ANSYS基础4-建立有限元模型2010
- 格式:ppt
- 大小:1.28 MB
- 文档页数:80
ANSYS中如何处理奇异性方法在有限元分析中(FEA)中,必须适当地简化实体,我们很少分析包含所有细节的实体。
由于计算条件限制了模型的规模,权宜之下,通常简化螺纹孔、倒角、安装凸台和其它一些并不重要的部分。
因为简化一些无关紧要的细节能使分析求解尽可能地高效,减少占用的RAM、硬盘空间和CPU时间。
但问题是,随着倒角和其它一些细节被简化,在它们邻近区域内计算出的应力值可能不准确。
比如用一个尖角代替倒角,尖角处产生奇异,导致该处有无限大的应力集中因子。
虽然奇异并不防碍ANSYS在该处的应力计算,但计算的结果却不能反映真实应力,由于单元密度的疏密不同,计算的结果可能比实际值过高或过低。
虽然计算的应力值是不准确的,若位移值仍然是好的,且奇异产生的区域并不特别重要,该应力值则可以忽略,分析员可以放心的关注模型的其他部分。
有时,一些模型细节明显可以被简化,有时细节刚开始并不显得重要,但后来结果分析显示该细节是至关重要的,这也是应力分析学科的一个特点。
分析员必须运用他们的经验和直觉来判断设计细节的相关性能,确定它们能否被简化而不产生错误的结果。
我发现经验能使分析员的直觉灵敏,尽管如此,但仍可能出错,有时分析员并不能掌握细节的重要性,当他检查结果时才发现,简化了的细节其实是非常重要的。
象这样的情况,我们有几种选择方案。
一种是在模型中添加该细节重新计算,该方法适应于具有简单边界条件和相对比较简单的几何实体,并且重新分析所需要的时间也不太多。
如果第一次计算需要70个小时,且任务紧迫,那么修改并重新计算整个模型并非是很好的方式,此时应该应用已有的结果来得出精确的应力。
完成该任务的方法之一是子模型法,在包含细节的相关区域建立子模型来计算精确的应力。
在ANSYS在线文档中可获得子模型法,分析向导的“高级分析技术”章节中包含了ANSYS可以完成的各种类型子模型例子,包括“shell-shell”、“shell-solid”和“solid-solid”。
MASTA培训手册:在ANSYS Classic中建立要导入的有限元模型MASTA 5.4版商业机密目录1. 建立壳体模型并获取MASTA所需的文件 (1)1.1 内容 (1)1.2 导入几何模型并划分网格 (2)1.3 边界条件 (10)1.4 建立轴承处凝聚节点 (12)1.5 获取节点位置文件 (16)1.6 获取刚度矩阵文件 (17)1.7 导入从MASTA中得到的壳体载荷 (20)2. 建立一个轴模型并获取MASTA所需的文件 (25)2.1 导入几何模型并划分网格 (26)2.2 边界条件 (29)2.3 建立凝聚节点 (30)2.4 获取刚度矩阵 (39)2.5 导入从MASTA得到的位移 (40)3. 创建一个柔性齿圈的有限元模型 (42)3.1 内容 (42)3.2 箱体接地 (43)3.3 创建连接节点 (44)3.4 创建啮合节点 (45)3.5 假设 (48)4. 包括重力 (49)1.建立壳体模型并获取MASTA所需的文件1.1内容《MASTA 培训手册—有限元部件导入》说明了如何导入齿轮传动系统壳体的缩聚刚度到MASTA中来评价壳体的柔性对传动系统内部零件的影响。
在本章中我们论述创建一个壳体有限元模型的方法,在ANSYS Classic (ANSYS APDL)中准备获取节点坐标信息和对应于轴承节点位置缩聚刚度矩阵的模型。
1.2导入几何模型并划分网格在本节我们简单讨论在ANSYS中如何导入几何模型并自动划分网格。
对以上内容熟悉的用户可能想自己导入模型并分网,可以跳过本部分直接到B.3节。
导入几何模型ANSYS随许可证而定,支持导入多种格式,iges, step, proE等。
为了导入MASTA,在ANSYS中建立模型时,关于使用哪种类型的文件,没有特别的要求,因为MASTA只考虑由网格产生的缩聚的刚度和质量。
在本例中我们将导入iges格式文件,其它格式的导入过程是类似的。
ansys有限元分析实用教程2篇第一篇:ansys有限元分析实用教程(上)有限元分析是一种广泛应用的数值分析方法,可用于模拟和分析各种结构和系统的受力、变形及其他物理行为。
在ansys软件平台下,有限元分析功能十分强大,能够对各种工程问题进行有效的分析和解决。
本文将介绍ansys有限元分析的基础操作和实用技巧。
一、建立模型在进行有限元分析前,首先需要建立准确的模型。
在ansys中,可以通过多种方式进行几何建模,包括手工绘制、导入CAD文件、复制现有模型等。
为了确保模型的准确性,需要注意以下几个方面:1.确定模型的几何形状,包括尺寸、几何特征等。
2.选择适当的单元类型,不同形状的单元适用于不同的工程问题。
