钛酸钡陶瓷制备工艺的总结
- 格式:docx
- 大小:29.47 KB
- 文档页数:5
钛酸钡陶瓷的制备方法嘿,咱今儿个就来聊聊钛酸钡陶瓷的制备方法。
你知道不,这钛酸钡陶瓷啊,那可是相当重要的材料呢!就好像是一个神奇的宝藏,等着我们去挖掘和打造。
要制备钛酸钡陶瓷,首先得有原材料呀,这就好比做饭得有食材一样。
钛酸钡粉末就是关键的原料之一,这就像是蛋糕里的面粉,是基础中的基础。
然后呢,还得有一些其他的辅助材料,就像是做菜要加调料一样,让整个过程更加完美。
接下来就是具体的操作啦!把这些材料按照一定的比例混合均匀,这可不是随便搅和搅和就行的哦,得细致得很呢,不然出来的东西可就不咋地啦。
想象一下,要是做饭的时候盐放多了或者放少了,那味道能好吗?混合好了之后,就得给它们来个“塑形大改造”啦,把它们变成我们想要的形状,这就像是捏泥巴一样,得有耐心和技巧。
然后,就到了关键的一步——烧结。
这就好比是把食材放进烤箱里烤,得掌握好温度和时间。
温度太高了不行,太低了也不行,时间长了不行,短了也不行,是不是很有讲究?在烧结的过程中,这些材料会发生奇妙的变化,就像毛毛虫变成美丽的蝴蝶一样。
等烧结完成了,哇哦,我们的钛酸钡陶瓷就初步成型啦!不过别急,还得进行一些后续的处理和加工呢,就像给做好的蛋糕再装饰一下,让它更加漂亮和完美。
你说这制备钛酸钡陶瓷是不是很有意思?就像是在创造一个小奇迹一样。
当然啦,这可不是随随便便就能做好的,得有专业的知识和技术,还得有足够的耐心和细心。
要是稍微马虎一点,那可能就前功尽弃啦!咱再想想,生活中很多事情不也是这样吗?要想做好一件事,就得认真对待,一步一个脚印地去努力。
就像制备钛酸钡陶瓷一样,每一个环节都不能马虎,都得用心去做。
所以啊,如果你对钛酸钡陶瓷感兴趣,或者对材料制备有兴趣,那可一定要好好研究研究这些方法。
说不定哪天你就能自己动手做出漂亮的钛酸钡陶瓷呢!那可真是太有成就感啦!别小瞧了自己哦,只要肯努力,啥都能做成!你说是不是这个理儿?。
.固相烧结法制备BaTiO3(BTO)陶瓷材料钛酸钡是电子陶瓷材料的基础原料,被称为电子陶瓷业的支柱。
它具有高介电常数、低介电损耗、优良的铁电、压电、耐压和绝缘性能,被广泛的应用于制造陶瓷敏感元件,尤其是正温度系数热敏电阻 ( ptc) 、多层陶瓷电容器 (MLccs) 、热电元件、压电陶瓷、声纳、红外辐射探测元件、晶体陶瓷电容器、电光显示板、记忆材料、聚合物基复合材料以及涂层等。
钛酸钡具有钙钛矿晶体结构,用于制造电子陶瓷材料的粉体粒径一般要求在100nm以内。
因此 BaTiO3 粉体粒度、形貌的研究一在此温度以下, 1460℃以上结晶出来的钛酸钡属于非铁电的六方晶系6/mmm直是国内外关注的焦点之一。
1 材料结构钛酸钡是一致性熔融化合物,其熔点为1618℃。
点群。
此时,六方晶系是稳定的。
在1460~130℃之间钛酸钡转变为立方钙.钛矿型结构。
在此结构中 Ti4+( 钛离子 ) 居于 O2-( 氧离子 ) 构成的氧八面体中央, Ba2+(钡离子 ) 则处于八个氧八面体围成的空隙中(见右图)。
此时的钛酸钡晶体结构对称性极高,因此无偶极矩产生,晶体无铁电性,也无压电性。
随着温度下降,晶体的对称性下降。
当温度下降到 130℃时,钛酸钡发生顺电 - 铁电相变。
在 130~5℃的温区内,钛酸钡为四方晶系 4mm点群,具有显著地铁电性,其自发极化强度沿 c 轴方向,即 [001] 方向。
钛酸钡从立方晶系转变为四方晶系时,结构变化较小。
从晶胞来看,只是晶胞沿原立方晶系的一轴( c 轴)拉长,而沿另两轴缩短。
当温度下降到 5℃以下,在 5~-90℃温区内,钛酸钡晶体转变成正交晶系 mm2点群,此时晶体仍具有铁电性,其自发极化强度沿原立方晶胞的面对角线 [011] 方向。
为了方便起见,通常采用单斜晶系的参数来描述正交晶系的单胞。
这样处理的好处是使我们很容易地从单胞中看出自发极化的情况。
钛酸钡从四方晶系转变为正交晶系,其结构变化也不大。
钛酸锶钡陶瓷的制备工艺总结摘要钛酸锶钡(BST)作为一种典型的铁电材料,因其电学性能、光学性能、热力学性能等方面具有独特的优势,在众多领域中占有非常重要的地位。
本文综述了当前钛酸锶钡的主要制备工艺及其优缺点,并对未来制备钛酸锶钡的工艺进行了展望。
关键词钛酸锶钡、制备工艺、优缺点、展望随着全球能源危机加剧,微电子技术和光催化技术越来越受到人们的重视,钛酸锶钡因具有较高的介电常数、优良的压电性能、较低的介电损耗、良好的化学稳定性、居里温度易调控以及能够产生较高的光生电位、具有较高的光催化活性等优点,被广泛应用于超级电容器、随机动态存储器、微波介质移相器、光解水产氢、光催化降解水中有机污染物等领域中。
