核辐射探测技术
- 格式:docx
- 大小:1.09 MB
- 文档页数:9
核探测技术与核电子学-核探测技术与核电子学1、核辐射探测的主要内容有哪些?2、辐射探测器3、常见的核辐射探测器按工作原理可分成哪几类?4、闪烁计数器由哪几个部分组成?5、核辐射探测器输出的脉冲,其哪些参量与射线强弱、能量大小有着什么样的定性关系?6、按不同的分类标准,闪烁体分为哪几类?7、对用作核辐射探测器的闪烁体有哪些要求?8、对于分辨率分别为8%和13%的NaI(Tl)晶体,哪个晶体的能量分辨能力高?9、用好的NaI(Tl)晶体和光电倍增管,能量分辨率可达多大?10、量分辨能力与射线能量有何关系?11、探测效率12、常用的闪烁体有哪些?13、为什么NaI(Tl)探测器具有很高的探测效率?14、与NaI(Tl)探测效率有关的因素有哪些?15、使用NaI闪烁体有哪些注意事项?16、NaI(Tl)中含有少量的铊,铊起什么作用?使用时要注意什么?17、当NaI(Tl)晶体用来探测低能量X射线时,对晶体的封装有何要求?为什么?18、ZnS(Ag)闪烁体有哪些优缺点?19、CsI(Tl)闪烁体有哪些优缺点?20、简述对液体闪烁体的了解?21、简述光电倍增管及微通道板的作用。
二者有何特点、区别?22、简述光电倍增管的工作原理。
23、闪烁计数器由哪几部分组成?24、在闪烁计数器中,什么是光导?当光电倍增管与闪烁体不能直接接触时,怎么办?25、测量α射线采样哪种闪烁体?需要注意什么?26、测量β射线采样哪种闪烁体?需要注意什么?27、测量γ射线采样哪种闪烁体?28、光电倍增管各倍增极上的电压可以通过分压电阻得到,对分压电阻有何要求?为什么?29、影响闪烁计数器稳定性的主要因素有哪些?30、何为闪烁计数器的“坪”曲线?31、为什么要利用闪烁计数器的“坪”曲线?32、使用闪烁计数器有哪些注意事项?33、气体探测器有哪几种?34、电离室有哪两种类型?分别解释之。
35、在电离室中,造成谱线展宽最基本的因素是什么?能量分辨力由什么决定?36、气体放大现象37、与电离室相比,正比计数器有哪些优点?38、正比计数器可根据不同的探测对象充气,如探测热中子、探测快中子、探测X射线分别充什么气体?39、G-M计数器探测射线具有哪些优、缺点?40、使用G-M计数管有哪些注意事项?41、半导体探测器与气体电离室有何主要区别?42、列举几种半导体探测器。
核探测器原理-概述说明以及解释1.引言1.1 概述核探测器是一种用于探测和测量放射性物质的仪器。
随着核科学和辐射应用的发展,核探测器逐渐成为研究和工业领域中不可或缺的工具。
核探测器的作用是利用其特殊的工作原理,探测并记录放射性粒子的存在、类型、能量等信息。
核探测器的基本原理是基于放射性物质的放射性衰变现象。
放射性物质在其核不稳定的情况下,通过放射性衰变释放出粒子或射线,如α粒子、β粒子、γ射线等。
这些粒子或射线具有特定的能量和穿透力,可以被核探测器所感知和探测。
核探测器的工作原理可以分为几种不同的类型,包括闪烁体探测器、气体探测器、半导体探测器等。
闪烁体探测器通过闪烁效应将入射粒子的能量转化为可见光信号,然后通过光电倍增管等装置将光信号转化为电信号进行测量。
气体探测器则利用气体的电离效应将粒子的能量转化为电信号,通过电荷放大器等设备进行测量。
而半导体探测器则是利用半导体材料中的PN结构或PIN结构的电离效应来探测粒子的能量和位置。
总之,核探测器的发展为研究和应用放射性物质提供了重要的手段。
通过对核探测器的概述和工作原理的介绍,我们可以更好地理解核探测器的基本原理,为进一步的研究和应用奠定基础。
未来,随着科学技术的不断进步,核探测器将继续发展,并在核能、医疗、环保等领域发挥更大的作用。
1.2 文章结构本文将按以下结构来探讨核探测器的原理。
首先,在引言部分将概述本文涉及的主题,并介绍核探测器的基本概念和背景。
