各类变速箱的基本工作原理
- 格式:pdf
- 大小:850.11 KB
- 文档页数:14
变速器工作原理
变速器是一种机械装置,用于改变发动机输出轴的转速,以适应不同的车速和车辆行驶的需要。
变速器的工作原理可以通过以下参考内容来说明:
1. 齿轮传动原理:变速器通过齿轮传动来改变车辆的速度。
变速器中的一组齿轮称为“行星齿轮组”,它由多个齿轮组成,在不同的组合下可以实现不同的速比。
2. 液压传动原理:自动变速器使用液压传动来控制齿轮变速。
液压传动系统由液压泵、液压阀和液压行星齿轮组成。
液压泵将液压油压入液压阀,通过调节液压阀的开关,可以控制液压行星齿轮的速度和转矩。
3. 离合器原理:手动变速器使用离合器来实现齿轮传动。
离合器是一种摩擦装置,通过摩擦来连接或断开发动机和变速器之间的传动链条。
当离合器踩下时,发动机的输出轴不会传动到变速器,当离合器松开时,发动机的输出轴才能与变速器齿轮连接起来。
4. 电子控制原理:自动变速器还可以通过电子控制来实现齿轮变速。
电子控制系统由传感器、控制模块和执行器组成。
传感器可以感知车速、发动机转速和车辆负载等参数,控制模块通过计算和分析这些参数,控制液压阀和离合器的开关,从而实现齿轮变速。
综上所述,变速器工作原理包括了齿轮传动、液压传动、离合
器和电子控制等多种方式,它们共同协作,使得车辆可以在不同的路况下实现高效、平稳的行驶。
五大变速箱原理、发展前景解析MT、AT、AMT、DCT(DSG)、CVT介绍一、MT手动变速箱MT的英文全称是manual transmission。
中文意思是手动变速器,也称手动挡。
即用手拨动变速杆才能改变变速器内的齿轮啮合位置,改变传动比,从而达到变速的目的。
踩下离合时,方可拨得动变速杆。
如果驾驶者技术好,装手动变速器的汽车在加速、超车时比自动变速车快,也省油。
MT变速箱是目前使用主广泛的变速器。
未来手动变速箱的发展趋势是档位不断提高,以使发动机的转矩和转速更好地匹配汽车复杂的工况需求。
随着人们对汽车驾驭简化的要求不断提高,特别是国人希望能简化汽车操作,手动变速箱的市场必定会受到AT、CVT、DCT、AMT四大变速箱的冲击。
但MT手动变速箱由于机械可靠性高、结构简单、动力性好这些原因,手动变速箱会是变速箱领域重要的组成部分。
我们先来看一个2档变速箱的简单模型,看看各部分之间是如何配合的:输入轴(绿色)通过离合器和发动机相连,轴和上面的齿轮是一个部件。
轴和齿轮(红色)叫做中间轴。
它们一起旋转。
轴(绿色)旋转通过啮合的齿轮带动中间轴的旋转,这时,中间轴就可以传输发动机的动力了。
轴(黄色)是一个花键轴,直接和驱动轴相连,通过差速器来驱动汽车。
车轮转动会带着花键轴一起转动。
齿轮(蓝色)在花键轴上自由转动。
在发动机停止,但车辆仍在运动中时,齿轮(蓝色)和中间轴都在静止状态,而花键轴依然随车轮转动。
齿轮(蓝色)和花键轴是由套筒来连接的,套筒可以随着花键轴转动,同时也可以在花键轴上左右自由滑动来啮合齿轮(蓝色)。
挂进1档时,套筒就和右边的齿轮(蓝色)啮合。
见下图:如图所示,输入轴(绿色)带动中间轴,中间轴带动右边的齿轮(蓝色),齿轮通过套筒和花键轴相连,传递能量至驱动轴上。
在这同时,左边的齿轮(蓝色)也在旋转,但由于没有和套筒啮合,所以它不对花键轴产生影响。
