过程控制工程课程设计-锅炉过热蒸汽温度控制系统.doc
- 格式:doc
- 大小:593.34 KB
- 文档页数:16
工业锅炉热工控制系统-过程控制课程设计报告书目录一、概述-----------------------------------------------------------------------2 1.1工业锅炉概述----------------------------------------------------------------21.2国内工业锅炉发展状况--------------------------------------------------------21.3国外工业锅炉发展状况--------------------------------------------------------21.4工业锅炉的调节任务----------------------------------------------------------2二、工业锅炉控制系统的基本任务和要求--------------------------------------------32.1给水控制系统----------------------------------------------------------------32.2过热蒸汽温度的调节系统------------------------------------------------------32.3燃烧调节系统----------------------------------------------------------------32.4锅炉的主要设计参数----------------------------------------------------------4三、工业锅炉自动控制系统方案的设计----------------------------------------------43.1给水控制系统----------------------------------------------------------------43.1.1 锅炉汽包给水控制对象的特点3.1.2锅炉汽包给水控制对象的动态特性3.1.3测量给水控制系统仪表的选择3.1.4给水控制系统的设计3.1.5给水控制系统的工作原理及SAMA图3.2过热蒸汽温度的调节系统-----------------------------------------------------103.2.1过热蒸汽温度的调节系统对象的动态特性3.2.3过热蒸汽温度的调节系统的设计3.2.4过热蒸汽温度串级控制系统的工作原理3.3燃烧调节系统---------------------------------------------------------------123.3.1燃烧调节系统的对象动态特性3.3.2测量燃烧调节系统仪表的选择3.3.3燃烧调节系统的设计3.3.4燃烧控制系统的工作原理及炉膛负压子系统的SAMA图四、锅炉的报警系统-------------------------------------------------------------17五、工业锅炉热工控制系统流程图-------------------------------------------------17六、设计小结-------------------------------------------------------------------18七、参考文献-------------------------------------------------------------------18八、附页-----------------------------------------------------------------------19一、概述1.1工业锅炉概述锅炉由汽锅和炉子组成。
North China Electric Power University 第三章锅炉蒸汽温度控制系统流经再热器侧的烟气量份额随锅炉负荷的降低而增加,在一定的负荷范围内维持再热汽温为额定值。