接着,本文将详细阐述核探测器的基本原理以及其工作原理。
在基本原理部分,将介绍核探测器是如何通过与射线、粒子相互作用来探测并测量核辐射的。
而在工作原理部分,将详细说明核探测器是如何工作的,包括其内部结构和探测过程。
最后,在结论部分,总结核探测器的原理,并探讨未来它的发展方向。
通过以上的结构安排,读者将能够全面了解核探测器的基本原理和工作原理,以及对其进行总结和展望未来的发展方向。
通过对核探测器原理的深入探讨,读者将能够更好地理解核探测器在科学研究、工业应用以及医疗诊断等领域的重要性,并进一步推动核探测器技术的发展和应用。
核辐射怎么检测
核辐射可以通过以下几种方法进行检测:
1. 个人辐射剂量计:个人辐射剂量计是佩戴在人体上的仪器,用于测量人体的辐射剂量。
它可以实时监测个人暴露的辐射剂量,并提供警报功能。
2. 环境辐射监测仪:环境辐射监测仪是专门用于监测周围环境中的辐射水平的设备。
它可以检测空气、水、土壤等环境中的核辐射水平,并提供实时数据。
3. 核辐射探测器:核辐射探测器是一种专门用于检测核辐射的设备。
它可以检测不同类型的辐射,如α粒子、β粒子、γ射线等,并提供相应的测量结果。
4. 核素识别仪:核素识别仪是一种用于识别和测量辐射源的设备。
它可以检测辐射源的特征特性,如能量谱、半衰期等,以确定辐射源的类型和强度。
以上是常见的核辐射检测方法,可以根据具体情况选择合适的仪器进行检测。
在核辐射环境中,及时准确地检测辐射水平对于保护人体健康和安全至关重要。
核辐射的计量单位与测量方法核辐射是指放射性物质放出的粒子或电磁波对人体或物体产生的影响。
了解核辐射的计量单位和测量方法对于保护人类健康和环境安全至关重要。
本文将介绍核辐射的计量单位和测量方法,并探讨其在现实生活中的应用。
一、计量单位核辐射的计量单位主要有三个:吸收剂量、剂量当量和活度。
1. 吸收剂量吸收剂量是衡量辐射能量在物质中的吸收程度的物理量。
它的单位是戈瑞(Gray,Gy),1戈瑞等于吸收1焦耳的辐射能量。
吸收剂量的大小取决于辐射的能量和物质的吸收能力。
不同类型的辐射对人体的伤害程度也不同,因此吸收剂量可以帮助我们评估辐射对人体的危害程度。
2. 剂量当量剂量当量是衡量辐射对人体造成的生物效应的物理量。
由于不同类型的辐射对人体的伤害程度不同,所以需要引入一个修正因子,将不同类型的辐射进行比较。
剂量当量的单位是希沃特(Sievert,Sv),1希沃特等于剂量当量1焦耳/千克。
剂量当量可以帮助我们评估辐射对人体的生物效应,从而采取相应的防护措施。
3. 活度活度是衡量放射性物质衰变速率的物理量。
它的单位是贝可勒尔(Becquerel,Bq),1贝可勒尔等于1秒内发生1次衰变。
活度可以帮助我们评估放射性物质的辐射强度,从而采取相应的防护措施。
二、测量方法核辐射的测量方法主要有三种:直接测量法、间接测量法和生物测量法。
1. 直接测量法直接测量法是指通过测量辐射源周围的辐射场强度来确定辐射水平的方法。
常用的直接测量仪器有辐射剂量仪和辐射监测仪。
辐射剂量仪可以测量辐射剂量率,即单位时间内所接收到的辐射剂量。
辐射监测仪可以测量环境中的辐射水平,包括空气中的辐射水平和食品、水等样品中的辐射水平。
2. 间接测量法间接测量法是通过测量放射性物质的衰变产物来确定辐射水平的方法。
常用的间接测量方法有闪烁体探测法和核磁共振法。
闪烁体探测法利用闪烁体对辐射的敏感性来测量辐射水平。
核磁共振法则利用核磁共振现象来测量样品中的放射性物质含量。
核辐射物理及探测学答案核辐射物理及探测学是研究核辐射的性质、产生机制、相互作用规律以及辐射测量和探测技术的学科。
下面是核辐射物理及探测学的答案参考:1. 什么是核辐射?核辐射是指核物质发生放射性衰变时释放出的高能粒子或电磁波的过程。
常见的核辐射有α粒子、β粒子和γ射线。
2. 核辐射的产生机制是什么?核辐射的产生机制主要包括原子核的自发衰变和核反应两种形式。
