的检测.在不同状态下输出不同的供电电压,减小供电电流,实现整个系统的低功耗运行.该设计方法适用于各种低功耗要求的手持电子设备.TPS65010是TI公司推出的一款针对锂离子供电系统的电源和电池管理芯片.TPS65010集成了2个开关电源转换器Vmain和Vcore、2个低压差电源转换器LD01和LDO2以及1个单体锂离子电池充电器,非常适合手持电子设备的应用要求.当12 V直流电源适配器接通时,芯片无需开关电路.在实际使用中,Vmain可以提供2.5~3.3 V电压,Vcore可以提供O.8~1.6 V 电压,LD01和LDO2可以提供1.8~6.5 V电压.各个不同电压下的电流一般可以达到400 mA,满足大部分手持设备的需求.可以通过I2C总线对TPS65010的各种寄存器进行设置,也可以通过通用的引脚将重要的信息通知TPS65010,例如可以通过LOW_POWER 引脚使TPS65010输出低功耗模式下的工作电压.OMAP5912是TI公司推出的嵌入式DSP,具有双处理器结构,片内集成ARM和C55系列DSP处理器.TI925T处理器基于ARM9核,用于控制外围设备.DSP基于TMS320C55X核,用于数据和信号处理,提供1个40位和1个16位的算术逻辑单元(ALU).由于DSP采用了双ALU结构,大部分指令可以并行运行,工作频率达到150 MHz,并且功耗更低.C55和ARM可以联合仿真,也可以单独仿真.OMAP5912内部专门配置了超低功率设备(Ultra Low Power Device,ULPD).ULPD模块内部结构如图1所示.从图1可以看出,ULPD模块主要由复位管理器、FIQ管理器以及睡眠模式状态机组成.片内ULPD和OMAP5912芯片内部的复位产生模块以及芯片IDLE和唤醒状态控制器相连接.片外ULPD的复位管理器负责检测上电复位和手动复位,并将片内的复位信号输出;FIQ管理器专门用于检测电池电压,一旦出现电池电压低于或高于系统要求,或者电池电源质量不高(纹波较大、过冲较大、瞬间脉冲较大)等,FIQ管理器将中断系统工作;睡眠模式状态机负责检测和输出不同的工作方式,在不同的工作方式下将提供不同的电压和电流,从而降低系统功耗.共有3种睡眠模式:正常工作模式、Big Sleep模式和Deep Sleep模式.2 系统硬件结构较完整的手持设备系统主要由OMAP5912、TPS6501O、AD/DA、LCD、SDRAM、人机接口以及Flash组成.其硬件连接如图2所示.图中,DSP是核心控制单元;AD用于采集模拟信号,并将其转变成数字信号;DA将数字信号转换成模拟信号;人机接口主要包括键盘接口.Flash保存DSP所需的程序,供DSP上电调用.此外,使用DSP的HPI接口连接到PC机.TPS65010和OMAP5912的连接是实现系统低功耗设计的关键,具体硬件连接如图3所示.TPS650lO可以提供OMAP5912所需的各种电压,但是核心运算单元需要的CVDDA以及重要外设需要的DVDD4由TPS7620l从Vmain电压转换得到.具体的TPS76201的硬件连接如图4所示.TPS7620l将Vmain的3.3V电压转换成1.6 V提供给OMAP,只要Vmain的电压不低于1.8 V,TPS76201都将稳定地输出1.6 V电压,以确保OMAP在任何情况下,即使是深度睡眠状态,核心运算单元和重要的外设都有稳定的电源保证.注意,如果不要求OMAP系统的低功耗设计,CVDDA和 DVDD4可以直接连接到Vcore.TPS65010的Vcore输出1.6 V电压提供给OMAP的其他核,这些核电压在低功耗状态下均可以降低到1.1 V.TPS65010的VLDO1和VLDO2输出2.75V电压提供给OMAP的其他外设,这些电压和常规的3.3 V存在一定的电压差,但不影响数据传输.一般情况下,高电平只要达到2 V以上就可以了;低功耗状态下,VLDO1和VLDO2都降低到1.1 V.使用2个LDO给不同的外设提供电压,是为了在Big Sleep状态下关闭某些外设并同时能够使能其他外设.如果不进行低功耗设计,可以使用同一个LDO提供电压.TPS65010的I2C总线连接到OMAP,便于OMAP对TPS65010的寄存器进行设置.TPS65010的RESPWRON引脚连接到OMAP 的Power_Reset引脚,上电复位后由TPS65010复位OMAP;TPS65010的LOWPWR引脚连接到OMAP的LOW_PWR引脚,OMAP进入低功耗状态由该引脚通知TPS65010,TPS65010将设定的各种电压降低,从而降低系统功耗.4 OMAP5912的低功耗软件设计OMAP5912有3种工作模式,分别为正常工作模式、Big Sleep模式和Deep Sleep模式.正常工作模式下,使能所有的内部时钟和外部时钟以及引脚,此时系统功耗最大,TPS650lO也按照正常工作方式供电.低功耗模式下,随时判断是否有芯片IDLE 请求,如果有则进入Big Sleep模式.在Big Sleep模式下,进一步判断是否有外部时钟请求,并根据情况进入Deep Sleep模式.在系统正常工作方式下,如果不需要进行低功耗设计,以上软件无需加入到应用程序中.进行低功耗设计时,就需要对OMAP的各种工作状态进行判断,要在应用程序中加入LOW_PWR信号使能、关闭DSP核、激活并设置唤醒事件、关闭ARM核、激活并设置深度睡眠等软件代码.5 总结本文详细介绍了基于TPS65010和OMAP5912的低功耗系统设计.