该调温方式以不牺牲电厂循环效率为基础,是最为经济的调温方式,但为增加调节灵敏度,再热系统也布臵两级减温器,第一级布臵在低温再热器进口集箱前的管道上(左右各一台),作为事故喷水减温器,第二级布臵在低温再热器至屏式再热器的连接管道上(左右各一台),作为微喷减温器。
以上两级喷水减温器均可通过调节左右侧的喷水量,以达到消除左右两侧汽温偏差的目的。
冷渣器所用水冷介质来自回热系统。
North China Electric Power University 第三章锅炉蒸汽温度控制系统一、再热汽温烟气挡板控制系统
North China Electric Power University 第三章锅炉蒸汽温度控制系统二、再热汽喷水控制系统。
XXXXXXXX大学本科生过程控制课程设计说明书题目:热电厂锅炉炉膛温度控制系统的设计学生姓名:学号:专业:班级:指导教师:摘要锅炉是热电厂重要且基本的设备 ,其最主要的输出变量之一就是主蒸汽温度。
主汽温度自动调节的任务是维持过热器出口汽温在允许范围内 ,以确保机组运行的安全性和经济性。
如果该温度过高 ,会使锅炉受热面及蒸汽管道金属材料的蠕变速度加快 ,降低使用寿命。
若长期超温 ,则会导致过热器爆管 ,在汽机侧还会导致汽轮机的汽缸、汽阀、前几级喷嘴和叶片、高压缸前轴承等部件的寿命缩短 ,甚至损坏;假如该汽温过低 ,会降低机组的循环热效率 ,一般汽温每降低5 ℃~10 ℃,效率约降低1 % ,同时会使通过汽轮机最后几级的蒸汽湿度增加 ,引起叶片磨损;当汽温变化过大时 ,将导致锅炉和汽轮机金属管材及部件的疲劳 ,还将引起汽轮机汽缸和转子的胀差变化 ,甚至产生剧烈振动 ,危及机组的安全 ,所以有效精准的控制策略是十分必要的锅炉炉膛温度的控制效果直接影响着产品的质量,温度低于或者高于要求时都不能达到生产质量指标,有时甚至会发生生产事故,此设计控制以锅炉炉膛温度为主控参数、燃料和空气并列为副被控变量设计热电厂锅炉温度控制系统,以达到精度在正负5 ℃范围内。
关键词:热电厂;锅炉;炉膛温度;串级控制目录引言 (4)第一章热电厂的工艺流程及要求 (5)第二章锅炉的工艺流程及控制要求 (7)2.1锅炉的工艺流程 (7)2.2锅炉的控制要求 (8)第三章锅炉炉膛温度的分析 (8)第四章锅炉炉膛温度控制系统的设计 (12)4.1炉膛温度控制的理论数学模型 (12)4.2炉膛温度控制方法的选择 (12)4.3 系统单元元件的选择 (12)4.3.1温度检测变送器的选择 (12)4.3.2流量检测变送器的选择 (14)4.3.3主、副调节器正反作用的选择 (15)4.3.4主、副回路调节器调节规律的选择 (16)4.3.5控制器仪表的选择 (16)4.3.6控制阀的选择 (18)第五章锅炉炉膛温度控制系统的工作原理 (19)第六章总结 (20)参考文献 (21)引言随着现代工业生产的迅速发展,对工艺操作条件的要求更加严格,对安全运行及对控制质量的要求也更高。
毕业设计 [论文] 题目:过热蒸汽温度控制系统设计系别:电气与电子工程系专业:自动化姓名:龚宏奎学号:122408121指导教师:任琦梅河南城建学院2012年05月20日摘要过热蒸汽温度控制系统是单元机组不可缺少的重要组成部分,其性能和可靠性已成为保证单元机组安全性和经济性的重要因素。
过热蒸汽温度较高时,机组热效率则相对较高,但过高时,汽机的金属材料又无法承受,气温过低则影响机组效率。
过热蒸汽温度的稳定对机组的安全经济运行非常重要,所以对其控制有较高的要求。
但是由于过热蒸汽温度是一个典型的大迟延、大惯性、非线性和时变性的复杂系统,本次设计采用串级控制以提高系统的控制性能,在系统中采用了主控-串级控制的切换装置,使系统可以适用于不同的工作环境。
通过使用该系统,可以使得锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器营壁温度不超过允许的工作温度。