自发衰变是核物质内部没有外界原因的情况下自动发生的衰变过程,而核反应是核物质与其他物质相互作用时发生的核变化过程。
3. 核辐射与物质的相互作用规律有哪些?核辐射与物质的相互作用规律包括电离作用、激发作用和相互作用距离的特性。
电离作用是指核辐射通过与物质内部原子或分子的相互作用,将其电子从原子或分子中脱离的过程;激发作用是指核辐射使物质原子或分子的能级发生变化,但并没有电离的过程;相互作用距离的特性指的是不同类型的核辐射在物质中的相互作用长度和穿透深度的区别。
4. 核辐射的测量与探测技术有哪些?核辐射的测量与探测技术主要包括电离室、半导体探测器、闪烁体探测器、核废液谱仪等。
电离室是一种通过测量核辐射在气体中电离产物的形成量来确定辐射强度的装置;半导体探测器利用半导体材料特殊的电子结构对核辐射进行测量;闪烁体探测器则是利用某些材料在受到核辐射后会产生可见光信号的特性进行测量;核废液谱仪是一种用于测量放射性废弃物中放射性核素种类和浓度的仪器。
5. 核辐射的应用有哪些?核辐射的应用涉及核能、医学、工业等领域。
在核能方面,核辐射被用于核电站的能源生产;在医学方面,核辐射被用于放射治疗、核医学诊断等;在工业方面,核辐射被用于材料检测、气候变化研究等。
此外,核辐射还被用于食品辐照处理、碳测年等。
怎样测核辐射
测量核辐射需要使用特殊的仪器和设备。
常见的核辐射测量仪器有放射性侦测器和核辐射计。
以下是一种常见的方法测量核辐射:
1. 使用放射性侦测器:放射性侦测器可以检测和测量辐射来源的强度。
常见的放射性侦测器包括基于气体离子室原理的Geiger-Muller计数器和流量式电离室。
这些侦测器可以测量辐射的剂量率和累计剂量。
- 将放射性侦测器放置在要测量的区域,确保其曝露在辐射源周围。
- 读取侦测器上的剂量率或累计剂量指示器上的数值。
这些数值将显示辐射强度的度量单位,例如希沃特(Sievert)或格雷(Gray)。
2. 使用核辐射计:核辐射计是一种更高级和专业的仪器,用于测量和监测辐射化学内部的辐射水平。
- 首先,确保正确放置核辐射计的探测器,并确保其与测量区域接触。
- 打开核辐射计,启动测量程序。
- 核辐射计会测量辐射来源的电离辐射水平,并将结果显示在仪器的屏幕上。
无论使用哪种方法,进行核辐射测量时应注意以下事项:
- 使用合适的个人防护装备,如防护服、手套和面罩,以最大
限度地保护自己免受核辐射的影响。
- 在测量前和测量后校准测量仪器,以确保其准确性和可靠性。
- 学习正确使用和操作测量仪器的方法,以避免潜在的危险。
- 遵循当地和国家的辐射安全指南和法规,以确保安全操作和
处理可能的辐射源。
核辐射的单位和测量方法核辐射是指由放射性核素放射出的粒子或电磁波所产生的辐射。
它对人类和环境都具有潜在的危害,因此,准确测量核辐射的单位和方法至关重要。
本文将介绍核辐射的单位以及常用的测量方法,以增加对核辐射的了解和防范意识。
一、核辐射的单位核辐射的单位主要包括剂量当量、剂量率和活度。
1.剂量当量(equivalent dose)是衡量辐射对生物体产生的损伤能力的物理量。
它考虑了辐射的不同类型和能量,以及生物体对不同类型辐射的敏感程度。
剂量当量的单位是希沃特(Sievert,Sv)或戈瑞(Gray,Gy)。
希沃特是国际上常用的单位,1希沃特等于1戈瑞乘以辐射品质因子。
2.剂量率(dose rate)是单位时间内接受的辐射剂量。
剂量率的单位是希沃特每小时(Sv/h)或戈瑞每小时(Gy/h)。
3.活度(activity)是描述放射性物质衰变速率的物理量。
活度的单位是贝可勒尔(Becquerel,Bq),1贝可勒尔等于1秒内发生的衰变数。
在实际应用中,常用千贝可勒尔(kBq)或兆贝可勒尔(MBq)来表示。
二、核辐射的测量方法核辐射的测量方法主要包括直接测量法和间接测量法。