使用TPS65010的多个电源输出引脚给OMAP的不同单元供电,以便在OMAP的不同工作模式下改变电压输出,降低系统功耗.OMAP根据自身的软件运行情况,随时调整工作模式,并通知TPS65010,使得软件和硬件在低功耗设计上得到互通.该设计方法适用于各种对功耗要求较高的电子设备.高级电源管理芯片FS1610及其应用Fsl610是一款采用专利数字技术生产的高级电源管理控制器件,该器件可为数码相机、智能手机、个人PDA和笔记本电脑等移动设备提供完全可编程的电源系统解决方案.与传统的电源管理方法相比,FSl610能节约20~40%的PcB面积,此外,其完全可编程的专利数字技术.还能极大缩短研发周期.加快产品上市进程.1 FSl610的主要功能IS1610内部的电压检测主要针对的是FSl610芯片的供电输入,而器件的输出则包括8个高效开关电源和3个低功耗LDO,表l所列是其电源输出列表.需要注意的是,FSl610的输出电压和电流都会受到输入电压、电感、电容以及外部诸多元件因素的影响.l 1电源输出FSl610提供有8个开关电源.3个LDO电源和1个始终开启的电源.对这些电源输出的控制一般有三种方式:其一是通过外部的PWREN使能输人引控制;其二是通过串行命令在使用过程中根据具体情况进行控制;第三则是按照EEPROM中的设置程序来执行.FS1610的电源输出主要用于降压转换、升压转换、白光LED驱动、低压差稳压、负升压转换和电池供电等.图I所示是用FSl610来驱动白光LED的驱动电路.1.2电源输入FSl610的供电电压范围是2.8~5.5 v.图2所示是S1610的供电输人以及AC适配器和电池之间的切换电路.其中VMAIN 为主电池比较器输入,用来直接监测电池的状态;VIN为主电源供电输入;DBOUT用于断开电池的输出,将它连接到一个外部的P 通道MOSFET,可当检测到电池的无电状态(DB)或者AC适配器有输入时,由该输出置位断开电池和主电源的连接;BATBU为备用电池输人,一般情况下,为了能使芯片正常操作,在BATBU输入引脚上一定要有电压;VBAT为始终开启的供电输出,可由内部开关控制,当SW[2]有效且稳定时,可将SW[2]连接到VBAT来提供电压;否则由BATBU给VBAT提供电压.1 3其他功能FSl610内有一个非易失存储器NVM(EEPROM),可用于保存启动的配置信息,这些信息包括通道电压、通道使能,禁止、个电源的开关顺序以及实时时钟、看门狗、中断等信息.FSl610可通过晶体时钟提供实时时钟的操作.而其可编程报警器则可向CPU发出中断.FSl610片内还集成有一个看门狗定时器,可通过EEPROM编程设置,其定时时间达32s,时间间隔是1ms.但是,由于达到定时时间时,芯片就会复位,所以,为了避免这种情况的发生,主机必须在程序设置的定时周期结束之前,对WDT进行复位.FSl610应由32.768 kHz晶振、或者具有合适的频率和电压的时钟源来为芯片提供内部时钟.而器件的CLKOUT输出引脚则能为外部提供32.768 kHz的输出.FSl610的nEXTON开关输人端一般连接到瞬间接触开关上,可用来控制芯片的开/关.FSl610分别为不同类型的处理器设计有两个复位输出nIRSTO和nRSTO,而手动复位输入nRSTI则主要用来启动一个硬件复位,以作为主机CPU的系统复位信号.FSl610在需要的情况下可提供中断,并向主机发出警报.这些警报包括低电压,电源通道故障,RTC警报等.同时可以通过串行命令来对中断进行操作.2 Fsl610的内部结构原理图3是FSl610模块的内部结构示意图.由图可见,FSl610以电源管理控制器为核心,可为外部设备提供丰富的电源通道.另外,配合电源管理.FSl610还提供有非易失性存储器NVM、实时时钟RTC、看门狗定时器WDT、中断、复位等系统控制模块.3工作模式FS1610有两种操作模式,分别为串行模式和独立模式.FSl610芯片片可通过I2C、SPI和ART串口来接受主机的控制和管理,也可以在启动后根据EEPROM加载的参数独立工作.低功耗是FSl610的最突出优势之一.该芯片上的各个功能模块在不需要操作时都可以关闭.已进人休眠状态.FSl610会根据不同的环境条件在5种电源状态下自动切换,以使功耗最小化.这5种状态分别为:无电(NOPOWER)状态、关断(SHUTDOWN)状态(即SD状态)、就绪(READY)状态、工作(ACTIVE)状态、低功耗(LOWPOWER)状态.设计时.可以对FS31610的多路电源进行灵活的配置和控制.除了对单个电源通道的开/关操作之外.还可以对电源通道进行分组,然后对各电源组进行操作.电源的启动和关闭顺序,也可以设置存储在EEPROM中,以便主机在操作的过程中来控制.FSl610对芯片提供有可能出现的各种故障的监测和管理.这些监测包括:受监测电源正常状态、电源通道故障、电池电压和备用电池监测、热关断、中断.此外,FS1610芯片还可根据EEPROM中的设置,对监测到的不同状态进行不同的操作.4基于FSl6l0的导航仪供电系统FSl610的多电源输出和电源管理功能在便携式设备中应用非常方便.图4是FSl610电源管理控制芯片在基于Sumsang 公司的ARM9处理器S3C2440的导航仪上的供电电路.根据系统的设计要求,该导航仪除了具有基本的GPS导航功能外.还需要高分辨率的液晶屏支持.为此,该系统选用的是LCD模块,该模块是已经包含了背光和控制电路的液晶屏,但需要+3.3 v和+5 v供电.表2所列出是该导航仪系统的电源需求.由于该导航仪通常是采用电池供电,故需要最小化的功率消耗,而且要求各外设都要由系统控制.