钛酸锶钡(Ba1-xSrxTiO3)是一种具有ABO3型钙钛矿结构的铁电材料,由钛酸锶和钛酸钡按照一定比例固溶所得,而制备工艺的不同,往往会影响钛酸锶钡的微观形貌以及组织结构,进而改变钛酸锶钡材料的介电性能、居里温度以及光催化性能,因此对钛酸锶钡制备方法的总结非常必要。
本文从钛酸锶钡的制备工艺及其优缺点方面,综述了钛酸锶钡当前的研究进展,并且对其进行了展望。
1.钛酸锶钡的制备工艺目前,钛酸锶钡的制备工艺主要分为溶胶凝胶法、水热合成法、低温液相合成法、沉淀法、熔盐法、低温自蔓延法、固相烧结法、气相沉积法等[1]。
1.1.溶胶凝胶法:溶胶凝胶法是目前制备钛酸锶钡最常用的方法之一,通常是将锶盐和钡盐按照一定比例混合溶解,之后与溶于乙二醇甲醚中的钛酸正四丁酯溶液(钛前驱液)混合,不断搅拌直至澄清透明,再将溶胶陈化、干燥形成干凝胶,最后对干凝胶进行热处理获得纳米级钛酸锶钡粉末。
这种方法制备周期短,工艺简单,对设备要求不高,并且能够使反应物均匀混合、充分反应,制得的钛酸锶钡粒径小、催化活性较高,在光催化领域中应用更为广泛。
另外,该工艺可以较为容易地改变Ba/Sr比或对钛酸锶钡进行离子掺杂,因此引起了研究者的广泛关注。
化学化工学院材料化学专业实验报告实验实验名称:压电陶瓷材料钛酸钡的制备年级:2015级材料化学日期:2017/09/27姓名:汪钰博学号:222015316210016同组人:向泽灵一、预习部分钛酸钡(BaTiO3)是经典的铁电、压电陶瓷材料,由于其具有高的介电常数,良好的铁电、压电、耐压及绝缘性能,主要用于制作高电容电容器、多层基片、各种传感器、半导体材料和敏感元件;在电子陶瓷、化学化工、国防军事、航空航天等诸多领域中有着极为广泛的应用。
随着现代科学技术的飞速发展和电子元件的小型化、高度集成化,需要制备与合成符合发展要求的高质量的钛酸钡基陶瓷粉体。
目前钛酸钡的主要制备方法有固相法,即氧化物固相烧结法;液相法,即溶胶-凝胶法、水热法和共沉淀法等。
由于固相法无法对钛酸钡生产过程中粉体微观结构和性能进行物理、化学方法的有效控制,从8O年代开始,液相法逐渐成为各国普遍重视的方法。
水热法制备的粉体,由于特殊的反应条件,具有粒度小、分布均匀,团聚较少的优点,且其原料便宜,易得到符合化学计量比并具有完整晶形的产物;同时粉体无需高温煅烧处理,避免了晶粒长大、缺陷的形成和杂质的引入,具有较高的烧结活性等。
但这些工作或者合成的BaTiO3为亚稳态的立方相结构而非四方相,无法满足电子元件性能的需要;或者水热所需的温度高,时间长,从而导致设备成本过高;又或者水热合成需要使用有机钛为原料,从而导致生产成本过高。
这些原因导致无法实现四方相BaTiO3纳米粉末水热合成的规模化生产。
同时水热法在粉体中存在杂质,也限制了该法的应用,因此,尚未见该法在工业上应用的报道,基本上处于实验室探索的阶段。
溶胶---凝胶法多采用蒸馏或重结晶技术保证原料的纯度,工艺过程中不引入杂质粒子,所得粉体粒径小、纯度高、粒径分布窄。
但其原料价格昂贵、有机溶剂具有毒性以及高温热处理会使粉体快速团聚,并且其反应周期长,工艺条件不易控制,产量小,难以放大和工业化。
高性能钛酸钡陶瓷的制备工艺与应用钛酸钡因具有高介电常数、压电铁电性及正温度系数等优异性能而成为重要的陶瓷材料。
烧结工艺对钛酸钡陶瓷的致密化与显微结构具有重要影响;钛酸钡陶瓷存在介电常数随温度的变化率较大、介电损耗高、击穿场强低、本身存在薄层时吸收强度弱和带宽窄等缺点,常常通过掺杂改性来提高钛酸钡陶瓷的性能,而不同掺杂材料对钛酸钡陶瓷有着不同的影响。
钛酸钡陶瓷应用前景广阔,进一步研究更优良的钛酸钡陶瓷烧结工艺及掺杂工艺有着很重大的意义。
钛酸钡陶瓷烧结工艺目前钛酸钡陶瓷的烧结方式主要有无压烧结、高压烧结、微波烧结、毫米波烧结等。
【无压烧结】无压烧结在常压下进行烧结,主要包括常规无压烧结、两步法烧结、两段法烧结。
常规无压烧结方法是将陶瓷胚体通过加热装置加热到一定温度,经保温后冷却到室温以制备陶瓷的方法。
常规烧结采用高温长时间、等烧结速率进行,此方法需要较高的烧结温度(超过1000℃)和较长的保温时间。
如果烧结温度较低,则不能够形成足够的液相填充胚体里的气孔,材料晶界结合不好并且材料中存在较大的孔洞,此时材料的电性能较差;烧结温度过高,可能导致晶界的移动速度过快,出现晶粒异常增大现象。
两步法烧结的烧结流程为:陶瓷胚体通过加热装置加热到一定温度后不进行保温,立即以很快的速度降温到相对较低的温度进行长时间的保温。
与常规烧结方法相比,两步烧结法巧妙地通过控制温度的变化,在抑制晶界迁移(这将导致晶粒长大)的同时,保持晶界扩散(这是坯体致密化的动力)处于活跃状态,来实现晶粒不长大的前提下达到烧结的目的。
两段法烧结是指在相对较低的温度下保温一段时间,然后再在较高的温度下保温,最后自然冷却。
用此工艺可以降低烧结温度和缩短烧结时间,此方式可以用于烧结细晶钛酸钡陶瓷。