当套筒在两个齿轮中间时(第一张图所示),变速箱在空挡位置。
汽车变速箱的基本工作原理1.齿轮机构:汽车变速箱内部包含了一系列齿轮,它们分为主动齿轮和从动齿轮,通过它们的相互啮合和旋转来实现转速的调节。
齿轮的大小不同会影响车辆行驶时的转速比,从而影响车辆的速度和扭矩。
2.多个档位:汽车变速箱通常有多个档位,比如前进档、倒档和停车档。
不同的档位可以实现不同的转速比,以适应不同的驾驶需求。
通过选择合适的档位,驾驶员可以实现提速、超车和爬坡等操作。
3.离合器:汽车变速箱内有一个离合器,它位于发动机和变速箱之间。
当离合器踏板被松开时,发动机的动力通过离合器传递给变速箱。
而当离合器踏板被踩下时,发动机的动力不再传递给变速箱,允许换挡。
4.液力变矩器:汽车变速箱中的自动变速器中通常配备了液力变矩器,它可以实现无级变速。
液力变矩器包括了一个泵轮和一个涡轮。
发动机的动力经由液力传递给泵轮,再由泵轮带动涡轮旋转,最后通过涡轮传递给汽车的传动系统,从而实现车辆的行驶。
以上是汽车变速箱的基本工作原理,下面进一步介绍自动变速器和手动变速器的原理。
自动变速器(Automatic Transmission)是通过液力变矩器和一系列的齿轮机构来实现换挡的。
液力变矩器允许发动机持续运转而不需要驾驶员操作离合器,它通过流体的运动实现车辆的启动和换挡。
齿轮机构包括行星齿轮、离合器和制动器等,通过它们的开合状态来实现不同档位之间的切换。
手动变速器(Manual Transmission)是由驾驶员手动操作离合器和换挡杆来实现换挡的。
当驾驶员踩下离合器踏板时,发动机的动力不再传给变速箱,切断了发动机和变速器之间的传动。
驾驶员通过换挡杆将变速器置于合适的档位,然后松开离合器踏板,重新连接发动机和变速器,实现换挡操作。
总之,汽车变速箱通过齿轮机构和离合器的组合操作,以及自动变速器和手动变速器的不同原理,实现了车速的调节和转矩的传递,为驾驶员提供了灵活的驾驶体验。
变速箱工作原理
变速箱是汽车传动系统的重要组成部分,它的主要作用是通过不同的齿轮组合来改变发动机输出转速和扭矩的比例。
变速箱的工作原理如下:
1. 扭矩转换:发动机产生的扭矩通过离合器传给变速箱的输入轴,进而传递到变速箱内部的齿轮系统。
2. 齿轮组合:变速箱内部有一组不同大小的齿轮,这些齿轮可以通过不同的组合实现不同的传动比。
传动比是发动机输出转速与车轮转速之间的比值。
3. 换挡操作:驾驶员通过操作换挡杆或电子控制单元,改变齿轮的组合方式,从而实现不同的传动比。
换挡过程中,离合器会断开发动机输出的扭矩,以允许齿轮切换。
4. 自动变速箱:自动变速箱内部有液压系统,可以根据车速、油门踏板和其他传感器信号智能地选择最佳的换挡时机,以提供最优化的驾驶动力和燃油经济性。
总的来说,变速箱通过不同的齿轮组合实现不同的传动比,以满足不同行驶条件下的动力需求,并由驾驶员或自动控制系统控制换挡操作。
变速箱原理结构变速箱是汽车传动系统中的重要组成部分,它负责将发动机输出的动力传递给车轮,同时根据不同的行驶条件和驾驶需求,提供不同的变速比以实现高效的动力传输。
本文将介绍变速箱的原理结构,以帮助读者更好地理解其工作机制。
一、引言随着汽车工业的发展,人们对车辆性能的要求越来越高。