在图4中用FSl610对导航仪系统进行供电的电源分配方案中,需要注意的是,LCD背光需要400mA电流的+5v供电,而FSl610的升压电路不能提供这么大的电流,因此,设计时应用一个外加的升压电路来提供LCD的背光电源.5结束语本文介绍了高级电源管理控制芯片FS1610的原理和功能,给出了一个FSl610在基于ARM9处理器S3C2440设计的导航仪上的应用方案.采用该方案进行供电的导航仪,不但可以自由控制各个模块电源的开和关,而且可以在不需要的时候关闭模块,以便最小化整个系统的功耗.与传统的方法相比,选用FSl610不但可以明显节省电路板面积.提供更多的通道电压.而且控制也更加灵活电源管理芯片在以太网供电中的应用什么是以太网供电?术语"以太网"是指 IEEE802.3 标准涵盖的各种局域网 (LAN) 系统.以太网协议是在工作场所,通过高速数据电缆将台式 PC 与中央文件服务器连接起来的协议.任何连接到以太网端口的设备,如数据终端、无线接入点、网络摄像机 (web cam) 或网络电话等,都需要通过电池或独立 AC 插座为自己供电.而更为优雅的方法则是能够向连接到以太网的任何设备同时传输电源和数据.如果这种传输方式能够利用现有的以太网布线,则可以保持 100% 的历史兼容性,那将再好不过了.这正是IEEE802.3af 规范中定义的以太网供电 (PoE) 标准所提供的内容.这一新标准于 2003 年 6 月由 IEEE 批准,是通过以太网发送和接收电源信号的标准.PoE 的优点在于:由于每个设备只需要一组连线,因此每个设备的布线更为简单和便宜;免去了 AC 插座和适配器,使工作环境更安全、整洁,成本也更低;可轻易地将设备从一处移至另一处;无间断电源可确保在 AC 电源断电时继续为设备供电;可对连接到以太网的设备进行远程监控.正是这些优点使得以太网供电成为一项从本质上改变了低功耗设备供电方式的全新技术.但就目前而言,推动 PoE 总有效市场增长 (TAM, Total Available Market) 的主力是两类用电设备:无线 LAN 接入点和 VoIP(网络语音)电话.至 2007 年,前者的复合年增长率 (CAGR) 为 38%,达 1500 万个(来源:iSuppli),而支持后者的企业网预计将达到 300 万个.对用电设备的这种需求反过来将推动现有以太网交换机向支持 PoE 功能转移的需求.这是通过使用"中继"(midspan) 来实现的,如图1所示.这些单元的增长至 2007 年预计将达到 800 万,增长率为 68%.在图1的示例中,源头的以太网交换机通过一个"中继"以太网供电集线器将电源"注入"局域网的双绞线电缆来提供 PoE 功能.新的以太网交换机将集成该"中继",从而实现向通过高速数据电缆连接的用电设备 (PD) 供电.这些用电设备可以是网络摄像机 (web cam)、网络语音电话、无线局域网接入点和其他电器设备.不间断电源 (UPS) 将提供备用电源,以防市电断电.电源管理器件用于转换电压和电流,可以用在以太网交换机中,以太网供电"中继"集线器中,以及位于用电设备中的DC-DC 转换单元中.下面各段将对这些功能中的每个功能分别进行讨论.。
电源管理芯片引脚定义电源管理芯片引脚定义1 VCC 电源管理芯片供电2 VDD 门驱动器供电电压输入或初级控制信号供电源3 VID0-4 CPU与cpu供电管理芯片VID信号连接引脚,主要指示芯片的输出信号,使两个场管输出正确的工作电压。
4 RUN SD SHDN EN 不同芯片的开始工作引脚5 PGOOD PG cpu内核供电电路正常工作信号输出6 VTTGOOD cpu外核供电正常信号输出7 UGATE 高端场管的控制信号8 LGATE 低端场管的控制信号9 PHASE 相电压引脚连接过压保护端10 VSEN 电压检测引脚11 FB 电流反馈输入即检测电流输出的大小12 COMP 电流补偿控制引脚13 DRIVE cpu 外核场管驱动信号输出14 OCSET 12v供电电路过流保护输入端15 BOOT 次级驱动信号器过流保护输入端16 VIN cpu外核供电转换电路供电来源芯片连接引脚17 VOUT cpu外核供电电路输出端与芯片连接18 SS 芯片启动延时控制端,一般接电容19 AGND GND PGND 模拟地地电源地20 FAULT 过耗指示器输出,为其损耗功率:如温度超过135.c时由高电平转到低电平指示该芯片过耗.21 SET 调整电流限制输入22 SKIP 静音控制,接地为低噪声23 TON 计时选择控制输入24 REF 基准电压输出25 OVP 过压保护控制输入脚,接地为正常操作和具有过压保护功能,连vcc丧失过压保护功能。
26 FBS 电压输出远端反馈感应输入27 STEER 逻辑控制第二反馈输入28 TIME/ON 5 双重用途定时电容和开或关控制输入29 RESET 复位输出vl-0v跳变,低电平时复位30 SEQ 选择pwm电源电平转换器的次序SEQ接地时5v输出在3.3v之前SEQ 接REF上,3.3v 5v 各自独立SEQ 接vl上时 3.3v输出在5v之前31 RT 定时电阻32 CT 定时电容33 ILIM 电流限制门限调整34 SYNC 振荡器同步和频率选择,150khz操作时,sync连接到gnd 300khz时连接到ref上,用0-5v驱使sync 使频率在340-195khz。
8种常见电源管理IC芯片介绍
一、uc3842反激式/移相全桥光耦
uc3842是一种反激式/移相全桥光耦,用于高效率、高功率、可控的DC/DC变换器。