1.直接测量法是通过测量辐射粒子或电磁波的能量来确定辐射剂量。
常用的直接测量方法有电离室法、固态探测器法和闪烁体法。
- 电离室法利用气体电离现象来测量辐射剂量,通过测量辐射粒子在气体中所产生的电离电流来得到剂量当量或剂量率。
- 固态探测器法利用固态材料对辐射的敏感性来测量辐射剂量,常用的固态探测器有硅和锗。
- 闪烁体法利用某些物质在受到辐射后产生的闪烁现象来测量辐射剂量,常用的闪烁体有钠碘闪烁体和塑料闪烁体。
2.间接测量法是通过测量辐射引起的其他物理量来推算辐射剂量。
常用的间接测量方法有剂量计法和活度测量法。
- 剂量计法是通过测量辐射引起的物质的物理或化学变化来推算辐射剂量。
常用的剂量计有热释光剂量计、光刺激发光剂量计和电子自旋共振剂量计。
核辐射探测器的现状及其展望文章主要阐述了核辐射探测仪器的发展历史和国内外发展现状,并介绍了几款探测仪器及其相关技术,最后阐述了其技术的改进与发展趋势。
标签:核辐射探测;研究现状;展望一、核辐射探测器的发展历史核辐射探测器是通过使核辐射在气体、液体或者固体中发生电离效应、发光现象、物理变化或者化学变化来监测核辐射的仪器。
1896年法国科学家A.H.贝可勒尔研究含铀矿物质的荧光现象时,偶然发现铀盐能放射出穿透力很强可使照相底片感光的不可见射线。
不久人们在加有磁场的云室中研究这种射线时,证明它是由3种射线成分组成:α射线、β射线和γ射线。
贝可勒尔在发现放射性现象的同时使用照相底片(最初的核乳胶)实现了人类历史上的第一次核辐射探测。
云室、核乳胶等成为了最早的核辐射探测方法。
1908年,出现了气体电离探测器,但是还存在快速计数的问题。
而1931年由于脉冲计数器的出现,解决了快速计数问题。
1947年出现的闪烁计数器,利用物质密度远大于气体而提高了对粒子的探测效率。
例如使用的碘化钠(铊)闪烁体,对γ射线具有较高的能量分辨能力。
到了60年代初,半导体探测器的发明,促使能谱测量技术的发展。
对于现代用于核物理、高能物理等其他科学技术领域的各种探测器件和装置,都是以上面三种类型探测器件为基础经过不断改进创新而实现的。
现如今人们对核能利用的日益广泛,促进核监测能力不断发展。
迄今为止,核辐射探测仪器衍生了很多种类,所运用的原理也不尽相同,其与核辐射探测技术共同发展,相辅相成,都经历了计数、测谱以及图像显示等发展阶段。
能给出电信号的辐射探测器已不下百余种。
二、核辐射探测器的研究现状目前国内外针对不同场合、不同辐射种类、不同能量范围的辐射探测器有很多,其主要是利用粒子与物质之间的相互作用来进行工作,下面就对以下五大类探测器加以介绍。
(1)气体探测器:气体探测器作为一种核辐射探测器,其中最常用的比如有正比计数器(Proportional Counter)、盖革-弥勒(G-M)计数管等。
281009-0940(2020)-2-28-30核安保系统关键手段:辐射探测技术与设备陈俊松 李福龙 中广核贝谷科技有限公司 南昌市 330029摘 要:文章介绍了核安保的定义、辐射探测的基本原理和相关特性,以及不同辐射探测系统设备的组成及其优势。
针对核安保系统的特点和应用,分析了可以用于实物保护环节的各种辐射探测设备与仪器。
关键词:核安保 辐射探测 实物保护0 引言伴随着我国乃至世界核工业事业的蓬勃发展,核安保(Nuclear Security)与核安全(Nuclear Safety)逐渐成为了发展中的两大主要任务,也成为了参与核工业发展企业的主要责任。
在世界范围内,每天都有大量未经许可的核及其他放射性材料的运输和储存,甚至存在被恐怖主义组织所掌握用于制造恐怖事件的风险。
根据国际原子能机构(International Atomic Energy Agency,IAEA)非法贩运数据库(Incident and Trafficking Database ,ITDB)显示,自1993年以来,全世界发生的非法交易、盗窃或丢失事件达3371起。