3.注意建模过程中的单位一致性,确保模型的尺寸和材料参数等单位一致。
4.检查模型建立后的性质,包括质量、连接性和几何适应性等。
二、设置材料参数和加载条件建立模型后,需要设置材料的弹性参数和加载条件。
在ansys中,可以设置各种材料属性,包括弹性模量、泊松比、密度等。
此外,还需要设置加载条件,包括加速度、力、位移等。
在设置过程中,需要注意以下几个方面:1.根据实际情况选择材料参数和加载条件。
2.确保材料参数和加载条件设置正确。
3.考虑到不同工况下的加载条件,进行多组加载条件的设置。
三、网格划分网格划分是有限元分析中的关键步骤,它将模型分割成许多小单元进行计算。
在ansys中,可以通过手动划分、自动划分或导入外部网格等方式进行网格划分。
在进行网格划分时,需要注意以下几个方面:1.选择适当的单元类型和网格密度,确保模型计算结果的准确性。
2.考虑网格划分的效率和计算量,采用合理的网格划分策略。
3.对于复杂模型,可以采用自适应网格技术,提高计算效率和计算精度。
四、求解模型建立模型、设置材料参数和加载条件、网格划分之后,即可进行模型求解。
在ansys中,可以进行静态分析、动态分析、热分析、流体分析等多种分析类型。
分析过程(1)首先建立有限元模型,这里我们选用ANSYS软件自带的专门针对混凝土的单元类型Solid 65,进入ANSYS主菜单Preprocessor->Element Type->Add/Edit/Delete,选择添加Solid 65号混凝土单元。
(2) 点击Element types窗口中的Options,设定Stress relax after cracking为Include,即考虑混凝土开裂后的应力软化行为,这样在很多时候都可以提高计算的收敛效率。
(3) 下面我们要通过实参数来设置Solid 65单元中的配筋情况。
进入ANSYS主菜单Preprocessor-> Real Constants->Add/Edit/Delete,添加实参数类型1与Solid 65单元相关,输入钢筋的材料属性为2号材料,但不输入钢筋面积,即这类实参数是素混凝土的配筋情况。
(4) 再添加第二个实参数,输入X方向配筋为0.05,即X方向的体积配筋率为5%。
(5) 下面输入混凝土的材料属性。
混凝土的材料属性比较复杂,其力学属性部分一般由以下3部分组成:基本属性,包括弹性模量和泊松比;本构关系,定义等效应力应变行为;破坏准则,定义开裂强度和压碎强度。
下面分别介绍如下。
(6) 首先进入ANSYS主菜单Preprocessor-> Material Props-> Material Models,在Define Material Model Behavior 窗口中选择Structural-> Linear -> Elastic-> Isotropic,输入弹性模量和泊松比分别为30e9和0.2(7) 下面输入混凝土的等效应力应变关系,这里我们选择von Mises屈服面,该屈服面对于二维受力的混凝土而言精度还是可以接受的。
在Define Material Model Behavior 窗口中选择Structural-> Nonlinear-> Inelastic-> Rate Independent-> Isotropic Hardening Plasticity-> Mises Plasticity-> Multilinear,输入混凝土的等效应力应变曲线如下图所示。
ANSYS是目前工程领域中应用十分广泛的有限元分析软件,它的ESOL命令能够用来求解应变时程曲线。
在工程实践中,我们经常需要了解材料在受力作用下的应变变化情况,而应变时程曲线正是能够很好地反映材料应变随时间的变化规律。
本文将重点介绍ANSYS中ESOL命令的应变时程曲线求解方法,希望能够对工程技术人员提供一些参考和帮助。
一、ESOL命令概述1. ESOL命令是ANSYS中用于求解非线性动态分析问题的一种命令。
它能够对结构在受力作用下的动态响应进行分析,包括应变、应力等参数的变化情况。
2. ESOL命令主要包括了动态显式分析、动态隐式分析、多步动态分析等功能,能够满足不同分析需求。
3. 在实际工程应用中,ESOL命令可以结合材料的本构模型、加载条件等参数,对结构在复杂受力情况下的应变时程曲线进行求解,为工程设计提供重要参考。
二、应变时程曲线的意义1. 应变时程曲线是指材料在受力作用下,应变随时间的变化曲线。
它能够直观地反映材料的变形和破坏情况,是工程分析和设计中重要的参考依据之一。
2. 通过应变时程曲线,我们可以了解材料在受力作用下的变形情况,判断结构的安全性和稳定性,为工程实践提供重要的依据。
3. 应变时程曲线还能够为材料性能参数的确定提供数据支持,对于新材料的应用和开发有着重要的意义。