它能够提供一个有效的控制和保护功能,以实现更高的系统可靠性。
它具有超宽的输入电压范围(3V到30V),可将低压输入转换为高压输出,其输出电压可高达700V。
它具有高效的输出周期占空比,可提供高达98.5%的功率密度,可达到高达95.1%的转换效率。
它的频率可在范围内调节,具有精确的输出电压和电流控制,能够提供负载适应功能,以保持输出电压稳定。
它具有先进的保护功能,像开关短路、热关断、内部热关断、内部热关断保护以及硬件超速度保护等等,这些保护功能可以保护用户的变换器在大功率应用下不出现故障。
它提供了两种增益控制模式,用户可根据具体应用情况选择合适的模式。
此外,它具有极少的外部元件,可极大地简化系统设计。
二、tl4946热保护检测IC
tl4946是一款高性能的热保护检测ic,它能够对晶体管、结和直流电源的外部热保护进行监控。
它能够检测热保护元件的温度,当检测到高温超出设定值时,立刻断开目标电路断开,从而保护整个系统不会因为高温而受损害。
它具有极高的性能,温度。
40301电源芯片管脚定义(实用版)目录1.电源管理芯片概述2.电源管理芯片引脚定义及功能1.VCC 电源管理芯片供电2.VDD 门驱动器供电电压输入或初级控制信号供电源3.VID-4 CPU 与 CPU 供电管理芯片 V1D 信号连接引脚4.RUNSDSHDNEN 不同芯片的开始工作引脚5.PGOOD CPU 内核供电电路正常工作信号输出6.VTTGOOD CPU 外核供电正常信号输出正文一、电源管理芯片概述电源管理芯片,顾名思义,是用于管理电子设备电源的芯片。
它可以实现对电能的变换、分配和控制等功能,以保证电子设备正常工作。
电源管理芯片在众多电子产品中都有应用,如计算机、通信设备、嵌入式系统等。
二、电源管理芯片引脚定义及功能电源管理芯片具有多个引脚,每个引脚具有特定的功能。
下面详细介绍一下各个引脚的定义及功能:1.VCC:电源管理芯片供电引脚,为芯片本身提供电源。
2.VDD:门驱动器供电电压输入或初级控制信号供电源引脚。
此引脚为门驱动器提供工作电压,同时负责接收初级控制信号。
3.VID-4:CPU 与 CPU 供电管理芯片 V1D 信号连接引脚。
这个引脚主要指示芯片的输出信号,使两个场管输出正确的工作电压。
4.RUNSDSHDNEN:不同芯片的开始工作引脚。
这个引脚用于控制芯片的启动和工作状态。
5.PGOOD:CPU 内核供电电路正常工作信号输出引脚。
当此引脚输出信号为高电平时,表示 CPU 内核供电电路正常工作。
6.VTTGOOD:CPU 外核供电正常信号输出引脚。
当此引脚输出信号为高电平时,表示 CPU 外核供电正常。
通过以上介绍,可以了解到电源管理芯片引脚的定义和功能。
第1页共1页。
便携产品电源管理芯片的设计技巧随着便携产品日趋小巧轻薄,对电源管理芯片也提出更高的要求,诸如高集成度、高可靠性、低噪声、抗干扰、低功耗等.本文探讨了在便携产品电源设计的实际应用中需要注意的各方面问题.便携产品的电源设计需要系统级思维,在开发手机、MP3、PDA、PMP、DSC等由电池供电的低功耗产品时,如果电源系统设计不合理,会影响到整个系统的架构、产品的特性组合、元件的选择、软件的设计以及功率分配架构等.同样,在系统设计中,也要从节省电池能量的角度出发多加考虑.例如,现在便携产品的处理器一般都设有几种不同的工作状态,通过一系列不同的节能模式(空闲、睡眠、深度睡眠等)可减少对电池容量的消耗.当用户的系统不需要最大处理能力时,处理器就会进入电源消耗较少的低功耗模式.从便携式产品电源管理的发展趋势来看,需要考虑以下几个问题:1. 电源设计必须要从成本、性能和产品上市时间等整个系统设计来考虑;2. 便携产品日趋小巧轻薄化,必需考虑电源系统体积小、重量轻的问题;3. 选用电源管理芯片力求高集成度、高可靠性、低噪声、抗干扰、低功耗,突破散热瓶颈,延长电池寿命;4. 选用具有新技术的新型电源芯片进行方案设计,这是保证产品先进性的基本条件,也是便携产品电源管理的永恒追求.便携产品常用电源管理芯片包括:低压差稳压器(LDO)、非常低压差稳压器(VLDO)、基于电感器储能的DC/DC转换器(降压电路Buck、升压电路Boost、降压-升压变换器Buck-Boost)、基于电容器储能的电荷泵、电池充电管理芯片、锂电池保护IC.选用电源管理芯片时应注意:选用生产工艺成熟、品质优秀的生产厂家产品;选用工作频率高的芯片,以降低周边电路的应用成本;选用封装小的芯片,以满足便携产品对体积的要求;选用技术支持好的生产厂家,方便解决应用设计中的问题;选用产品资料齐全、样品和DEMO易于申请、能大量供货的芯片;选用性价比好的芯片.LDO线性低压差稳压器LDO线性低压差稳压器是最简单的线性稳压器,由于其本身存在DC无开关电压转换,所以它只能把输入电压降为更低的电压.它最大的缺点是在热量管理方面,因为其转换效率近似等于输出电压除以输入电压的值.LDO电流主通道在其内部是由一个MOSFET加一个过流检测电阻组成,肖特基二极管作反相保护,输出端的分压电阻取出返馈电去控制MOSFET的流通电流大小,EN使能端可从外部去控制它的工作状态,内部还设置过流保护、过温保护、信号放大、Power-OK、基准源等电路,实际上LDO已是一多电路集成的SoC.LDO的ESD>4KV,HBM ESD>8KV.低压差稳压器的应用象三端稳压一样简单方便,一般在输入、输出端各加一个滤波电容器即可.电容器的材质对滤波效果有明显影响,一定要选用低ESR的X7R & X5R陶瓷电容器.LDO布线设计要点是考虑如何降低PCB板上的噪音和纹波,如何走好线是一个技巧加经验的工艺性细活,也是设计产品成功的关键之一.