【高压烧结】高压烧结有两种方式,第一种为高压成型常压烧结,第二种为高压气氛烧结。
高压成型常压烧结中,样品在高压下再次加压后,颗粒之间的接触点增加且气孔减少,导致烧结前坯体的相对密度显著增加,而陶瓷烧结活性与样品的压坯密度紧密相关,所以烧结温度显著降低。
第1篇实验目的本实验旨在了解钛酸钡陶瓷的制备过程,掌握固相反应法合成钛酸钡陶瓷的实验步骤,并通过对实验结果的分析,探讨影响钛酸钡陶瓷性能的关键因素。
实验原理钛酸钡(BaTiO3)是一种具有钙钛矿结构的压电陶瓷材料,广泛应用于电容器、传感器、换能器等领域。
钛酸钡陶瓷的制备主要通过固相反应法,即利用高温使钡源和钛源发生化学反应,生成钛酸钡晶体。
实验材料1. 纯度≥99.9%的钛酸钡原料2. 纯度≥99.9%的钡源3. 纯度≥99.9%的钛源4. 纯度≥99.9%的氧化铝(Al2O3)作为助熔剂5. 砂轮研磨机6. 高温炉7. 精密天平8. 精密移液器9. 烧结炉10. 显微镜11. X射线衍射仪(XRD)实验步骤1. 原料准备:称取适量的钛酸钡原料、钡源、钛源和氧化铝,精确至0.01g。
2. 原料混合:将称取好的原料放入球磨罐中,加入适量的去离子水,开启砂轮研磨机进行球磨,时间为2小时。
3. 干燥:将球磨后的浆料在60℃下干燥12小时,得到干燥的粉体。
4. 压制成型:将干燥后的粉体进行压制成型,得到尺寸为10mm×10mm×1mm的陶瓷片。
5. 烧结:将陶瓷片放入高温炉中,在1300℃下烧结2小时。
6. 性能测试:对烧结后的钛酸钡陶瓷进行XRD分析,测定其物相组成;使用显微镜观察其微观结构;测量其介电常数和介电损耗。
实验结果与分析1. XRD分析:通过XRD分析,发现钛酸钡陶瓷主要成分为BaTiO3,没有其他杂质相生成。
2. 微观结构:通过显微镜观察,发现钛酸钡陶瓷晶粒尺寸均匀,分布良好。
3. 介电常数和介电损耗:测量结果表明,钛酸钡陶瓷的介电常数为3450,介电损耗为1.89%,满足实验要求。
结论本实验采用固相反应法成功制备了钛酸钡陶瓷,实验结果表明,该方法能够得到物相组成单一、微观结构良好的钛酸钡陶瓷。
通过调整原料配比、球磨时间、烧结温度等因素,可以进一步优化钛酸钡陶瓷的性能。
实验二溶胶-凝胶法制备钛酸钡纳米陶瓷粉体醋酸钡255.21、钛酸丁酯340.3实验二溶胶-凝胶法制备纳米钛酸钡陶瓷粉体一、实验目的1、了解溶胶-凝胶制备纳米粉体的方法2、制备纳米钛酸钡陶瓷粉体二、实验背景和原理1. 实验背景钛酸钡(BaTiO)具有良好的介电性,是电子陶瓷领域应用最广的材料之一。
传3制备方法是固相合成,这种方法生成的粉末颗粒粗且硬,不能满足高统的BaTiO3科技应用的要求。
现代科技要求陶瓷粉体具有高纯、超细、粒径分布窄等特性,与粗晶材料相比在物理和机械性能方面有极大的差别:熔点降低,烧结温度降低、荧光谱峰向低波长移动、铁电和铁磁性能消失、电导增强等。
溶液化学法是制备超细粉体的一种重要方法,其中以溶胶-凝胶法最为常用。
2. 溶胶-凝胶法合成BaTiO3纳米粉体的基本原理溶胶—凝胶(简称Sol—Gel)法是以金属醇盐的水解和聚合反应为基础的。
其反应过程通常用下列方程式表示:(1)水解反应:M(OR)4 + χ H2O = M(OR)4- χ OH χ + χ ROH(2)缩合-聚合反应:失水缩合-M-OH + OH-M-=-M-O-M-+H2O失醇缩合-M-OR + OH-M-=-M-O-M-+ROH缩合产物不断发生水解、缩聚反应,溶液的粘度不断增加。
最终形成凝胶——含金属—氧—金属键网络结构的无机聚合物。
正是由于金属—氧—金属键的形成,使Sol—Gel法能在低温下合成材料。
Sol—Gel技术关键就在控制条件发生水解、缩聚反应形成溶胶、凝胶。
本次实验使用的钛酸丁酯(亦称丁醇钛)是一种非常活泼的醇盐,遇水会发生剧烈的水解反应。
在Sol—Gel工艺中,让溶液系统暴露在空气中从空气中吸收水分,使水解反应不充分(或不完全),其反应式可表示为Ti(OR)4 + χ H2O = Ti(OR)4- χ OH χ + χ ROH (1)式中,R=C4H9为丁烷基,RO或OR为丁烷氧基。
未完全水解反应的生成物Ti(R)4-χ(OH)χ中的(OH)-极易与丁烷基(R)或乙羰基(R′=CH3CO)结合,生成丁醇或乙酸,而使金属有机基团通过桥氧聚合成有机大分子。
钛酸钡材料综述1.引言钛酸钡铁电陶瓷是20世纪中叶发展起来的一种性能卓越的介电材料,即便其发展时间较短,但其具有卓越的压电性能、介电性能及热释电性等,使其一跃成为功能陶瓷领域内极为重要的组成部分,并且其作为电子陶瓷元器件的基础材料,推动了电子工业的发展。
近些年,全球电子工业发展迅速,其高性能、高精度、小型化的特点对主要原料提出了更高的要求,这无形中也对钛酸钡铁电陶瓷的发展也提出了较高要求[1]。