针对核材料和其他放射性物质的储存监管、丢失、被盗和非法转移等核安保问题,核辐射探测技术与设备可以发挥重要作用。
1 核安保系统IAEA相关文件对核安保的定义是:预防、探测和应对核材料和其他放射性物质或相关核设施的偷窃、蓄意破坏、擅自接触、非法转移或其他恶意的行为。
其目标是为了避免人员、财产、社会和环境受到犯罪行为或未经许可的故意行为以及对核安保有不良影响的其他行为的辐射危害[2,3]。
核安保系统是由核材料衡算与控制、实物保护和保密等多项技术措施所构成的综合系统。
其中实物保护系统包括探测、延迟和响应三大子系统。
探测是指探知核安保事件发生并发出报警的技术手段;延迟是指能够延缓或阻止敌手实施行动的技术手段;响应是为终止核安保事件的发展而采取的快速行动[1]。
三者之中探测是所有行动的前提,在整个核安保系统中尤为重要,它包含了多种传感器和探测器,如雷达、红外、生物传感器和核辐射探测器等。
核辐射探测原理pdf全文共四篇示例,供读者参考第一篇示例:核辐射是一种高能辐射,常见的核辐射包括α、β、γ射线以及中子辐射。
核辐射对人体健康有较大危害,因此在核辐射探测方面起着非常重要的作用。
本文将探讨核辐射探测原理以及其在实际应用中的重要性。
一、核辐射探测原理核辐射探测原理是利用辐射入射到某些物质中,通过测量辐射对物质的作用产生的电离效应,来探测并测定核辐射的性质、强度和能量分布。
核辐射探测的基本原理可以分为以下几种方法:1. 光电探测技术光电探测技术是通过光电倍增管等光电器件,将入射的γ射线能量转化为光子,并经过电子乘法器件,使得原始的能量能够被测量出来。
光电探测技术具有高分辨率、高灵敏度和较好的线性响应等优点,是目前较为常用的核辐射探测方法之一。
2. 闪烁探测技术闪烁探测技术利用某些晶体或液闪材料,当核辐射入射到其表面时,会产生闪烁光,通过测量闪烁光的强度和时间等参数,来确定核辐射的性质。
闪烁探测技术具有高抗干扰能力和高能量分辨率等优点,被广泛应用于核辐射测量。
3. 半导体探测器技术二、核辐射探测在实际应用中的重要性核辐射探测在核工业、医疗诊断、环境监测等领域都有着重要应用。
下面将分别探讨核辐射探测在不同领域中的应用重要性:1. 核工业核工业是核能应用的主要领域之一,核辐射探测在核电站、核燃料生产及辐射监测等方面发挥着重要作用。
通过核辐射探测可以对核反应堆进行状态监测和辐射剂量测量,确保核电站的运转安全。
核辐射探测还可以用于核燃料的检测、测定和辐射保护等工作。
2. 医疗诊断核辐射在医疗领域的应用主要是核医学,如正电子发射断层扫描(PET)和单光子发射计算机断层摄影(SPECT)等。
核辐射探测可以用于医学显像和诊断,帮助医生准确判断患者的病情和疾病发展的情况,提高医疗治疗的准确性。
3. 环境监测核辐射探测在环境监测中的应用主要是通过辐射监测站测定环境中的核辐射水平,对环境的辐射水平进行监测和评估。
海水核辐射检测方法
海水核辐射检测方法是评估海水中的核辐射水平和监测核辐射污染的方法。
常见的海水核辐射检测方法包括以下几种:
1. 采样和分析法:通过采集海水样品,在实验室中进行核辐射分析。
常用的核辐射分析方法包括液体闪烁计数法、伽马射线分光法、液体闪烁计数法等。
2. 游离氚检测法:测定海水中游离氚的浓度。
游离氚是由核电站等人类活动释放到海洋中的主要核辐射源之一。
3. 伽马射线探测法:使用伽马射线探测器对海水进行辐射监测,可以实时测量伽马射线的强度,从而评估海水中的核辐射水平。
4. 快中子探测法:使用快中子探测器对海水进行辐射监测,快中子探测器可以探测出海水中的中子辐射水平,从而评估可能存在的核反应堆事故等情况。
5. 钚同位素测量法:测定海水中钚同位素的浓度,钚同位素是核电站等活动释放到海洋中的另一个主要核辐射源。
这些方法可以单独使用,也可以结合使用,以获得更全面的海水核辐射监测数据。