关键词:过热蒸汽温度,减温水,串级控制系统,PIDABSTRACTThe superheated steam temperature control system is an important and indispensable unit aircrew part, its performance and reliability has become ensure safety and economic behavior of the unit aircrew important factors. The superheated steam temperature is higher, the thermal efficiency is relatively high, but is high, the metal materials and the turbine unable to bear, the temperature is too low will influence the unit efficiency. The superheated steam temperature stability of the unit safe and economic operation is very important, so for the control have higher requirements. But because the superheated steam temperature is a typical time-delayed, large inertia, nonlinear and changeable complex system, this design USES the cascade control in order to improve the control performance of the system, in the system by the master-cascade control of switching device, make the system can be used in different working environment. By using this system, can make the boiler overheating export steam temperature in allowed within the scope of the change, and the protection of superheater wall temperature not more than allow the camp of working temperature.Key words: the superheated steam temperature, reduce warm water, cascade control system, PID目录摘要 (I)ABSTRACT (II)1绪论 (1)1.1选题的背景及其意义 (1)1.2国内外研究现状 (1)1.3本次设计的目的 (2)1.4本次设计所做的工作 (3)2汽温控制系统的组成与对象动态特性 (4)2.1汽温调节的概念和方法 (4)2.1.1从蒸汽侧调节汽温 (4)2.1.2从烟气侧调节汽温 (5)2.2过热器的分类及基本结构 (7)2.2.1过热器的分类 (7)2.2.2过热器的基本结构 (9)2.3过热蒸汽温度控制系统的基本结构与工作原理 (11)2.3.1过热器一级减温控制系统 (11)2.3.2二级减温控制系统 (12)2.4过热蒸汽温度控制对象的动静态特性 (14)2.4.1静态特性 (14)2.4.2动态特性 (14)3过热汽温控制系统的基本方案 (18)3.1串级汽温控制系统 (18)3.2串级汽温控制系统的基本结构及原理 (18)3.3串级汽温控制系统的设计 (20)3.4串级汽温控制系统的整定 (21)4相关器件的选型 (25)4.1温度检测变送器的选择 (25)4.2控制器的选型 (26)4.3执行器的选型 (28)4.4阀门定位器的选型 (30)5主蒸汽温度控制系统的改进与仿真 (33)5.1Smith预估补偿器 (33)5.2改进型Smith预估器 (37)5.3带有改进型Smith预估器的主蒸汽温度控制系统设计与仿真 (40)6结论 (43)参考文献 (44)致谢 (45)附录 (46)1绪论1.1选题的背景及其意义过热汽温(过热蒸汽的温度)的控制就是维持过热出口蒸汽温度在允许范围内,并且保护过热器,使管壁温度不超过允许的工作温度。
1
青海大学
过程控制课程设计