传统的手动变速箱在换挡操作上存在一定困难,同时也不适应大部分驾驶者对舒适性和驾驶便利性的需求。
因此,自动变速箱的应用日益广泛,它通过采用液力传动和行星齿轮组等技术,使换挡操作自动完成,提高了驾驶的便利性和舒适性。
二、自动变速箱原理结构自动变速箱包括液力变矩器、行星齿轮组和离合器等关键组件,下面将对其进行详细介绍。
2.1 液力变矩器液力变矩器是自动变速箱的核心部件之一。
它由泵轮、涡轮和导向轮组成。
发动机输出的动力通过泵轮传递给涡轮,涡轮再将动力传递到行星齿轮组,实现动力的传递和换挡操作。
2.2 行星齿轮组行星齿轮组是自动变速箱中实现不同变速比的重要组成部分。
它由太阳齿轮、行星齿轮和环形齿轮组成。
通过变换不同的行星齿轮的接合方式,可以实现不同的传动比例,从而改变车辆的行驶速度和扭矩输出。
2.3 离合器离合器在自动变速箱中起到连接和断开发动机与变速箱之间的作用。
在换挡时,离合器会断开发动机与传动系统之间的连接,使得变速箱可以切换到不同的行星齿轮组,实现不同的变速比。
三、变速箱工作原理现代自动变速箱采用电子控制系统来实现换挡操作。
传感器会不断监测车辆行驶的速度、转速和驾驶者的操作,根据这些信息来判断何时进行换挡。
同时,电子控制单元会控制液力变矩器和离合器的工作,通过调整液力传递的程度和离合器的连接状态,实现顺畅的换挡操作。
四、变速箱结构优势相较于手动变速箱,自动变速箱具有以下优势:4.1 驾驶便利性:自动变速箱无需驾驶者进行换挡操作,减轻了驾驶者的负担,提高了驾驶的便利性。
4.2 舒适性:自动变速箱在换挡过程中无需断开动力输出,换挡平稳,减轻了车辆和乘坐者的震动感,提高了驾驶的舒适性。
汽车变速箱的工作原理
汽车变速箱是一种机械装置,用于调整发动机输出转速和车轮转速之间的比例,以使车辆在不同速度下获得最佳的动力和燃油经济性。
汽车变速箱的工作原理如下:
1. 齿轮系统:变速箱中的主要组成部分是一系列的齿轮。
这些齿轮间的不同组合可以提供不同的速度比。
根据发动机转速和车速的需求,齿轮可以通过离合器和齿轮选择机构进行组合和分离,从而实现车速的调整。
2. 离合器:汽车变速箱中的离合器用于连接和断开发动机和变速箱之间的动力传递。
当离合器接合时,发动机的动力通过传动轴传递给变速箱,使其正常工作;而当离合器脱离时,发动机的动力不再传递给变速箱,使车辆处于空档状态。
3. 齿轮选择机构:变速箱配备有齿轮选择机构,用于选择不同的齿轮组合。
其中常见的是手动变速箱和自动变速箱。
在手动变速箱中,驾驶员通过换挡杆改变齿轮的组合,以达到所需的速度比。
而在自动变速箱中,车辆的电子控制系统会根据车速和发动机转速自动选择合适的齿轮。
4. 流体离合器或扭力转换器(自动变速箱):自动变速箱中还包括一个称为流体离合器或扭力转换器的装置。
它可以将机械动力转换为液体动力,并利用流体的黏性来传递动力。
这样可以实现发动机和车辆之间的平滑过渡和动力输出调整。
通过齿轮系统、离合器、齿轮选择机构以及流体离合器或扭力转换器的协同工作,汽车变速箱可以根据驾驶员的需求和行驶条件来调整发动机转速和车轮转速的比例,从而提供最佳的动力输出和燃油经济性。
汽车自动变速箱知识点总结一、自动变速箱的基本结构和工作原理1. 包括液力变矩器、齿轮组和液压控制系统。