在实际生产中,要求钛酸钡铁电陶瓷粉体超细、超纯,并对主要原料掺杂改性技术方面不断完善。
2.钛酸钡铁电陶瓷的主要制备技术钛酸钡铁电陶瓷材料的常用制备方法有固相合成法、液相合成法两大类。
针对每个大类的合成方法下面还包含了诸多支路,其具体操作各具特色。
传统固相合成法是一种常用的合成方法,但是由于该方法年代久远,因此所制备的产物粉体纯净度较低,且回收颗粒物体积大、化学活性较差,所以当前工业上使用该方法生产钛酸钡粉效果较差。
尤其是在电子产业中,对元件性能要求高,需要可靠、固态化、多功能性、多层化等高要求的元件。
面对此趋势,经过改进后的液相合成法可以达到较好的效果,液相合成法包括凝胶法、化学沉淀法、水热合成法等。
由于这些方法合成温度要求低且其各组分是在分子水平合成的,所以该方法制备出来得纯钛酸钡粉产物具有结晶性好、组成均匀、粒径可控、无团聚、纯度极高等优势,可充分发挥元器件的电子性能。
以钛酸四丁酯Ti(OC4H9)4(98.0%)、硝酸钡Ba(N03):(99.5%)和草酸H2C204(99.5%)为初始原料,在微波温度为80℃,微波时间为10 min,煅烧温度为700℃和煅烧时间为1 h的条件下制备一定量晶粒尺寸在30—50 nm的BaTiO,纳米粉放入研钵中,用浓度5%作为粘合剂的PVA溶液制造颗粒,再用80~120目的筛子对颗粒进行筛选。
每次称取0.35 g左右的样品放入模具中,在10 MPa 的压力下对粉体进行干压成型,最后对瓷坯进行排胶、烧结等后续处理。
钛酸钡生产工艺
钛酸钡是一种重要的无机化工原料,主要用于制备电子陶瓷材料、电容器等。
下面介绍钛酸钡的生产工艺。
钛酸钡的生产工艺主要包括钛酸的制备和钛酸与氧化钡反应制备钛酸钡两个步骤。
首先,钛酸的制备。
钛酸可通过钛酸酯的水解反应制备得到。
一般将钛酸酯溶解在适量的有机溶剂中,加入适量的氢氧化钠或氢氧化铵作为催化剂,然后进行加热反应。
反应结束后,用水稀释并过滤得到钛酸。
然后,将制备好的钛酸与氧化钡反应制备钛酸钡。
反应一般在高温下进行,首先将钛酸和氧化钡混合均匀,然后放入高温炉中加热。
反应过程中,钛酸与氧化钡发生化学反应生成钛酸钡。
反应结束后,将产物冷却并过滤,然后用水洗涤去除杂质,最后将产物干燥得到钛酸钡。
在实际生产中,为了提高反应效率和产物纯度,还可以采用其他一些辅助工艺。
例如,在钛酸制备过程中可以控制反应温度、反应时间和酸碱度,以调节钛酸的晶型和晶粒大小。
在钛酸与氧化钡反应过程中,可以在反应体系中添加一些助剂,如硝酸铜、硝酸镁等,以促进反应的进行并优化产物的性能。
总结起来,钛酸钡的生产工艺包括钛酸的制备和钛酸与氧化钡反应制备钛酸钡两个步骤。
通过控制反应条件和添加助剂等辅助工艺,可以提高反应效率和产物的纯度。
除了上述介绍的主
要工艺,钛酸钡生产过程中还可以根据具体需求进行调整和改进,以满足不同领域的应用要求。
化学化工学院材料化学专业实验报告实验名称:压电陶瓷钛酸钡的制备年级:09级材料化学日期:2011-9-7 姓名:蔡鹏学号:222009316210096 同组人:邹磊一、预习部分电子陶瓷用钛酸钡粉体超细粉体技术是当今高科技材料领域方兴未艾的新兴产业之一。
由于其具有的高科技含量,粉体细化后产生的材料功能的特异性,使之成为新技术革命的基础产业。
钛酸钡粉体是电子陶瓷元器件的重要基础原料,高纯超细钛酸钡粉体主要用于介质陶瓷、敏感陶瓷的制造,其中的多层陶瓷电容器、PTC热敏电阻器件与我们的日常生活密切相关,如PTC热敏电阻在冰箱启动器、彩电消磁器、程控电话机、节能灯、加热器等领域有着广泛的应用;MLC多层陶瓷电容在大规模集成电路方面应用广泛。
主要制备方法1,固相法,即氧化物固相烧结法2,液相法,即溶胶---凝胶法,水热法和共沉淀法等固相法简介:以氢氧化钡和钛酸丁酯为原料,采用固相研磨和低温煅烧技术相结合的方法制得钛酸钡纳米材料粉体。
用XRD、TEM、IR和ICP对粉体进行表征结果表明,所得钛酸钡粉体的粒径约为15—20nm,粒子形状近似为球形,晶体结构为立方相,钛钡物质的量比约为1.0.样品制备:称取4.679Ba(OH)2・8H20于研钵中研细后,为668~892℃时,存在于晶格中的羟基被除去。
加人1ml无水乙醇,拌匀,使Ba(0H)2・8HzO被乙醇充分湿润,然后加入5.oml钛酸丁酯(使反应物中钡与钛的物质的量之比为1.01t1.o).混匀后,研磨30min,得白色糊状物,放置24h,变为白色粉末状体。
研细后,置于马弗炉中在不同温度下煅烧3h(将1马弗炉加热到所需温度后再放入样品),产物冷却后。
用50ml0.1mol/L的HAc溶液浸泡1h(洗去反应过程中Ba(OH)2吸收空气中的C02生成的BaC03),离心分离。