实验名称: 锅炉过热蒸汽温度控制系统 姓 名: 才让加 学 号: 1020301025 所在院系: 化工学院化工机械系 专 业: 自动化 指导老师: 王淑钦 实验时间: 2013-12-02——2013-12-15 2
摘要 过热蒸汽温度的扰动来源很多,蒸汽流量、燃烧工况、进入过热器蒸汽的热焙、流经过热器的烟气温度和流速等的变化都会使过热蒸汽温度发生变化。而有些扰动间又相互影响,使对象动态过程变得复杂。但归纳起来,主要有三种扰动:蒸汽量、烟气量和减温水量。 本文是针对锅炉过热蒸汽温度控制系统进行的分析和设计。控制系统采用串级控制来控制减温器喷水量以提高系统的控制性能。喷水减温作为调节汽温的手段,根据汽温偏差来改变喷水量。通过使用该系统,可以使得锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器营壁温度不超过允许的工作温度。
关键字:扰动来源 过热蒸汽控制 串级控制系统 调节手段
1、生产工艺介绍 1.1 锅炉设备介绍 锅炉是工业过程必不可少的重要动力设备,它所产生的高压蒸汽既可作为驱动透平的动力源,又可作为精馏、干燥、反应、加热等过程的热源。随着工业生产规模的不断扩大,作为动力和热源的过滤,也向着大容量、高参数、高效率的方向发展。 锅炉设备根据用途、燃料性质、压力高低等有多种类型和称呼,工艺流程多种多样,常 用的锅炉设备的蒸汽发生系统是由给水泵、给水控制阀、省煤器、汽包及循环管等组成。 燃料与空气按照一定比例送入锅炉燃烧室燃烧,生成的热量传递给蒸汽发生系统,产生 饱和蒸汽,经过过热器形成过热蒸汽,在汇集到蒸汽母管。过热蒸汽经负荷设备控制,供 给负荷设备用,于此同时,燃烧过程中产生的烟气,除将饱和蒸汽变成过热蒸汽外,还经省 煤器预热锅炉给水和空气预热器预热空气,最后经引风送往烟囱排空。 3
图1 锅炉设备主要工艺流程图 锅炉设备的控制任务是根据生产负荷的需要,供应一定压力或温度的蒸汽,同时要使锅炉在安全、经济的条件下运行。按照这些控制要求,锅炉设备将有如下主要的控制系统: ①供给蒸汽量适应负荷变化需要或保持给定负荷。 ②锅炉供给用汽设备的蒸汽压力保持在一定范围内。 ③过热蒸汽温度保持在一定范围。 ④汽包水位保持在一定范围内。 ⑤保持锅炉燃料的经济性和安全性。 ⑥炉膛负压保持在一定范围。
1.2 蒸汽过热系统的控制 蒸汽过热系统则是锅炉系统安垒正常运行,确保蒸汽品质的重要部分。本设计主要考虑的部分是锅炉过热蒸汽系统的控制。 过热蒸汽温度的控制任务是维持过热器出口汽温在允许范围内,并且保护过热器使管壁温度不超过允许的工作温度.过热蒸汽温度是锅炉给水通道中温度最高的地方.过热器正常运行时的温度一般接近于材料所允许的最高温度.因此,过热蒸汽温度的上限一般不应超过额定值5℃(额定值为450℃ ).如果汽温偏低,则会降低全厂的热效应和影响汽轮机的安全运行,因而过热蒸汽温度的下限一般不低于额定值10℃。 过热蒸汽温度控制的主要任务就是: ① 克服各种干扰因素,将过热器出口蒸汽温度维持在规定允许的范围内,从而保持 蒸气品质合格: ②保护过热器管壁温度不超过允许的工作温度。 本次设计以控制减温水流量的变化来阐述对过热蒸汽温度的自动调节。 4
2、控制原理简介 2.1 过热蒸汽温度的动态特性 2.1.1蒸汽量扰动 当蒸汽量扰动时,沿过热器管道整个长度各点的温度几乎同时变化,过热器出口温度的阶跃响应曲线图2-a)所示。其特点是有迟延,有惯性,有自平衡能力,且T较小。当锅炉的蒸汽量增加时,对流式过热器和辐射式过热器的出口汽温随蒸汽量变化的方向是相反的。蒸汽量增加时,通过对流式过热器的烟量增加,烟温也随之升高,这两具因素都使对流过热器汽温升高。但是,由于蒸汽量增加时,炉膛温度升高较少,辐射传热量的增加比蒸汽量增加所需的吸热量增加要少,因此,当蒸汽量增加,辐射式过热器出口汽温是下降的。图2-b)表示了对流和辐射两种过热器出口汽温随蒸汽量变化的静态特性。通过对流过热器的受热面积大于辐射过热器的受热面积,对流方式比辐射方式吸热量为多,因此,总的汽温将随蒸汽量增加而升高。
图2 锅炉蒸汽量扰动过热器出口气温的阶跃响应曲线 蒸汽量变化对汽温变化的传递函数可用下式近似表示: sDDeSTKsDssG1)()()(
式中 kD──蒸汽量扰动时被调对象的放大系数
DT──对象的时间常数 5