图1说明了如何设计走线电路图,掌握好电流回流的节点,有效的控制和降低噪音和纹波.优化布线方案是值得参考的.图1:LDO布线电路方案如果一个驱动图像处理器的LDO输入电源是从单节锂电池标称的3.6V,在电流为200mA时输出1.8V电压,那么转换效率仅为50%,因此在手机中产生一些发热点,并缩短了电池工作时间.虽然就较大的输入与输出电压差而言,确实存在这些缺点,但是当电压差较小时,情况就不同了.例如,如果电压从1.5V降至1.2V,效率就变成了80%.当采用1.5V主电源并需要降压至1.2V为DSP内核供电时,开关稳压器就没有明显的优势了.实际上,开关稳压器不能用来将1.5V电压降至1.2V,因为无法完全提升MOSFET(无论是在片内还是在片外).LDO稳压器也无法完成这个任务,因为其压差通常高于300mV.理想的解决方案是采用一个VLDO稳压器,输入电压范围接近1V,其压差低于300mV,内部基准接近0.5V.这样的VLDO稳压器可以很容易地将电压从1.5V降至1.2V,转换效率为80%.因为在这一电压上的功率级通常为100mA左右,那么30mW的功率损耗是可以接受的.VLDO的输出纹波可低于1mVP-P.将VLDO作为一个降压型开关稳压器的后稳压器就可容易地确保低纹波.开关式DC/DC升降压稳压器开关式DC/DC升降压稳压器按其功能分成Buck开关式DC/DC降压稳压器、Boost开关式DC/DC升压稳压器和根据锂电池的电压从4.2V降低到2.5V能自动切换降升压功能的Buck-Boost开关式DC/DC升降压稳压器.当输入与输出的电压差较高时,开关稳压器避开了所有线性稳压器的效率问题.它通过使用低电阻开关和磁存储单元实现了高达96%的效率,因此极大地降低了转换过程中的功率损失.Buck开关式DC/DC降压稳压器是一种采用恒定频率、电流模式降压架构,内置主(P沟道MOSFET)和同步(N沟道MOSFET)开关.PWM控制的振荡器频率决定了它的工作效率和使用成本.选用开关频率高的DC/DC可以极大地缩小外部电感器和电容器的尺寸和容量,如超过2MHz的高开关频率.开关稳压器的缺点较小,通常可以用好的设计技术来克服.但是电感器的频率外泄干扰较难避免,设计应用时对其EMI辐射需要考虑.图2给出了Buck开关式DC/DC应用线路设计,需要注图中粗线的部分:粗线是大电流的通道;选用MuRata、Tayo-Yuden、TDK&AVX品质优良、低ESR的X7R & X5R陶瓷电容器;在应用环境温度高,或低供电电压和高占空比条件下(如降压)工作,要考虑器件的降温和散热.必须注意:SW vs. L1距离<4mm;Cout vs. L1距离<4mm;SW、Vin、Vout、GND的线必须粗短.要得到一个运作稳定和低噪音的高频开关稳压器,需要小心安排PCB板的布局结构,所有的器件必需靠近DC/DC,可以把PCB板按功能分成几块,如图3所示.1. 保持通路在Vin、Vout之间,Cin、Cout接地很短,以降低噪音和干扰;2. R1、R2和CF 的反馈成份必须保持靠近VFB反馈脚,以防噪音;3. 大面积地直接联接2脚和Cin、Cout的负端.图2:Buck开关式DC/DC应用线路设计DC/DC应用举例:1. APS1006为MCU/DSP核(Core)供电;2. APS1006应用于电子矿灯(图3);3. APS1046应用于0.8-1.8微硬盘供电(图4);4. APS1006、APS4070应用于智能手机(图5).图3:APS1006应用于电子矿灯图4:APS1046应用于0.8-1.8微硬盘供电图5:APS1006、APS4070在智能手机上的应用电荷泵及其应用技巧电容式电荷泵通过开关阵列和振荡器、逻辑电路、比较控制器实现电压提升,采用电容器来贮存能量.电荷泵是无须电感的,但需要外部电容器.工作于较高的频率,因此可使用小型陶瓷电容(1μF),使空间占用最小,使用成本低.电荷泵仅用外部电容即可提供±2倍的输出电压.其损耗主要来自电容器的等效串联电阻(ESR)和内部开关晶体管的RDS(ON).电荷泵转换器不使用电感,因此其辐射EMI可以忽略.输入端噪声可用一只小型电容滤除.它输出电压是工厂生产时精密予置的,调整能力是通过后端片上线性调整器实现的,因此电荷泵在设计时可按需要增加电荷泵的开关级数,以便为后端调整器提供足够的活动空间.电荷泵十分适用于便携式应用产品的设计.从电容式电荷泵内部结构来看,它实际上是一个片上系统.电荷泵是一种无幅射的有效升压器件,它不使用电感器而使用电容器作为储能器件.在设计应用时需要注意电容器的容量和材质对输出纹波的影响.外部电容器的容量关系到输出纹波,在固定的工作频率下,太小的电容容量,将使输出纹波增大.输出纹波大小与电容器材料介质有关,外部电容器的材料类型关系到输出纹波.同一电荷泵,使用相同的容量和尺寸而不同材料类型的电容器,输出纹波的结果.在工作频率固定,电容器容量相同的情况下,优良的材料介质,将有效地降低纹波.选用低ESR的X7R & X5R陶瓷电容器是一种比较好的选择.LCD Module(LCM)是目前CP、MP3/MP4、PMP需求量较大的产品,在有限的PCB面积上,需要按装LCD屏、数码相机的镜头和闪光灯、音频DAC等器件,因此它需要封装很小的多芯片组合的电源模块(MCM),以减小电源IC所占PCB的面积,而手机产品又要求这些电源IC对RF几乎无干扰.