先用蒸馏水洗涤3次,再用蒸馏水和无水乙醇交替洗涤2次,置于恒温干燥箱中于80℃干燥6h,得BaTiO。
钛酸钡纳米粉体的制备方法摘要:钛酸钡粉体是陶瓷工业的重要原料,本文将简要介绍钛酸钡纳米粉体的一些制备工业,如固相法、水热法、溶胶-凝胶法、沉淀法等。
关键词:钛酸钡;粉体;制备方法;1.引言钛酸钡是制备陶瓷电容器和热敏电阻器等许多介电材料和压电材料的主要原料, 近几年来, 随着陶瓷工业和电子工业的快速发展,BaTiO3 的需求量将不断增加,对其质量要求也越来越高。
制备高纯、超细粉体材料是提高电子陶瓷材料性能的主要途径。
所以高纯、均匀、超细乃至纳米化钛酸钡的制备研究一直是各国科学家的研究重点。
钛酸钡的应用越来越广泛。
目前制备钛酸钡的方法主要有:共沉淀法、溶胶- 凝胶法、固相法、反相微乳液法、水热法。
2.钛酸钡粉体的制备工艺2.1固相研磨-低温煅烧法传统钛酸钡的制备主要采用高温煅烧碳酸钡和二氧化钛的混合物或高温煅烧草酸氧钛钡的方法, 它是我国目前工业制备钛酸钡的主要方法, 但由于煅烧温度高达1000~ 1200℃, 因而制得的粉体硬团聚严重、颗粒大而粒度分布不均匀, 纯度低, 烧结性能差。
朱启安[1]等采用室温下将氢氧化钡与钛酸丁酯混合研磨, 再在较低温度( < 300 ℃) 下煅烧的方法制得了钡钛物质的量比约为1. 0、颗粒大小分布均匀、粒径在15~ 20nm 的钛酸钡纳米粉体, 既克服了高温固相煅烧法反应温度高、产品质量低的缺点, 又克服了液相法在水溶液中制备易引入杂质、粒子易团聚等缺点其煅烧温度比传统的固相反应法降低了约700 ~900℃2.2水热法合成水热合成是指在密封体系如高压釜中, 以水为溶剂, 在一定的温度和水的自生压力下, 原始混合物进行反应的一种合成方法。
由于在高温、高压水热条件下, 能提供一个在常压条件下无法得到的特殊的物理化学环境, 使前驱物在反应系统中得到充分的溶解, 并达到一定的过饱和度, 从而形成原子或分子生长基元, 进行成核结晶生成粉体或纳米晶[2]。
水热法制备的粉体, 晶粒发育完整、粒度分布均匀、颗粒之间少团聚, 可以得到理想化学计量组成的材料, 其颗粒度可控, 原料较便宜, 生成成本低。
化学化工学院材料化学专业实验报告实验实验名称:压电陶瓷材料钛酸钡的制备年级:2015级材料化学日期:2017/09/27姓名:汪钰博学号:222015316210016同组人:向泽灵一、预习部分钛酸钡(BaTiO3)是经典的铁电、压电陶瓷材料,由于其具有高的介电常数,良好的铁电、压电、耐压及绝缘性能,主要用于制作高电容电容器、多层基片、各种传感器、半导体材料和敏感元件;在电子陶瓷、化学化工、国防军事、航空航天等诸多领域中有着极为广泛的应用。
随着现代科学技术的飞速发展和电子元件的小型化、高度集成化,需要制备与合成符合发展要求的高质量的钛酸钡基陶瓷粉体。
目前钛酸钡的主要制备方法有固相法,即氧化物固相烧结法;液相法,即溶胶-凝胶法、水热法和共沉淀法等。
由于固相法无法对钛酸钡生产过程中粉体微观结构和性能进行物理、化学方法的有效控制,从8O年代开始,液相法逐渐成为各国普遍重视的方法。
水热法制备的粉体,由于特殊的反应条件,具有粒度小、分布均匀,团聚较少的优点,且其原料便宜,易得到符合化学计量比并具有完整晶形的产物;同时粉体无需高温煅烧处理,避免了晶粒长大、缺陷的形成和杂质的引入,具有较高的烧结活性等。
但这些工作或者合成的BaTiO3为亚稳态的立方相结构而非四方相,无法满足电子元件性能的需要;或者水热所需的温度高,时间长,从而导致设备成本过高;又或者水热合成需要使用有机钛为原料,从而导致生产成本过高。
这些原因导致无法实现四方相BaTiO3纳米粉末水热合成的规模化生产。
同时水热法在粉体中存在杂质,也限制了该法的应用,因此,尚未见该法在工业上应用的报道,基本上处于实验室探索的阶段。
溶胶---凝胶法多采用蒸馏或重结晶技术保证原料的纯度,工艺过程中不引入杂质粒子,所得粉体粒径小、纯度高、粒径分布窄。
但其原料价格昂贵、有机溶剂具有毒性以及高温热处理会使粉体快速团聚,并且其反应周期长,工艺条件不易控制,产量小,难以放大和工业化。
烧结法制备钛酸钡体系玻璃陶瓷及性能研究摘要:烧结法制备钛酸钡体系玻璃陶瓷是一种重要的陶瓷材料。
本论文以TiO2、BaCO3、SiO2、Al2O3为原材料,以Na2B4O7•10H2O作为助熔剂,采用烧结法制备了钛酸钡体系玻璃陶瓷。
通过对不同制备工艺参数的调节,得到了质地均匀、致密度高、抗压强度高的钛酸钡体系玻璃陶瓷。
运用XRD、SEM、DSC等技术手段,对制备的钛酸钡体系玻璃陶瓷进行了表征。
结果表明,制备的钛酸钡体系玻璃陶瓷晶相较多,致密度高,热膨胀系数低,具有良好的化学稳定性和机械性能。
本研究可为制备高性能钛酸钡体系玻璃陶瓷提供参考。