2. 液力变矩器的作用是传递动力并起到传递器的替代品。
3. 齿轮组是用来实现不同档位的变速和倒挡。
4. 液压控制系统是用来控制变速箱工作的。
二、液力变矩器的结构和工作原理1. 包括泵轮、涡轮和液力传动液。
2. 泵轮由发动机输出轴带动。
3. 涡轮与泵轮相连。
4. 液力传动液由泵轮向涡轮传递力量。
三、自动变速箱的工作原理1. 发动机通过液力变矩器向齿轮组传递动力。
2. 液压控制系统根据车速、加速踏板位置、发动机转速等参数控制齿轮组的换挡。
四、自动变速箱的保养和故障1. 需要定期更换变速箱油。
2. 需要及时更换变速箱滤芯。
3. 变速箱温度过高需要及时检修。
4. 需要定期检查变速箱油液位和质量。
五、自动变速箱的优缺点1. 优点:操作简单、换挡平顺、行驶舒适。
2. 缺点:维护成本高、能效比较低。
六、自动变速箱的常见问题和解决方法1. 换挡不顺畅:检查变速箱油液位和质量,及时更换变速箱油。
2. 车辆抖动:检查液力变矩器是否有损坏。
3. 变速箱报警灯亮:及时进行维修。
七、自动变速箱的未来发展方向1. 提高变速箱的能效。
2. 提高变速箱的可靠性和寿命。
3. 加强自动变速箱的智能化水平。
总结:自动变速箱是现代汽车的重要部件,掌握其基本结构和工作原理对于驾驶人员和汽车维修人员来说非常重要。
随着汽车工业的发展,自动变速箱将会朝着更高效、更智能的方向发展,提高汽车的驾驶舒适性和可靠性。
高低档变速箱工作原理
变速箱是一种汽车传动系统的组成部分,用于控制引擎输出转矩的大小和转速,并将其传递到车轮上。
高低档变速箱根据不同的行驶需求,调整发动机和车轮之间的传动比,以实现加速、行驶和爬坡等不同工况下的最佳性能。
高低档变速箱的工作原理如下:
1. 齿轮组:变速箱内部设有一系列的齿轮,用于传递动力和调整传动比。
高低档变速箱通常具有多组齿轮,每组齿轮具有不同的齿数和直径。
2. 离合器:变速箱内部装有多个离合器,用于连接和断开不同的齿轮组。
通过控制离合器的操作,可以选择不同的齿轮组来改变传动比。
3. 液压控制系统:高低档变速箱的操作通常是由液压控制系统控制的。
液压控制系统通过控制液压力来操作不同的离合器,并通过油泵、阀门和液压油箱等部件来实现。
4. 操作控制:驾驶员通过操纵变速杆或变速拨片等控制装置,选择所需的行驶模式和档位。
变速控制器将驾驶员的操作信号转化为液压力信号,通过液压系统控制离合器的连接和断开。
5. 动力传递:变速箱将发动机输出的动力经过传动系统传递到车轮上。
通过改变齿轮组之间的传动比,可以改变车轮转速和转矩的大小。
总之,高低档变速箱通过控制离合器和齿轮的连接与切断,以及改变传动比,实现发动机输出动力的调整,从而使车辆在不同的工况下具有更好的性能和燃油经济性。
简述变速箱的种类及原理
变速箱是汽车传动系统的核心部件之一,主要作用是将发动机输出的动力传递给车轮,同时通过变速箱的多档位设计,实现车速调节和行驶舒适性的提升。
根据变速器的结构和原理,可以分为以下几种类型:
1. 手动变速箱:通常由离合器、主轴承和多个齿轮组成。
通过手动操作换档,可以实现不同档位的变速和车速调节。
2. 自动变速箱:由液压控制系统、离合器和齿轮装置等组成。
自动变速箱会自动根据车速和发动机负载等情况调节换档,提高行驶的平稳性和舒适性。