海水核辐射检测方法的选择通常取决于具体的监测需求和可用的设备与技术。
如何测核辐射
测量核辐射需要使用专业的辐射监测仪器,常见的包括:
1. 电离室:它可以测量空气中的辐射水平,包括α粒子、β粒
子和γ射线。
2. 闪烁计数器:使用闪烁物质来探测并计数入射粒子,用于测量α粒子和β粒子。
3. 固体核探测器:直接测量射线能量,可以测量α粒子、β粒
子和γ射线。
4. 液体核探测器:利用液体容器中的闪烁物质,可测量α粒子、β粒子和γ射线。
5. 核场效应探测器:根据核场效应的变化来测量辐射水平,通常用于测量中子辐射。
使用这些仪器时,需要按照使用说明进行操作,并根据需要选择合适的测量模式和探头。
辐射监测仪器通常会具有屏幕或指示灯显示读数,也可以通过连接到计算机或数据记录仪来记录和分析数据。
在进行测量时,需要注意以下几点:
1. 确保仪器正常工作,进行校准和背景测量。
2. 使用正确的单位进行测量,如放射性强度单位为贝可勒尔/
小时(Bq/h)或伽马/秒(γ/s)。
3. 遵循安全操作规程,并佩戴适当的防护设备,如防护服、手套和面罩等。
4. 将仪器放置在可能受辐射的区域进行测量,保持探头与可能辐射源的距离恒定。
5. 根据需要调整测量时间,以获得更准确的测量结果,长时间
测量可以减小波动。
请注意,核辐射测量是一个专业工作,如果您没有相关的知识和技能,请不要尝试个人测量,应该委托专业人员或机构进行测量。
在处理可能存在核辐射的环境时,请严格遵守和遵循相关的安全规定和指引。
第一题:推导1R=2.58×10-4 C/Kg 伦琴的定义:射线通过0.001293 g空气,因电离产生正负离子各一个静电单位的电量,那么这些空气的吸收剂量为1R。 一个静电单位的电量=3.3364×10-10 C
所以1R=3.3364×10−100.001293C/Kg
第二题:论述照射量X与吸收剂量D之间的关系与表达式 照射量为单位质量的空气中产生的电荷量,即:X=dQdm
吸收剂量为单位质量介质中的平均授予能,即:D=dεdm 照射量只能作为X或γ射线辐射场的量度,描述电离辐射在空气中的电离本领; 吸收剂量则可以用于任何类型的电离辐射,反映被照介质吸收辐射能量的程度。 对于同种类,同能量的射线和同一种被照物质来说,吸收剂量和照射量成正比。 吸收剂量和照射量如果在介质中某点m处引入小空腔,在m点中的照射量为X,吸收剂量和照射量的关系为:D=fx·X fx为由照射量到吸收剂量的转换因子为33.85Gy·kg/c
第三题:如何测量出1伦琴的X射线 气体探测器包括电离室,正比计数器和G-M计数器等。他们虽是比较早期的核辐射探测器,但由于它具有其它类型探测器不能取代的结构简单、性能稳定、价格低廉、适应较宽的温度范围等特点,至今仍有广泛应用。由于电离室,正比计数器和G-M计数器把核辐射转变为电信号的物理过程都是探测器内充特定气体的特定体积中进行的,所以它们统称气体探测器。 气体探测器是利用收集辐射射线与气体相互作用产生的电离电荷来探测辐射的探测器。通常是由高压电极和收集电极组成,电离电荷在收集极积累,在输出回路中形成电离电流,以电流的大小反应辐射射线的能量和强度。 电离:入射带电粒子通过气体时,由于与气体分子的电离碰撞而逐次损失能量,最后被阻止下来,碰撞使气体分子电离或激发,并在粒子通过的路径上生成大量的离子对(电子和正离子)。 电离过程包括入射粒子直接与气体分子碰撞引起的电离(初电离)以及由碰撞打出的高速电子所引起的电离(次电离)。 一、气体原子的电离和激发 带电粒子使气体原子电离而形成电子和正离子对的现象称为气体的电离。电离出来的电子称为次级电子,它们具有不同的动能,其中一些能量较大的电子还可以使气体分子电离。 大量的实验表明:在相当大的能量范围内,入射粒子在气体中产生的总电离粒子对数目N与它在气体中损失的能量E成正比,即: N=E/W W为平均电离能,它表示入射粒子在气体中产生一对离子对所平均消耗的能量。 