关键词:烧结法;钛酸钡;玻璃陶瓷;抗压强度;热膨胀系数Introduction:钛酸钡是一种优良的陶瓷材料,具有优异的耐热性、耐腐蚀性和机械性能,在航空、航天、军工和高科技领域得到广泛应用。
然而,制备高性能的钛酸钡陶瓷材料仍面临着一些问题,如晶相不纯、热膨胀系数偏大等。
因此,本论文旨在采用烧结法制备钛酸钡体系玻璃陶瓷,并对其性能进行研究。
Experimental section:以TiO2、BaCO3、SiO2、Al2O3为原材料,以Na2B4O7•10H2O作为助熔剂,采用烧结法制备钛酸钡体系玻璃陶瓷。
通过对不同制备工艺参数的调节,得到了质地均匀、致密度高、抗压强度高的钛酸钡体系玻璃陶瓷。
运用XRD、SEM、DSC等技术手段,对制备的钛酸钡体系玻璃陶瓷进行了表征。
Results and discussion:SEM图像显示,制备的钛酸钡体系玻璃陶瓷致密度高,质地均匀。
XRD分析表明,制备的钛酸钡体系玻璃陶瓷晶相较多,具有良好的化学稳定性。
DSC曲线表明,钛酸钡体系玻璃陶瓷的热膨胀系数低,在高温下具有较好的机械性能和稳定性。
抗压测试结果表明,制备的钛酸钡体系玻璃陶瓷具有优异的抗压强度。
Conclusion:本论文以TiO2、BaCO3、SiO2、Al2O3为原材料,以Na2B4O7•10H2O作为助熔剂,采用烧结法制备了钛酸钡体系玻璃陶瓷。
一、实验目的1. 了解钛酸钡的制备原理和工艺过程;2. 掌握钛酸钡的制备方法,提高实验操作技能;3. 熟悉钛酸钡的性质,为后续实验和研究提供基础。
二、实验原理钛酸钡(BaTiO3)是一种重要的电子陶瓷材料,具有优良的介电性能、压电性能和热电性能。
本实验采用高温固相反应法制备钛酸钡。
三、实验仪器与试剂1. 仪器:高温炉、研钵、烧杯、玻璃棒、电子天平、磁力搅拌器等;2. 试剂:钛酸四丁酯(C4H9O4Ti)、硝酸钡(Ba(NO3)2)、无水乙醇、蒸馏水等。
四、实验步骤1. 称取适量的钛酸四丁酯和硝酸钡,按照摩尔比1:1混合;2. 将混合物加入烧杯中,加入适量的无水乙醇,搅拌均匀;3. 将烧杯放入磁力搅拌器中,搅拌30分钟;4. 将搅拌好的混合物倒入研钵中,研磨至粉末状;5. 将研磨好的粉末放入烧杯中,加入适量的蒸馏水,搅拌均匀;6. 将烧杯放入高温炉中,升温至800℃,保温2小时;7. 取出烧杯,待冷却至室温,将产物取出,用蒸馏水洗涤,去除杂质;8. 将洗涤后的产物放入烘箱中,烘干至恒重;9. 将烘干后的产物进行研磨,得到所需的钛酸钡粉末。
五、实验结果与分析1. 实验结果:通过高温固相反应法制备的钛酸钡粉末,外观呈白色,粒度均匀,无明显杂质;2. 结果分析:本实验成功制备了钛酸钡粉末,符合实验要求。
在实验过程中,注意以下几点:(1)严格按照摩尔比混合钛酸四丁酯和硝酸钡;(2)搅拌过程中要均匀,避免产生气泡;(3)研磨过程中要充分,保证粉末粒度均匀;(4)高温保温过程中要控制好温度和时间,避免产物分解。
六、实验总结本实验通过高温固相反应法制备钛酸钡,操作简单,产物质量良好。
在实验过程中,需要注意实验条件对产物质量的影响,提高实验操作技能。
此外,本实验为后续研究钛酸钡的性质和应用提供了基础。
电子陶瓷材料纳米钛酸钡制备工艺的研究进展1 前言钛酸钡是电子陶瓷材料的基础原料,被称为电子陶瓷业的支柱。
它具有高介电常数、低介电损耗、优良的铁电、压电、耐压和绝缘性能,被广泛的应用于制造陶瓷敏感元件,尤其是正温度系数热敏电阻(PTC)、多层陶瓷电容器(MLCCS)、热电元件、压电陶瓷、声纳、红外辐射探测元件、晶体陶瓷电容器、电光显示板、记忆材料、聚合物基复合材料以及涂层等。
钛酸钡具有钙钛矿晶体结构,用于制粉体粒度、形造电子陶瓷材料的粉体粒径一般要求在100nm以内。
因此BaTiO3貌的研究一直是国内外关注的焦点。
钛酸钡粉体制备方法有很多,如固相法、化学沉淀法、溶胶—凝胶法、水热法、超声波合成法等。
最近几年制备技术得到了快速发展,本文综述了国内外具有代表性的钛酸钡粉体的合成方法,并在此基础上提出了研究展望。
2 钛酸钡粉体的制备工艺2.1 固相合成法固相法是钛酸钡粉体的传统制备方法,典型的工艺是将等量碳酸钡和二氧化钛混合,在1 500℃温度下反应24h,反应式为:BaCO3+TiO2→BaTiO3+CO2↑。
该法工艺简单,设备可靠。
但由于是在高温下完成固相间的扩散传质,故所得BaTiO3粉体粒径比较大(微米),必须再次进行球磨。
高温煅烧能耗较大,化学成分不均匀,影响烧结陶瓷的性能,团聚现象严重,较难得到纯BaTiO3晶相,粉体纯度低,原料成本较高。
一般只用于制作技术性能要求较低的产品。
2.2化学沉淀法2.2.1 直接沉淀法 在金属盐溶液中加入适当的沉淀剂,控制适当的条件使沉淀剂与金属离子反应生成陶瓷粉体沉淀物团。