3. CVT变速箱:采用连续可变传动技术,通过变化传动比例,实现无级变速。
通常由液压推进器和齿轮连杆组成。
4. 双离合变速箱:由两个离合器和多个齿轮装置组成。
双离合变速箱可以实现快速换挡和升降档,提高了行驶平顺性和燃油经济性。
变速箱的工作原理:顾名思义,变速箱的主要工作是对动力进行传递和变速。
根据齿轮组的不同,变速箱可以实现不同传动比例,从而提高车辆的速度和扭矩。
同时,变速箱的工作原理还包括离合器的协调和齿轮装置的转换等细节操作。
总体来说,变速箱的工作过程是一个复杂的机械化过程,需要涉及到液控、电控和
机械结构等多个层面的设计和优化。
汽车变速箱的工作原理汽车变速箱是汽车传动系统中的核心部件,其主要功能是根据行驶速度和负载条件,通过改变齿轮比,实现动力传递和驱动轮的调速。
下面将详细介绍汽车变速箱的工作原理。
一、手动变速箱工作原理手动变速箱采用齿轮传动原理,通过离合器将发动机动力传递给齿轮系统,引导输入轴带动齿轮旋转。
齿轮系统中的不同齿轮组合形成不同的齿轮比,实现不同的速度变换。
当驾驶员切换挡位时,通过操纵离合器、换挡杆和同步器等操作机构,将特定的齿轮组合锁定在输出轴上,从而达到速度变换的目的。
二、自动变速箱工作原理自动变速箱根据车速、转速和负载等参数,通过液力变矩器和齿轮系统实现无级变速。
液力变矩器是自动变速箱的核心部件,它将发动机动力传递给齿轮系统,并通过液力传动实现动力的传递和调节。
在低速行驶时,液力变矩器提供较大的变矩放大比,使车辆能够顺利起步和爬坡;而在高速行驶时,变矩放大比减小,提高传动效率。
同时,通过液压控制单元感知并实时调整变矩器的工作状态,使变速箱能够根据不同驾驶条件和行驶路况进行自动变速。
三、自动手动一体变速箱工作原理自动手动一体变速箱集成了手动变速箱和自动变速箱的特点。
它通过油压传动系统和电控系统实现自动化的换挡操作。
在自动模式下,车辆会根据驾驶条件和行驶路况自动选择最适合的挡位。
而在手动模式下,驾驶员可以通过换挡拨片或换挡杆手动实现挡位的切换。
四、无级变速箱工作原理无级变速箱采用连续变速的原理,通过两个锥形轮组合和钢带实现传动。
当钢带移动至不同锥形轮的位置时,拉紧程度的改变会导致输出和输入的速度比例变化,实现无级变速。
无级变速箱具有较宽的变速范围和平顺的变速过程,能够提高燃油经济性和驾驶舒适性。
总结:汽车变速箱的工作原理分为手动变速箱、自动变速箱、自动手动一体变速箱和无级变速箱,它们都是根据不同的机械结构和传动方式实现动力传递和速度变换。
了解汽车变速箱的工作原理对于驾驶员合理使用变速箱、提高驾驶效率具有重要意义。
手动变速箱的基本工作原理一、变速箱的作用发动机的物理特性决定了变速箱的存在。
首先,任何发动机都有其峰值转速;其次,发动机最大功率及最大扭矩在一定的转速区出现。
比如,发动机最大功率出现在5500转。
变速箱可以在汽车行驶过程中在发动机和车轮之间产生不同的变速比,换档可以使得发动机工作在其最佳的动力性能状态下。
理想情况下,变速箱应具有灵活的变速比。
无级变速箱(CVT)就具有这种特性,可以较好的发挥发动机的动力性能。
二、CVT无级变速箱有着连续的变速比。
其一直因为价格、尺寸及可靠性的关系而没有大量装备汽车。
现在,改进的设计使得CVT的使用已比较普遍。