二、离子对的漂移: 外电场中,电子和正离子从电场中获得了定向的加速度,它们分别向两电极运动。(电 子的漂移速度一般比离子的大1000倍,因为电子的平均自由程(相邻两次碰撞之间的平均距离)比离子的大数倍,而质量又比离子的小很多。电子的漂移速度对组成气体的成分非常敏感。)虽然它们运动时与气体分子碰撞而减速,但在电场中获得能量而加速,所以这种定向的漂移运动才能形成电流。 外部的直流电压源在气体探测器内部产生电场,电场强度的数值随着直流电压的增大而增大。被收集到气体探测器内的电子数目是否与工作气体中产生的N对离子对的数目相同呢?时间证明,并不正好等于N,而是随着外加直流电压V数值而变化,如下图所示。
收集的电荷数与外加电压的关系 三、气体电离室原理介绍: 气体电离室是最早出现的气体探测器。它的工作特点是:收集入射粒子在电离室中形成的全部离子对,外加电场使其既不产生复合也不发生气体放大。 按照工作方式分为两类:①脉冲电离室:记录单个入射粒子引起的电脉冲信号,脉冲工作方式。②电流电离室:记录大量入射粒子在单位时间内产生的平均电离电流。还有一种是记录一定时间内大量入射粒子产生的总累计电荷量,称为累计电离室。脉冲电离室是电离室的本征电流信号通过电离室的外部负载电路产生一个电脉冲信号,再送到电信号处理一起进行处理。而电流电离室是把一段时间内大量的本征电流信号累加起来得到一个慢变化的电流信号,再由仪器处理。
平行板电离室圆柱型电离室 上图为平行板电离室和圆柱型电离室。对圆柱型电离室而言,其金属外壳本身即为一电极,两电极之间用绝缘体隔开。而平行板电离室则需密封在一固定的容器内。保护极接地,使其点位与收集电极相同,以保证高压电极和收集电极之间不产生漏电流,同时也保持了收集电极边缘处电场的均匀性,限定了电离室的有效体积。实际使用时,在两电极上加工作电压,当射线射入电离室内,使其工作气体电离,于是电子和正离子在外电场作用下分别向两极漂移,从而产生本征电流信号。 四、γ与X射线的剂量测量 1.自由空气电离室 离开薄层造成的电离损失正好被进入层内的电子所得到的增益电离所补偿。当具有固定截面的平行X射线束沿Z方向穿过空气时,离开辐射源足够远的距离处,X射线和次级电子之间将沿Z轴达到平衡,即有多少电子产生在△Z层内,就有同样多少数量的电子终止于该层内。借助于收集和测量在已知厚度的空气层内所产生的电离,就能计算出在单位体积空气内由于射线和空气的相互作用而产生的电离。因此就可以计算以伦琴为单位的照射剂量。 自由空气电离室是一种与大气相通的电离室,主要用于照射量和空气比释动能的绝对测量,用作标准电离室。自由空气电离室由高压极、收集极、保护极、保护环、光阑和屏蔽外壳组成,其中有效测量体积和收集区如图。e1为电子损失修正,p2为散射光子,e2为散射光子修正。电离室的电极板与测量体积边缘的垂直距离大于次级电子的最大量程,保证测量体积内产生的次级电子,在电荷收集体积内损失其全部能量,以便将X射线限制在远离电离室电极的区域,使得在灵敏体积内产生的次级电子不能到达高压极和收集-保护极。
光阑(由重金属钨或金做成)准确的确定了X射线束的截面。射线在充空气的容器内的一对平行板之间通过。上板比下板电压高。下板由三部分组成——中心部位的收集电极和两边的保护板。上下板的电势差所产生的电场使得产生在图中虚线区域内的一种符号的全部离子移向收集电极。这种方法收集到的电量可借助于一个灵敏测量系统测定出来。 R=Q/AL*(0.001293/ρ)伦琴 Q是电离室内收集到的电量,单位为静电单位;A是光阑的面积,cm²;L是收集电极的宽度,cm。大多数自由空气电离室金属板的距离约为10~30cm,适用于一般的X射线(50-300kv)范围内。 五、测量照射量和吸收剂量的小空腔电离室 自由空气标准电离室是国家基准计量装置。但随着X或γ射线能量增大,次级电子射程