如将Ba(OC3H7)2和Ti(OC5H11)4溶于异丙醇中,加水分解产物可得沉淀的BaTiO3粉体。
该法工艺简单,在常压下进行,不需高温,反应条件温和,易控制,原料成本低,但容易引入BaCO3、TiO2等杂质,且粒度分布宽,需进行后处理。
2.2.2 草酸盐共沉淀法 将精制的TiCl4和BaCl2的水溶液混合,在一定条件下以一定速度滴加到草酸溶液中,同时加入表面活性剂,不断搅拌即得到BaTiO3的前驱体草酸氧钛钡沉淀BaTiO(C2O4)4·4H2O(BTO)。
钛酸钡陶瓷片的生产工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!钛酸钡陶瓷片的生产工艺流程主要包括以下几个步骤:1. 原料准备首先,我们需要准备好生产钛酸钡陶瓷片所需的原材料,主要包括钛酸钡粉末、粘土、氧化锆等。
电子陶瓷材料钛酸钡的生产工艺及技术研究发布时间:2021-04-12T10:08:20.000Z 来源:《科学与技术》2020年36期作者:李明[导读] 本文论述了电子陶瓷材料钛酸钡的生产工艺及技术进展讨论李明广东风华高新科技股份有限公司电子工程分公司 526040摘要:本文论述了电子陶瓷材料钛酸钡的生产工艺及技术进展讨论了各种工艺的优缺点。
关键词:电子陶瓷材料;钛酸钡;生产工艺;技术1 用固态TiO2为原料将BaCO3和TiO2按1∶1的摩尔比混合研磨后在一定压力下成型再在电炉中煅烧煅烧温度最高为1250℃然后冷却、磨碎即得BaTiO3粉体。
另一方法是在氨气氛中煅烧BaCO3和TiO2来制备BaTiO3。
将BaCO3和TiO2混合研磨后于800℃保持3h停止通入氨气再于700℃在空气中保温2h即可得BaTiO3粉体。
该方法使煅烧温度由1250℃降低到700~800℃。
再一方法是将TiO2和过量2%~10%(质量分数)的BaCO3混和粉碎后加入20%~70%(质量分数)的Na2CO3、K2CO3或Li2CO3在熔盐中生产Ba-TiO3。
煅烧温度为600~1200℃去掉熔融的碱金属碳酸盐后得到BaTiO3粉体。
另有研究证明了将硝酸钡饱和溶液和TiO2按BaO∶TiO2为1∶08~10混合后在球磨机中磨匀然后加热并干燥这种混合物到含水量为3%~5%再在600~750℃煅烧05~15h所得产品用稀硝酸、水循环洗涤干燥即得产品。
该方法所得产品成本低纯度高粒径小但对环境污染严重。
固相法生产工艺简单成本低廉但煅烧温度高粒子容易烧结颗粒大且大小分布不均匀反应活性差纯度低。
虽在Na2CO3、K2CO3或Li2CO3等熔盐中反应所得粉体质量有所提高但仍需较高的反应温度。
2 以TiCl4为原料2.1 草酸盐沉淀法草酸盐沉淀法先由WSClabaugh提出多年来KUDAKA、Fang、Schrey以及我国的河北辛集化工厂、河北刑台有色冶炼厂、四川自贡市化工研究设计院等对此进行了不断的研究使其工艺不断完善。
钛酸钡陶瓷制备工艺的总结
摘要:钛酸钡陶瓷作为一种应用广泛的电子陶瓷原料,因其具有较高的介电
常数,良好的性能,在制作电容器介质材料和多种压电器件方面有着重要地位。
本文总结了钛酸钡陶瓷制备工艺方法及优缺点,对未来钛酸钡陶瓷制备工艺进行
了展望。
关键词:钛酸钡陶瓷、制备工艺、优缺点、展望
钛酸钡陶瓷是以钛酸钡或其固溶体为主晶相的陶瓷材料,是目前国内外应用
最广泛的电子陶瓷原料之一,由于其具有高的介电常数,良好的铁电、压电、耐
压及绝缘性能,主要用于制作高电容电容器、多层基片、各种传感器、半导体材
料等[1]。
钛酸钡陶瓷粉体是制备钛酸钡电子陶瓷的基础,制备工艺的不同,往往
会影响钛酸钡的微观形貌以及组织结构,进而改变其介电性能、居里温度等性质,因此对钛酸钡陶瓷制备方法的总结十分必要。
近年来,随着科技发展,人们对钛酸钡电子陶瓷材料的要求逐步提升。
为此,本文从钛酸钡陶瓷的制备工艺及其优缺点方面,对钛酸钡陶瓷当前的制备工艺进
行了综述和展望。
1.钛酸钡陶瓷制备工艺
钛酸钡陶瓷的制备工艺,大致可分为固相法、液相法和气相法三大类,其中
将溶胶-凝胶法单独拿出进行总结。
1.1.固相法
1.1.1.机械力化学法
机械化学合成法是将TiO
2和BaCO
3
粉体经混合球磨,诱导合成BaTiO
3
粉体,
再经造粒压片、固相烧结等制得陶瓷样品的方法,近年来发展迅速。
因其流程简单,合成粉体晶粒的尺寸小、分散较为均匀等优点,成为纳米粉末材料重要的制
备方式,但长时间的机械处理,使得能量消耗大,研磨介质磨损易造成物料污染,从而影响产品纯度。
蒲永平等[2]用球磨法合成BaTiO
3粉体时发现BaCO
3
和TiO
2
在球磨过程中会发
生凝聚,且BaCO
3是导致凝聚的主要原因,不均匀性导致BaTiO
3
介电性能恶化,
且搅拌磨制得的BaTiO
3
粉体介电性能比滚筒磨制得的更好。
1.1.