国产AUDI 2.8 CVT:变速箱通过离合器与发动机相连,这样,变速箱的输入轴就可以和发动机达到同步转速。
奔驰C级Sport Coupe 6速手动变速箱一个5档的变速箱提供5种不同的变速比,在输入轴和输出轴间产生转速差。
三、简单的变速箱模型为了更好的理解变速箱的工作原理,下面让我们先来看一个2档变速箱的简单模型,看看各部分之间是如何配合的:输入轴(绿色)通过离合器和发动机相连,轴和上面的齿轮是一个部件。
轴和齿轮(红色)叫做中间轴。
它们一起旋转。
轴(绿色)旋转通过啮合的齿轮带动中间轴的旋转,这时,中间轴就可以传输发动机的动力了。
轴(黄色)是一个花键轴,直接和驱动轴相连,通过差速器来驱动汽车。
车轮转动会带着花键轴一起转动。
齿轮(蓝色)在花键轴上自由转动。
在发动机停止,但车辆仍在运动中时,齿轮(蓝色)和中间轴都在静止状态,而花键轴依然随车轮转动。
齿轮(蓝色)和花键轴是由套筒来连接的,套筒可以随着花键轴转动,同时也可以在花键轴上左右自由滑动来啮合齿轮(蓝色)。
1档挂进1档时,套筒就和右边的齿轮(蓝色)啮合。
见下图:如图所示,输入轴(绿色)带动中间轴,中间轴带动右边的齿轮(蓝色),齿轮通过套筒和花键轴相连,传递能量至驱动轴上。
在这同时,左边的齿轮(蓝色)也在旋转,但由于没有和套筒啮合,所以它不对花键轴产生影响。
当套筒在两个齿轮中间时(第一张图所示),变速箱在空挡位置。
两个齿轮都在花键轴上自由转动,速度是由中间轴上的齿轮和齿轮(蓝色)间的变速比决定的。
四、真正的变速箱如今,5档手动变速箱应用已经很普遍了,以下是其模型:换档杆通过三个连杆连接着三个换档叉,见下图:在换挡杆的中间有个旋转点,当你拨入1档时,实际上是将连杆和换档叉往反方向推。
你左右移动换档杆时,实际上是在选择不同的换档叉(不同的套筒);前后移动时则是选择不同的齿轮(蓝色)。
倒档 通过一个中间齿轮(紫色)来实现。
如图所示,齿轮(蓝色)始终朝其他齿轮(蓝色)相反的方向转动。
因此,在汽车前进的过程中,是不可能挂进倒档的,套筒上的齿和齿轮(蓝色)不能啮合,但是会产生很大的噪音。
上图:同步装置同步是使得套筒上的齿和齿轮(蓝色)啮合之前产生一个摩擦接触,见下图齿轮(蓝色)上的锥形凸出刚好卡进套筒的锥形缺口,两者之间的摩擦力使得套筒和齿轮(蓝色)同步,套筒的外部滑动,和齿轮啮合。
什么是“同步器”?由于变速器输入轴与输出轴以各自的速度旋转,变换档位时合存在一个"同步"问题。
两个旋转速度不一样齿轮强行啮合必然会发生冲击碰撞,损坏齿轮。
因此,旧式变速器的换档要采用"两脚离合"的方式,升档在空档位置停留片刻,减档要在空档位置加油门,以减少齿轮的转速差。
但这个操作比较复杂,难以掌握精确。
因此设计师创造出"同步器",通过同步器使将要啮合的齿轮达到一致的转速而顺利啮合。
同步器有常压式和惯性式。
目前全部同步式变速器上采用的是惯性同步器,它主要由接合套、同步锁环等组成,它的特点是依靠摩擦作用实现同步。
接合套、同步锁环和待接合齿轮的齿圈上均有倒角(锁止角),同步锁环的内锥面与待接合齿轮齿圈外锥面接触产生摩擦。
锁止角与锥面在设计时已作了适当选择,锥面摩擦使得待啮合的齿套与齿圈迅速同步,同时又会产生一种锁止作用,防止齿轮在同步前进行啮合。