三、ESOL命令求应变时程曲线的方法1. 在ANSYS中,使用ESOL命令求解应变时程曲线的方法通常包括以下几个步骤:(1)建立有限元模型。
首先需要根据实际工程情况,建立相应的有限元模型,包括结构几何形状、材料属性、边界条件等。
(2)设置加载条件。
根据实际受力情况,设置加载条件,包括动态载荷、静载荷等。
(3)定义材料参数。
根据材料的本构模型,定义材料参数,如弹性模量、泊松比等。
(4)求解应变时程曲线。
通过ESOL命令,进行应变时程曲线的求解和分析,得到材料在受力作用下的应变变化情况。
2. 在实际应用中,需要根据具体的工程情况和分析要求,灵活选择ESOL命令的参数设置和求解方法,以获得准确、可靠的分析结果。
第2章ANSYS有限元分析典型步骤ANSYS有限元分析通常包括以下典型步骤:1. 建立几何模型:首先,需要根据实际情况建立一个准确的物体几何模型。
可以使用ANSYS的建模工具,如DesignModeler或SpaceClaim 等,或者根据实际测量数据导入几何模型。
2.定义材料属性:对于每个组件或部件,需要定义其材料属性。
这包括材料的弹性模量、泊松比、密度等。
可以根据实际材料性能值,或通过实验测量获得的数据进行定义。
3. 网格划分:在进行有限元分析之前,需要将几何模型划分为离散的小单元,也就是网格。
网格的划分可以使用ANSYS的网格划分工具,如Meshing或Tetrahedron等。
网格的质量对分析结果影响很大,因此需要注意网格的尺寸和形状。
4.边界条件的定义:在有限元分析中,需要定义加载条件和边界条件。
加载条件包括模型所受到的力或压力,边界条件包括模型的约束条件。
根据实际情况,可以在加载面上应用力或压力,并在其他面上施加约束条件,如固定、自由、对称等。
5.约束和加载条件的应用:在ANSYS中,可以通过指定加载和约束条件来模拟实际问题的工作条件。
可以使用ANSYS的加载和约束工具来定义这些条件,并将其应用于相应的面或区域。
6.求解计算:在有限元分析中,需要对模型进行数值求解以获得结果。
ANSYS提供了强大的求解器,可以对各种非线性和线性问题进行求解。
可以选择适当的求解方法和参数,并启动求解计算。
7.结果分析:一旦求解过程完成,可以对分析结果进行分析和解释。
ANSYS提供了丰富的后处理工具,可以显示网格变形、应力和应变分布、位移和振动模式等相关结果。
根据需要,可以导出结果并使用其他软件进一步分析。
8.结果验证和优化:根据结果分析,可以对模型和分析设置进行验证和优化。
结果验证通常是与实验数据进行比较,以确定模型的准确性。
优化可以是调整材料属性、几何形状或边界条件等,以提高模型性能。
9.报告和展示:最后,需要编写分析报告,并通过图形和表格等方式展示分析结果。
目录第一章模型概述 (1)1.1 模型简介 (1)1.2 材料特性 (1)1.3 受力分析 (2)第二章有限元分析 (3)2.1 使用软件 (3)2.2 基础操作准备 (3)2.3 静力学分析 (4)2.3.1 约束和受力 (4)2.3.2 结果分析 (5)2.4 模态分析 (7)第三章装配视图展示 (11)总结 (13)第一章模型概述1.1 模型简介本模型是完成锥齿轮减速机合箱加工工序——镗输出轴轴承孔工序的夹具模型。
该夹具是结合锥齿轮减速机加工工序进行设计完成的。
采用的是杠杆滑块夹具,原理图如图1.1所示,基本尺寸如图1.2所示。
图1.1 杠杆滑块夹具图1.2 夹具尺寸1.2 材料特性夹具采用材料为45号钢,材料特性如表1所示。
表1 材料特性1.3 受力分析当加工夹紧时,气缸的输出压力最大,因此对夹紧状态进行受力分析,因此在夹紧时计算的气缸输出力应满足夹紧条件。
该机构夹紧时的受力分析图如图1.3所示:图1.3 受力分析图由转矩平衡方程:,将带入算得:气缸的最大动力为:。
经过计算,F处的压强为1.05 MPa,W k 处的压强为2.7 MPa。
装配简图如图1.4所示。
图1.4 装配简图第二章有限元分析2.1 使用软件本次课程使用软件是ANSYS WORKBENCH,ANSYS WORKBENCH是美国ANSYS公司开发的一款融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。
ANSYS WORKBENCH和ANSYS MECHANICAL(常称之为ANSYS,或经典界面)都能满足基本有限元分析需求,前者是一个综合设计平台,封装了很多过程和软件,更易上手,后者更注重原理和求解器等等的选择,对结构、力学、有限元等理论知识要求更高。
结合模型难易程度,选择使用ANSYS WORKBENCH有限元分析软件对夹紧状态下的夹具进行了静力学分析和模态分析。
2.2 基础操作准备首先将solidworks所建夹具三维模型导出为x_t格式备用。