2.固相反应法
固相法通常是粉末碳酸钡和二氧化钛为主要原料进行混合研磨,经煅烧发生
固相反应合成BaTiO
3
粉体,进而制得钛酸钡陶瓷材料。
该方法工艺简单成熟,原
料价廉易得,产量高,广泛使用于工业生产,是我国目前最常见、经济可行的制
备方法,但杂质含量高,颗粒粒径大,均匀性差。
朱强等[3]用固相法,将原料球磨得到浆料,再通过烘干、研磨、煅烧等步骤
制备BaTiO
3
陶瓷,以烧结升温速率为变量,发现升温速率为5 ℃/min时有最大
介电常数3144,且随升温速率的增大四方相程度增强,而漏电流和压电系数则先
减小后增大,且出现最低点
1.2.溶胶-凝胶法(Sol-Gel)
溶胶-凝胶法通常将金属醇盐或无机盐按一定比例混合后溶于相应溶剂,制
成溶液,通过化学反应得到均匀溶胶,再将其陈化、干燥转变为干凝胶,随后进
行热处理,得到纳米粉体。
该方法制备周期短,工艺简单,过程易于控制,对设
备要求不高,能够使反应物均匀混合、充分反应,合成粒子粒径小,产物纯度高,前躯体活性较高,烧结温度较低。
但前躯体的制备大都需要有机试剂,危害人体
健康,且处理时间长,成本高。
谭宏斌等[4]以钛酸四丁酯和醋酸钡为主要原料制前驱体溶胶,用玻璃棒拉制
成纤维并煅烧冷却得BaTiO
3
陶瓷纤维,且发现900 ℃煅烧1 h可以得到表面较光滑且大小直径均匀的陶瓷纤维
1.3.液相法
1.3.1.水热合成法
水热合成法是一种在密封高压釜中,以水为溶剂,在一定温度和蒸汽压力下,将用溶胶凝胶法类似的方法制备的溶胶通过溶解和重结晶制备材料的方法。
该方
法合成温度低、晶粒尺寸小、晶粒分布均匀、粉体团聚现象少、原料便宜、晶型好、形状可控、纯度高、过程简单,已被广泛使用。
但粉体生产批量小,若要扩
大产量,对设备的要求将显著提高,成本也显著上升。
宋元元[5]通过研究水热法制备钛酸钡过程中温度、产物的洗涤循环次数等,
发现在180℃下,烧结BaTiO
粉体的四方畸变程度和粒径与洗涤循环次数有密切
3
联系。
1.3.
2.沉淀法
沉淀法是将原料通过一定条件,制备共沉淀混合物,再洗涤、干燥、焙烧得
到钛酸钡粉体的方法,可分为直接沉淀法、均匀沉淀法和共沉淀法。
如柠檬酸盐
共沉淀法易控制反应物化学计量比,前躯体活性较高,煅烧所需温度较低,但锻
烧过程中容易团聚,且会有较大的质量损失[6]。
陈杰等[7]采用微波辅助草酸盐沉淀法合成钛酸钡粉体,通过对陶瓷体积密度
进行计算,确定最佳温度为1270 ℃,通过比较晶粒尺寸与气孔数目,确定最佳
时间为3 h。
1.4.气相法
1.4.1.物理气相沉积(PVD)
物理气相沉积(PVD)是指采用物理方法将镀膜材料汽化,然后沉积在基体表
面形成覆盖层的方法,在制膜方面具有明显的优势,且设备可靠、工艺简单、可
大规模生产。
1.4.
2.化学气相沉积(CVD)
化学气相沉积(CVD)是利用含有薄膜元素的一种或几种气相物质,在特定条
件(加热、激光灯)下发生化学反应生成固态物质的方法。
其广泛用于材料净化、
新晶体研制、各种单晶、多晶的沉淀或玻璃态无机薄膜材料,尤其在薄膜制备上具有优越的特性[8]。
曾建明[9]等用常压金属有机化学气相沉积( APMOCVD)法在Si衬底上制备了高
质量的钛酸钡铁电薄膜,并发现BaTiO
3薄膜中很容易出现Ba
2
TiO
4
相。
2.总结与展望
目前,钛酸钡陶瓷的制备工艺渐趋于成熟,种类繁多各有优点,但存在一定的局限性:固相反应法和沉淀法虽经济可行,但产品杂质含量高,颗粒粒径粗,均匀性差;溶胶-凝胶法需大量长时间用到对人体有危害的有机试剂;机械力化学法和水热法,能耗大,设备需求高,成本高,无法大批量生产或扩大产量。
因此,钛酸钡陶瓷制备工艺需要更近一步的完善。
如固相法中在众多型号中选择合适的球磨机,控制烧结升温速率,提高产品性能;溶胶-凝胶法中,寻找适合、廉价的无机盐原料,降低成本,同时解决安全问题;采用新工艺如两步烧结法使陶瓷材料的晶粒均匀、内部气孔缝隙更少等。
希望能够不断与新技术相结合,进行完善。
参考文献
[1]苏毅,杨亚玲,李国斌.钛酸钡陶瓷粉体的合成技术[J].化工进
展,2001(02):48-51.
[2]蒲永平,赵新,王瑾菲,陈小龙,庄永勇.球磨工艺对钛酸钡陶瓷介电性能的影响[J].中国陶瓷,2009,45(06):21-23.
[3]朱强,周恒为,张超,尹红梅.烧结升温速率对钛酸钡陶瓷压电性能的影响[J].人工晶体学报,2017,46(07):1333-1337.
[4]谭宏斌,马小玲.溶胶-凝胶法制备钛酸钡陶瓷纤维[J].压电与声
光,2013,35(06):873-874.
[5]宋元元.合成法制备钛酸钡粉体影响变量分析[J].当代化工研
究,2018(08):120-122.
[6]马丹.钛酸钡的制备及其粉体性能表征[D].东北大学,2015.
[7]陈杰,车明超.钛酸钡陶瓷制备及介电性能研究[J].人工晶体学
报,2015,44(12):3628-3633.
[8]王立秋.钛酸盐粉体材料的制备研究[D].大连理工大学,2013.
[9]曾建明,王弘,王民,尚淑霞,王卓,程建功,林成鲁.钛酸钡铁电薄膜的常压MOCVD制备及其物理性质的研究[J].功能材料与器件学报,1997(02):41-47.
作者简介:李欣怿(2002-2)女;山东省泰安市;本科生;研究方向:材料类。