电池充电管理芯片和锂电池保护IC锂电池充电IC是一个片上系统(SoC),它由读取使能微控制器、2倍涓流充电控制器、电流环误差放大器、电压环误差放大器、电压比较器、温度感测比较器、环路选择和多工驱动器、充电状态逻辑控制器、状态发生器、多工器、LED信号发生器、MOSFET、基准电压、电源开机复位、欠电压锁定、过流/短路保护等十多个不同功能的IC整合在一个晶元上.它是一个高度集成、智能化芯片.锂电智能充电过程:涓流充-->恒流充-->恒压充-->电压检测,因此电路设计的关键是要做到:充分保护、充分充电、自动监测、自动控制.锂电池保护电路是封装在锂电池包内的,它由一颗锂电池保护IC和二颗MOSFET组成.在图6中,OD代表过放电控制;OC 代表过充电控制;P+、P-接充电器;B+、B-接锂电池.锂电池保护电路简单工作原理如下:正常装态M1、M2均导通;过充电时M2 OC 脚由高电位转至低电位,电闸关闭,截止充电,实现过充电保护;充电电流方向P+-->P-;过放电时M1 OD脚由高电位转至低电位,电闸关闭,截止充放电,实现过放电保护;放电电流方向P- -->P+.图6:锂电池保护电路锂电池保护电路的PCB板是很小的,设计时必须注意:1. MOSFET尽可能接近B-、P-;2. ESD防护电容器尽可能接近P+、P-;3. 相邻线间距>0.25mm,通过电流大的线要放宽,地线加宽.电源管理芯片的低功耗OMAP系统设计随着半导体设计和制作工艺技术的不断提高,电路板上的期间运行速度将更快,体积将更小.供电系统要求更多的种类的电压、更低的供电电压和更大的供电电流电源设计不再仅仅局限于提供电流、电压和监控温度,还必须诊断电源供应情况、灵活设定每个输出电压参数.普通的模拟解决方案难以满足这些需求.数字电源的目标就是将电源转换与电源管理用数字方法集成到单个芯片中,实现电源转换、控制和通信.数字电源实现了数字和模拟技术的融合,具有很强的适应性和灵活性,具备直接监视、处理及适应系统条件的能力.数字电源还可通过远程诊断确保持续的系统可靠性,实现故障管理、过压过流保护、自动冗余等功能.但是数字电源不比传统的模拟电源效率更高,而且成本一般较高.目前数字电源需要大滤波器,这使其工作效率比模拟电源低.本文介绍一种在嵌入式数字信号处理器(DSP)OMAP5912上使用简单的数字电源实现系统低功耗设计的方法.使用TI公司的电源转换和电压监控芯片TPS65010实现对DSP系统各种状态的检测.在不同状态下输出不同的供电电压,减小供电电流,实现整个系统的低功耗运行.该设计方法适用于各种低功耗要求的手持电子设备.TPS65010是TI公司推出的一款针对锂离子供电系统的电源和电池管理芯片.TPS65010集成了2个开关电源转换器Vmain和Vcore、2个低压差电源转换器LD01和LDO2以及1个单体锂离子电池充电器,非常适合手持电子设备的应用要求.当12 V直流电源适配器接通时,芯片无需开关电路.在实际使用中,Vmain可以提供2.5~3.3 V电压,Vcore可以提供O.8~1.6 V 电压,LD01和LDO2可以提供1.8~6.5 V电压.各个不同电压下的电流一般可以达到400 mA,满足大部分手持设备的需求.可以通过I2C总线对TPS65010的各种寄存器进行设置,也可以通过通用的引脚将重要的信息通知TPS65010,例如可以通过LOW_POWER 引脚使TPS65010输出低功耗模式下的工作电压.OMAP5912是TI公司推出的嵌入式DSP,具有双处理器结构,片内集成ARM和C55系列DSP处理器.TI925T处理器基于ARM9核,用于控制外围设备.DSP基于TMS320C55X核,用于数据和信号处理,提供1个40位和1个16位的算术逻辑单元(ALU).由于DSP采用了双ALU结构,大部分指令可以并行运行,工作频率达到150 MHz,并且功耗更低.C55和ARM可以联合仿真,也可以单独仿真.OMAP5912内部专门配置了超低功率设备(Ultra Low Power Device,ULPD).ULPD模块内部结构如图1所示.从图1可以看出,ULPD模块主要由复位管理器、FIQ管理器以及睡眠模式状态机组成.片内ULPD和OMAP5912芯片内部的复位产生模块以及芯片IDLE和唤醒状态控制器相连接.片外ULPD的复位管理器负责检测上电复位和手动复位,并将片内的复位信号输出;FIQ管理器专门用于检测电池电压,一旦出现电池电压低于或高于系统要求,或者电池电源质量不高(纹波较大、过冲较大、瞬间脉冲较大)等,FIQ管理器将中断系统工作;睡眠模式状态机负责检测和输出不同的工作方式,在不同的工作方式下将提供不同的电压和电流,从而降低系统功耗.共有3种睡眠模式:正常工作模式、Big Sleep模式和Deep Sleep模式.2 系统硬件结构较完整的手持设备系统主要由OMAP5912、TPS6501O、AD/DA、LCD、SDRAM、人机接口以及Flash组成.其硬件连接如图2所示.图中,DSP是核心控制单元;AD用于采集模拟信号,并将其转变成数字信号;DA将数字信号转换成模拟信号;人机接口主要包括键盘接口.Flash保存DSP所需的程序,供DSP上电调用.此外,使用DSP的HPI接口连接到PC机.TPS65010和OMAP5912的连接是实现系统低功耗设计的关键,具体硬件连接如图3所示.TPS650lO可以提供OMAP5912所需的各种电压,但是核心运算单元需要的CVDDA以及重要外设需要的DVDD4由TPS7620l从Vmain电压转换得到.