当同步锁环内锥面与待接合齿轮齿圈外锥面接触后,在摩擦力矩的作用下齿轮转速迅速降低(或升高)到与同步锁环转速相等,两者同步旋转,齿轮相对于同步锁环的转速为零,因而惯性力矩也同时消失,这时在作用力的推动下,接合套不受阻碍地与同步锁环齿圈接合,并进一步与待接合齿轮的齿圈接合而完成换档过程。
AMT变速器技术与原理AMT是英文Automated Mechanical transmission的缩写,中文名直译为自动机械式变速器,也有称电控机械式自动变速器的。
该技术是指在不改变原车变速箱主体结构的基础上,通过加装微电脑控制的电动装置取代原来由人工操作完成的换档动作,实现换档全过程的自动化。
AMT的结构相对于其余几种自动变速器来说要简单一些,它是在手动基础上进行改造,主要改变手动换挡操作部分。
即在原有手动变速器的结构上加装微机控制的自动换挡操作机构,来实现换挡的自动化。
也就是说AMT的箱体及内部结构和传统手动变速器一样,只是增加了自动机械执行机构和换档程序,只是它没有离合器踏板,只有制动和油门两个踏板。
与原来的换档过程不同的是,AMT相当于有一个电脑控制的机器人来替代人的操作,驾驶员也可以在手动和全自动两种换档模式中任选。
液压式AMT的关键部件主要由传感器、电脑模块和执行器三部分组成。
运作过程概括为以下步骤:1)电脑模块通过读取传感器信号来确定当前车辆的工作状况,如车速信号,油门开度的大小信号等2)由换档杆的触点得到驾驶员在手动模式下或模块计算自动模式下给出的换档命令。
3)模块读取换档命令后进行安全分析从而对命令进行后期处理。
4)通过执行器的电液单元控制离合器的开与闭以及变速箱中的不同齿轮的啮合。
通过这4 步就完成了一整套换档工作。
总的来说,相对于传统手动变速器,AMT的结构基本相似。
只是为了实现自动换挡,加装了一些相应的装置。
把原来的手动换挡转变成了自动换挡。
它的主要的核心部份在于电脑控制模块,电脑模块收集一些换挡的参考信号,如车速,油门开度,驾驶员选择的驾驶模式等,然后通过运算处理后,把换挡信号发给执行机构,执行机构接到指令后,自动操作换挡拨叉以及离合器,从而实现换挡。
总结:AMT发展已经有一段历史,但应该讲应用还不如传统的AT那么的普遍。
他的结构较其余几种自动变速器简单,价格也介于手动变速器和传动自动变速器之间。
ATM相对其余几种自动变速器的优点在于它的效率比较高同时价格相对便宜,主要问题是换挡的平顺性,换挡时会有一定的顿挫感。
AT自动变速箱工作原理自动变速器能够根据发动机负荷和车速等情况自动变换传动比,使汽车获得良好的动力性和燃料经济性,并减少发动机排放污染。
自动变速器操纵容易,在车辆拥挤时,可大大提高车辆行驶的安全性及可靠性。
电子控制自动变速器通常由液力变矩器、行星齿轮变速系统、换挡执行器、液压操纵系统、电子控制系统五部分组成。
液力变矩器的工作原理目前轿车上广泛采用由泵轮、涡轮和导轮组成的单级双相三元件闭锁式综合液力变矩器。
泵轮和涡轮均为盆状的。
泵轮与变矩器外壳连为一体,是主动元件;涡轮悬浮在变矩器内,通过花键与输出轴相连,是从动元件;导轮悬浮在泵轮和涡轮之间,通过单向离合器及导轮轴套固定在变速器外壳上。
发动机启动后,曲轴带动泵轮旋转,因旋转产生的离心力使泵轮叶片间的工作液沿叶片从内缘向外缘甩出;这部分工作液既具有随泵轮一起转动的园周向的分速度,又有冲向涡轮的轴向分速度。