τ──蒸汽量扰动时对象的迟延时间 蒸汽量扰动时过热蒸汽温度动态特性,但不用蒸汽量作为过热蒸汽温度的调节量,这里的蒸汽量代表锅炉负荷,其大小由外部负荷决定。
2.1.2烟气侧扰动 由于过热器是一个热交换器,过热器出口汽温反映了工质从过热器中带走的热量和从烟气侧吸收的热量之间的平衡关系。当烟气流量或烟气温度发生扰动时,过热蒸汽温度发生变化。在烟气侧扰动下汽温对象的动态特性如图3所示。其特点是:有迟延、有惯性、有自平衡能力。由于烟气侧扰动是沿过热器整个长度使烟气传热量发生变化,所以过热蒸汽温度响应较快,其迟延和惯性比其它扰动要小,但一般不用烟气侧作为调节手段来调节过热蒸汽温度。改变烟量或烟温时,会影响燃烧工况,与燃烧控制互相干扰,另外,烟气侧扰动也将影响再热蒸汽温度。现有电厂热控系统仅用烟气侧作为调节再热蒸汽温度的手段,而利用减温水量来调节过热蒸汽温度。
图3 烟气侧扰动时过热器出口气温的阶跃响应曲线 2.1.3减温水量扰动 改变过热器入口蒸汽温度可以有效地调节过热器出口蒸汽温度,这是应用较广的一种汽温调节手段,改变入口蒸汽温度可用喷水来进行。直接喷水减温系统如图4所示。采用减温器喷水减温时,要求有足够的调节余量,一般在减温器停运、锅炉出力最大时汽温要高于给定值约30~40℃。 6
图4减温水阶跃扰动时过热器出口气温的阶跃响应曲线 采用喷水减温调节过热蒸汽温度时,一般把过热器分成两个区域,如图4-a)所示,导前汽温θ2测点前至减温器为导前区,过热器出口汽温θ1测点到导前汽温测点为惰性区,其传递函数分别用G02(s)和G01(s)来表示,整个被调对象的传递函数用G(s)表示:
)()()()()()()()()()()(010212101202sGsGsWssGsssGsWssG
式中 2──导前汽温
1──过热器出口汽温
W──减温喷水量
在减温水量扰动时过热蒸汽温度被调对象的阶跃响应曲线如图5所示。 7
图5 减温水阶跃扰动时过热器出口气温的阶跃响应曲线 汽温对象的传递函数可用下式表示:
从阶跃响应曲线可以用工程方法求得G02(s)和G(s),在调节系统分析及调节器参数整定计算过程中,还需用到惰性区的传递函数)()()(2101sssG,它不能由阶跃响应曲线直接求得,只能根据已求得的G02(s)和G(s)来求得:
对于高、中压锅炉采用喷水减温,当减温水量扰动时,汽温对象的迟延时间τ≈30~60s,惯性时间常数T≈100s,而当烟气侧扰动时汽温对象的迟延时间τ≈10~20s,惯性时间常数T<100s。需要指出的是汽温对象传递函数表达式的放大系数K2和K是负值,K1为正值,分析和设计汽温调节系统时应充分考虑。 8
2.2控制方案选择 2.2.1单回路控制方案
在运行过程中。改变减温水流量,实际上是改变过热器出口蒸汽的热焙,亦改变进口蒸 汽温度,如下图所示。从动态特性上看,这种调节方法是最不理想的,但由于设备简单,因 此,应用得最多。 减温器有表面式和喷水式两种。减温器应尽可能地安装在靠近蒸汽出口处,但一定要考虑过热器材科的安全问题,这样能够获得较好的动态特蛀。但作为控制对象的过热器,由于管壁金属的热容量比较大,使之有较大的热惯性。加上管道较长有一定的传递滞后,如果用下图所示的控制系统,控制器接受过热器出口蒸汽温度变化后,控制器才开始动作,去控制减温水流量的变化又要经过一段时向才能影响到蒸汽温度这样,既不能及早发现扰动,又不能及时反映控制的效果,将使蒸汽温度发生不能允许的动态偏差。影响锅炉生产的安全和经济运行。
图6 实际中过热蒸汽控制系统常采用减温水流量作为操纵变量,但由于控制通道的时间常数及纯滞后均较大,组成单回路控制系统往往不能满足生产的要求。因此常采用串级控制系统,减温器出口温度为副参数,以提高对过热蒸汽温度的控制质量。
2.2.2串级控制方案
过热器出口蒸汽温度串级控制系统如下图所示。采用两级调节器,这两级调节器串在一起,各有其特殊任务,调节阀直接受控制器TC2的控制,而控制器TC2的给定值受到控制器TC1的控制,形成了特有的双闭环系统,由副调节器调节器和减温器出口温度形成的闭环称为副环。由主调节器和主信号出口蒸汽温度,形成的闭环称为主环,可见副环是串在主环之中。 控制器TC1称主调节器,控制器TC2称为副调节器。将过热器出口蒸汽温度调节器的输出信号,不是用来控制调节阀而是用来改变控制器TC1的给定值,起着最后校正作用。