具体的TPS76201的硬件连接如图4所示.TPS7620l将Vmain的3.3V电压转换成1.6 V提供给OMAP,只要Vmain的电压不低于1.8 V,TPS76201都将稳定地输出1.6 V电压,以确保OMAP在任何情况下,即使是深度睡眠状态,核心运算单元和重要的外设都有稳定的电源保证.注意,如果不要求OMAP系统的低功耗设计,CVDDA和 DVDD4可以直接连接到Vcore.TPS65010的Vcore输出1.6 V电压提供给OMAP的其他核,这些核电压在低功耗状态下均可以降低到1.1 V.TPS65010的VLDO1和VLDO2输出2.75V电压提供给OMAP的其他外设,这些电压和常规的3.3 V存在一定的电压差,但不影响数据传输.一般情况下,高电平只要达到2 V以上就可以了;低功耗状态下,VLDO1和VLDO2都降低到1.1 V.使用2个LDO给不同的外设提供电压,是为了在Big Sleep状态下关闭某些外设并同时能够使能其他外设.如果不进行低功耗设计,可以使用同一个LDO提供电压.TPS65010的I2C总线连接到OMAP,便于OMAP对TPS65010的寄存器进行设置.TPS65010的RESPWRON引脚连接到OMAP 的Power_Reset引脚,上电复位后由TPS65010复位OMAP;TPS65010的LOWPWR引脚连接到OMAP的LOW_PWR引脚,OMAP进入低功耗状态由该引脚通知TPS65010,TPS65010将设定的各种电压降低,从而降低系统功耗.4 OMAP5912的低功耗软件设计OMAP5912有3种工作模式,分别为正常工作模式、Big Sleep模式和Deep Sleep模式.正常工作模式下,使能所有的内部时钟和外部时钟以及引脚,此时系统功耗最大,TPS650lO也按照正常工作方式供电.低功耗模式下,随时判断是否有芯片IDLE 请求,如果有则进入Big Sleep模式.在Big Sleep模式下,进一步判断是否有外部时钟请求,并根据情况进入Deep Sleep模式.在系统正常工作方式下,如果不需要进行低功耗设计,以上软件无需加入到应用程序中.进行低功耗设计时,就需要对OMAP的各种工作状态进行判断,要在应用程序中加入LOW_PWR信号使能、关闭DSP核、激活并设置唤醒事件、关闭ARM核、激活并设置深度睡眠等软件代码.5 总结本文详细介绍了基于TPS65010和OMAP5912的低功耗系统设计.使用TPS65010的多个电源输出引脚给OMAP的不同单元供电,以便在OMAP的不同工作模式下改变电压输出,降低系统功耗.OMAP根据自身的软件运行情况,随时调整工作模式,并通知TPS65010,使得软件和硬件在低功耗设计上得到互通.该设计方法适用于各种对功耗要求较高的电子设备.高级电源管理芯片FS1610及其应用Fsl610是一款采用专利数字技术生产的高级电源管理控制器件,该器件可为数码相机、智能手机、个人PDA和笔记本电脑等移动设备提供完全可编程的电源系统解决方案.与传统的电源管理方法相比,FSl610能节约20~40%的PcB面积,此外,其完全可编程的专利数字技术.还能极大缩短研发周期.加快产品上市进程.1 FSl610的主要功能IS1610内部的电压检测主要针对的是FSl610芯片的供电输入,而器件的输出则包括8个高效开关电源和3个低功耗LDO,表l所列是其电源输出列表.需要注意的是,FSl610的输出电压和电流都会受到输入电压、电感、电容以及外部诸多元件因素的影响.l 1电源输出FSl610提供有8个开关电源.3个LDO电源和1个始终开启的电源.对这些电源输出的控制一般有三种方式:其一是通过外部的PWREN使能输人引控制;其二是通过串行命令在使用过程中根据具体情况进行控制;第三则是按照EEPROM中的设置程序来执行.FS1610的电源输出主要用于降压转换、升压转换、白光LED驱动、低压差稳压、负升压转换和电池供电等.图I所示是用FSl610来驱动白光LED的驱动电路.1.2电源输入FSl610的供电电压范围是2.8~5.5 v.图2所示是S1610的供电输人以及AC适配器和电池之间的切换电路.其中VMAIN 为主电池比较器输入,用来直接监测电池的状态;VIN为主电源供电输入;DBOUT用于断开电池的输出,将它连接到一个外部的P 通道MOSFET,可当检测到电池的无电状态(DB)或者AC适配器有输入时,由该输出置位断开电池和主电源的连接;BATBU为备用电池输人,一般情况下,为了能使芯片正常操作,在BATBU输入引脚上一定要有电压;VBAT为始终开启的供电输出,可由内部开关控制,当SW[2]有效且稳定时,可将SW[2]连接到VBAT来提供电压;否则由BATBU给VBAT提供电压.1 3其他功能FSl610内有一个非易失存储器NVM(EEPROM),可用于保存启动的配置信息,这些信息包括通道电压、通道使能,禁止、个电源的开关顺序以及实时时钟、看门狗、中断等信息.FSl610可通过晶体时钟提供实时时钟的操作.而其可编程报警器则可向CPU发出中断.FSl610片内还集成有一个看门狗定时器,可通过EEPROM编程设置,其定时时间达32s,时间间隔是1ms.但是,由于达到定时时间时,芯片就会复位,所以,为了避免这种情况的发生,主机必须在程序设置的定时周期结束之前,对WDT进行复位.FSl610应由32.768 kHz晶振、或者具有合适的频率和电压的时钟源来为芯片提供内部时钟.而器件的CLKOUT输出引脚则能为外部提供32.768 kHz的输出.FSl610的nEXTON开关输人端一般连接到瞬间接触开关上,可用来控制芯片的开/关.FSl610分别为不同类型的处理器设计有两个复位输出nIRSTO和nRSTO,而手动复位输入nRSTI则主要用来启动一个硬件复位,以作为主机CPU的系统复位信号.FSl610在需要的情况下可提供中断,并向主机发出警报.