这些工作液冲击涡轮叶片,推动涡轮与泵轮同方向转动。
从涡轮流出工作液的速度v可以看为工作液相对于涡轮叶片表面流出的分速度ω与随涡轮一起转动分速度u的合成。
当涡轮转速比较小时,从涡轮流出的工作液是向后的,工作液冲击导轮叶片的前面。
因为导轮被单向离合器限定不能向后转动,所以导轮叶片将向后流动的工作液导向向前推动泵轮叶片,促进泵轮旋转,从而使作用于涡轮的转矩增大。
随着涡轮转速的增加,分速度u也变大,当ω与u的合速度v开始指向导轮叶片的背面时,变矩器到达临界点。
当涡轮转速进一步增加时,工作液将冲击导轮叶片的背面。
因为单向离合器允许导轮与泵轮一同向前旋转,所以在工作液的带动下,导轮沿泵轮转动方向自由旋转,工作液顺利地回流到泵轮。
当从涡轮流出的工作液正好与导轮叶片出口方向一致时,变矩器不产生增扭作用(这时液力变矩器的工况称为液力偶合工况)。
液力变矩器靠工作液传递转矩,比机械变速器的传动效率低。
在液力变矩器中设置锁止离合器,可以在高速工况下将泵轮与涡轮锁在一起,实现动力直接传递,提高变矩器的传动效率。
行星齿轮变速器的工作原理 液力变矩器虽能传递和增动机转矩,但变矩比不大,变速范围不宽,远不能满足汽车使用工况的需要。
为进一步增大扭矩,扩大其变速范围,提高汽车的适应能力,在液力变矩器后面又装一个辅助变速器——有级式齿轮变速器。
该齿轮变速器多数是用行星齿轮变速的。
行星齿轮变速器是由行星齿轮机构及离合器、制动器和单向离合器等执行元件组成。
行星齿轮机构通常由多个行星排组成.行星排的多少与档数的多少有关。
星齿轮变速器的换档执行元件包括换挡离合器、换挡制动器和单向离器。
换挡离合器为湿式多片离合器,当液压使活塞把主动片和从动片压紧时,离合器接合;当工作液从活塞缸排出时,回位弹簧使活塞后退,使离合器分离。
换挡制动器通常有两种形式:一种是湿式多片制动器,其结构与湿式多片离合器基本相同,不同之处是制动器用于连接转动件和变速器壳体,使转动件不能转动。
换挡制动器的另一形式是外束式带式制动器。
行星齿轮变速器的单向离合器与液力变矩器中的单向离合器结构相同。
液力机械传动式自动变速器的控制液压自动操纵系统通常由供油、手动选挡、参数调节、换挡时刻控制、换档品质控制等部分组成。
供油部分根据节气门开度和选挡杆位置的变化,将油泵输出油压调节至规定值,形成稳定的工作液压。
在液控液动自动变速器中,参数调节部分主要有节气门压力调节阀(简称节气门阀)和速控调压阀(又称调速器)。
节气门压力调节阀使输出液压的大小能够反映节气门开度;速控调压阀使输出液压的大小能够反映车速的大小。
换挡时刻控制部分用于转换通向各换挡执行机构(离合器和制动器)的油路,从而实现换挡控制。
锁定信号阀受电磁阀的控制,使液力变矩器内的锁止离合器适时地接合与分离。
换挡品质控制部分的作用是使换挡过程更加平稳柔和。
C VT变速箱结构及工作原理随着汽车工业的飞速发展,汽车新技术的不断使用,在中又一项新技术得到车界关注,那就是—CVT(Continuously Variable Transmission)无级变速器技术。
CVT 可以说是最理想的汽车变速器,因为从原始的橡胶带无级变速器开始,到有级的齿轮变速器 过度,再到现代的钢带无级变速器,百年大回转说明只有无级变速器才是汽车变速器的终极目标。