z 将很长,为满足电子平衡条件,将要求这种标准电离室尺寸做得很大,这在技术上有很多困难。因此,采用小空腔电离室来做测量照射量的刻度标准仪器。 布拉格-戈瑞公式:
mEw=Jg·𝑊 g·mSw/mSg 其中mEw为单位质量介质所吸收的能量;
Jg为介质中空腔内单位质量气体所形成的离子对数; 𝑊 g为空腔内气体中形成每个离子对所消耗的平均能量;
mSw/mSg为介质对气体的电子的质量碰撞阻止本领比值。 上式成立的条件是:在空腔气体中产生电离的全部电子都是在包围空腔的介质内产生的,因而空腔的存在不会扭歪电子的注量。 以布拉格-戈瑞理论为依据的空腔电离室目前广泛用于测量γ射线和X射线的照射量和吸收剂量。这种空腔电离室如下图所示:
球形空腔圆柱型空腔 空腔电离理论指出,为了测量照射量,可以使用任何壁材料和任何气体,只需要知道它们的阻止本领比值和在该气体中形成每个离子对所需要的平均能量。如果电离室的壁材料是碳,那么单位质量空气所吸收的能量为:
mEa=mEc·(mμen)a/(mμen)c 其中mμen为质量能量吸收系数,并有
mEw=Jg·𝑊 g·(mSw/mSg)·(mμen)a/(mμen)c) 如果在空腔内的气体为空气,角标g就代表空气。推导出的照射量计算公式为:
X(R)=1/2.58×10-4·Qa𝑉·ρ(mSw/mSg)·(mμen)a/(mμen)c)·∏Ki 其中1/2.58×10-4为由一个伦琴在千克空气中所产生的库仑数; Qa为测得的电荷(C); V为电离室的体积(m3); ρ为测量时的空气密度(kg/m2) ∏Ki为需要对实验条件下测得的电荷量加以校正的全部因子的乘积。
第四题:论述137CS 0.661Mevγ射线源在NaI(TI)闪烁探测器谱仪上形成的γ射线谱 γ射线光子是不带电的,它通过物质时不能直接使物质产生电离或激发。γ射线的探测主要依赖于使γ射线光子进行一次相互作用,将全部或部分光子能量传递给吸收物质中的一个电子。该电子的最大能量等于入射光子的能量。 一、闪烁探测器测量γ能谱的原理 闪烁探测器是由闪烁体、光的收集部件和光电转换器件组成的辐射探测器。当粒子进入闪烁体,闪烁体的原子或分子受激,受激原子退激而发出波长在可见波段的荧光。光的收集 部件使荧光尽量多地射到光电转换器件的光敏层上并打出光电子。这些光电子可直接或经过倍增后,由输出级收集而形成电脉冲。现代的闪烁探测器由光电倍增管和闪烁体结合起来。
NaI(Tl)闪烁探测器 1、 闪烁体的发光机制 闪烁体的种类很多,按其化学性质不同可分为无机晶体闪烁体和有机闪烁体。有机闪烁体包括晶体闪烁体、液体闪烁体和塑料闪烁体等。 最常用的无机晶体是NaI(Tl)闪烁体。碘化钠晶体在价带和导带之间有比较宽的禁带,如有带电粒子进人到闪烁体中,将引起电离或激发,可能有电子从价带激发到导带或激发到激带,然后这些电子再退激到价带。退激的过程中可能发射光子,这种光子可能被晶体吸收而不能被探测到,为此要在晶体中掺入少量的杂质原子(激活原子),碘化钠晶体中掺入铊原子,其作用是可以在低于导带和激带的禁带中形成一些杂质能级。这些杂质原子会捕获一些自由电子或激子到达杂质能级上,然后以发光的形式退激到价带,这就形成了闪烁过程的发光,而这种光因能量小于禁带宽度而不再被晶体吸收,不再会产生激发或电离。这说明只有加入少量激活杂质的晶体,才能成为实用的闪烁体。 2、 γ射线与物质的相互作用 测量γ射线的强度和能量。 前提条件:假定光子进入探测器是一个一个的,两个光子之间的时间间隔足够长,至少应大于探测器的分辨时间或γ射线测量仪的分辨时间。 γ射线光子与物质原子相互作用的机制主要有以下三种方式:光电效应、康普顿效应与电子对效应。根据γ射线与物质相互作用的过程推出由每一种效应得到的次级电子的能量及数目。探测器的输出脉冲幅度与次级电子的能量成正比。
对于低能γ射线与重物质(原子序数大),主要发生光电效应。 对于高能γ射线与重物质,主要发生电子对效应。 对中等能量的γ射线,在各种介质中,主要发生康普顿效应。