这些警报包括低电压,电源通道故障,RTC警报等.同时可以通过串行命令来对中断进行操作.2 Fsl610的内部结构原理图3是FSl610模块的内部结构示意图.由图可见,FSl610以电源管理控制器为核心,可为外部设备提供丰富的电源通道.另外,配合电源管理.FSl610还提供有非易失性存储器NVM、实时时钟RTC、看门狗定时器WDT、中断、复位等系统控制模块.3工作模式FS1610有两种操作模式,分别为串行模式和独立模式.FSl610芯片片可通过I2C、SPI和ART串口来接受主机的控制和管理,也可以在启动后根据EEPROM加载的参数独立工作.低功耗是FSl610的最突出优势之一.该芯片上的各个功能模块在不需要操作时都可以关闭.已进人休眠状态.FSl610会根据不同的环境条件在5种电源状态下自动切换,以使功耗最小化.这5种状态分别为:无电(NOPOWER)状态、关断(SHUTDOWN)状态(即SD状态)、就绪(READY)状态、工作(ACTIVE)状态、低功耗(LOWPOWER)状态.设计时.可以对FS31610的多路电源进行灵活的配置和控制.除了对单个电源通道的开/关操作之外.还可以对电源通道进行分组,然后对各电源组进行操作.电源的启动和关闭顺序,也可以设置存储在EEPROM中,以便主机在操作的过程中来控制.FSl610对芯片提供有可能出现的各种故障的监测和管理.这些监测包括:受监测电源正常状态、电源通道故障、电池电压和备用电池监测、热关断、中断.此外,FS1610芯片还可根据EEPROM中的设置,对监测到的不同状态进行不同的操作.4基于FSl6l0的导航仪供电系统FSl610的多电源输出和电源管理功能在便携式设备中应用非常方便.图4是FSl610电源管理控制芯片在基于Sumsang 公司的ARM9处理器S3C2440的导航仪上的供电电路.根据系统的设计要求,该导航仪除了具有基本的GPS导航功能外.还需要高分辨率的液晶屏支持.为此,该系统选用的是LCD模块,该模块是已经包含了背光和控制电路的液晶屏,但需要+3.3 v和+5 v供电.表2所列出是该导航仪系统的电源需求.由于该导航仪通常是采用电池供电,故需要最小化的功率消耗,而且要求各外设都要由系统控制.在图4中用FSl610对导航仪系统进行供电的电源分配方案中,需要注意的是,LCD背光需要400mA电流的+5v供电,而FSl610的升压电路不能提供这么大的电流,因此,设计时应用一个外加的升压电路来提供LCD的背光电源.5结束语本文介绍了高级电源管理控制芯片FS1610的原理和功能,给出了一个FSl610在基于ARM9处理器S3C2440设计的导航仪上的应用方案.采用该方案进行供电的导航仪,不但可以自由控制各个模块电源的开和关,而且可以在不需要的时候关闭模块,以便最小化整个系统的功耗.与传统的方法相比,选用FSl610不但可以明显节省电路板面积.提供更多的通道电压.而且控制也更加灵活电源管理芯片在以太网供电中的应用什么是以太网供电?术语"以太网"是指 IEEE802.3 标准涵盖的各种局域网 (LAN) 系统.以太网协议是在工作场所,通过高速数据电缆将台式 PC 与中央文件服务器连接起来的协议.任何连接到以太网端口的设备,如数据终端、无线接入点、网络摄像机 (web cam) 或网络电话等,都需要通过电池或独立 AC 插座为自己供电.而更为优雅的方法则是能够向连接到以太网的任何设备同时传输电源和数据.如果这种传输方式能够利用现有的以太网布线,则可以保持 100% 的历史兼容性,那将再好不过了.这正是IEEE802.3af 规范中定义的以太网供电 (PoE) 标准所提供的内容.这一新标准于 2003 年 6 月由 IEEE 批准,是通过以太网发送和接收电源信号的标准.PoE 的优点在于:由于每个设备只需要一组连线,因此每个设备的布线更为简单和便宜;免去了 AC 插座和适配器,使工作环境更安全、整洁,成本也更低;可轻易地将设备从一处移至另一处;无间断电源可确保在 AC 电源断电时继续为设备供电;可对连接到以太网的设备进行远程监控.正是这些优点使得以太网供电成为一项从本质上改变了低功耗设备供电方式的全新技术.但就目前而言,推动 PoE 总有效市场增长 (TAM, Total Available Market) 的主力是两类用电设备:无线 LAN 接入点和 VoIP(网络语音)电话.至 2007 年,前者的复合年增长率 (CAGR) 为 38%,达 1500 万个(来源:iSuppli),而支持后者的企业网预计将达到 300 万个.对用电设备的这种需求反过来将推动现有以太网交换机向支持 PoE 功能转移的需求.这是通过使用"中继"(midspan) 来实现的,如图1所示.这些单元的增长至 2007 年预计将达到 800 万,增长率为 68%.在图1的示例中,源头的以太网交换机通过一个"中继"以太网供电集线器将电源"注入"局域网的双绞线电缆来提供 PoE 功能.新的以太网交换机将集成该"中继",从而实现向通过高速数据电缆连接的用电设备 (PD) 供电.这些用电设备可以是网络摄像机 (web cam)、网络语音电话、无线局域网接入点和其他电器设备.不间断电源 (UPS) 将提供备用电源,以防市电断电.电源管理器件用于转换电压和电流,可以用在以太网交换机中,以太网供电"中继"集线器中,以及位于用电设备中的DC-DC 转换单元中.下面各段将对这些功能中的每个功能分别进行讨论.。