matlab_图像几何变换附带程序
- 格式:doc
- 大小:1.71 MB
- 文档页数:5
实验报告课程名称:数学实验实验名称:平而图形的几何变换指导教师:实验目的、要求:1.了解儿何变换的基本概念。
2.了解平移、伸缩、对称、旋转等变换。
3.学习掌握MATLAB软件冇关的命令。
实验仪器:安装有MATLAB软件的计算机实验步骤:一、实验原理1.几何变换程的基本概念在平面直角坐标系下,点A由坐标(x,y)表示,如果存在两个函数*=£(兀,刃,y'= f2(x,y)将点A(x, y)映射成点A\x,y),则称函数.齐,.%确定了一个平面上的几何变换丁。
如果能从上面的方程组中反解出(x,y):兀=g](*,卩),)'=g2(兀',)') 则称两数®,g2确定了卩的逆变换厂'。
2.几种常见的几何变换常见的平面图形的儿何变换有平移、伸缩、对称、旋转等变换。
平移变换:把函数_y = f(x)变化为y = f(x + a)f可将函数图形向右平移d个单位,把函数),=于(x)变化为y = fM + a),可将函数图形向上平移d个单位,伸缩变换:把函数y = /(兀)变化为y = f(sx),函数图形会压缩或伸长,其作是改变水平轴的刻度单位,因此$称为水平刻度参数,把函数y =/(兀)变化为y = “(x),则可改变垂直轴的刻度单位。
旋转变换:设函数图形以原点为中心,逆吋针旋转。
也,原来的坐标(兀,刃变为新的坐标(X,Y),旋转变换为*X = xcos& — ysin。
VY = xsinO+ ycosd对称变换:把函数y = /(兀)变化为y = -/(-x),函数图形关于原点对称;把函数y = /(X)变化为y = /(-%),函数图形关于y轴对称;把函数y =(兀)变化为y = -f(x), 函数图形关于x轴对称。
3.几何变换的矩阵表示平移变换、缩放变化、旋转变换、对称变换可以写成如下统一的形式:上式可写为如下矩阵表示形式X~a Ha\lb\Y =A yai\。
实验三 图像的几何运算一、实验目的1、 理解几何运算的基本概念与定义;2、 掌握在MA TLAB 中进行插值的方法3、 运用MATLAB 语言进行图像的插值缩放和插值旋转。
二、实验原理插值是常用的数学运算,通常是利用曲线拟合的方法,通过离散的采样点建立一个连续函数来逼近真实的曲线,用这个重建的函数便可以求出任意位置的函数值。
最近邻插值是最简便的插值,在这种算法中,每一个插值输出像素的值就是在输入图像中与其最临近的采样点的值。
该算法的数学表示为:()()k f x f x = 如果1111()()22k k k k x x x x x -++<<+ 最近邻插值是工具箱函数默认使用的插值方法,而且这种插值方法的运算量非常小。
不过,当图像中包含像素之间灰度级变化的细微结构时,最近邻插值法会在图像中产生人工的痕迹。
双线性插值法的输出像素值是它在输入图像中2×2领域采样点的平均值,它根据某像素周围4个像素的灰度值在水平和垂直两个方向上对其插值。
设''''1,1,,m i m n j n a i m b j n <<+<<+=-=-,'i 和'j 是要插值点的坐标,则双线性插值的公式为:''(,)(1)(1)(,)(1)(1,)(1)(,1)(1,1)g i j a b g m n a b g m n a bg m n abg m n =--+-++-++++ 双三次插值的插值核为三次函数,其插值邻域的大小为4×4。
它的插值效果比较好,但相应的计算量也比较大,在这里不做讨论。
1、图像的缩放imresize 函数的语法格式为:B = imresize(A, m, method)2、图像的旋转imrotate 的语法格式为:B = imrotate(A, angle, method)三、实验内容及要求1. 读出girl.bmp 图像并显示。
实验四、图像的几何变换与彩色处理一、实验目的1理解和掌握图像的平移、垂直镜像变换、水平镜像变换、缩放和旋转的原理和应用;2熟悉图像几何变换的MATLAB操作和基本功能3 掌握彩色图像处理的基本技术二、实验步骤1 启动MATLAB程序,读入图像并对图像文件分别进行平移、垂直镜像变换、水平镜像变换、缩放和旋转操作%%%%%%平移>> flowerImg=imread('flower.jpg');>> se=translate(strel(1),[100 100]);>> img2=imdilate(flowerImg,se);>> subplot(1,2,1);>> imshow(flowerImg);>> subplot(1,2,2);>> imshow(img2);I1=imread('flower.jpg');I1=double(I1);H=size(I1);I2(1:H(1),1:H(2),1:H(3))=I1(H(1):-1:1,1:H(2),1:H(3)); I3(1:H(1),1:H(2),1:H(3))=I1(1:H(1),H(2):-1:1,1:H(3)); Subplot(2,2,1);Imshow(uint8(I1));Title('原图');Subplot(2,2,2);Imshow(uint8(I3));Title('水平镜像');Subplot(2,2,3);Imshow(uint8(I2));Title('垂直镜像');img1=imread('flower.jpg');figure,imshow(img1);%%%%%%缩放img2=imresize(img1,0.25);figure,imshow(img2);imwrite(img2,'a2.jpg');%%%%%%旋转img3=imrotate(img1,90); figure,imshow(img3); imwrite(img3,'a3.jpg');2 实验如下操作:(1)改变图像缩放比例f= imread('flower.jpg');T=[ 0.5 0 0; 0 0.5 0; 0 0 1];tform=maketform('affine',T);[g1,xdata1,ydata1]=imtransform(f,tform,'FillValue',255);T=[ 1 0 0; 0 1 0; 0 0 1];tform=maketform('affine',T);[g2,xdata2,ydata2]=imtransform(f,tform,'FillValue',255);T=[ 1.5 0 0; 0 1.5 0; 0 0 1];tform=maketform('affine',T);[g3,xdata3,ydata3]=imtransform(f,tform,'FillValue',255);hold onimshow(g3,'XData', xdata3, 'YData', ydata3)hold onimshow(g2,'XData', xdata2, 'YData', ydata2)hold onimshow(g1,'XData', xdata1, 'YData', ydata1)axis autoaxis on(2)改变图像的旋转角度,f= imread('flower.jpg');theta=3*pi/4;T=[cos(theta) sin(theta) 0; -sin(theta) cos(theta) 0; 0 0 1]; tform=maketform('affine',T);[g3,xdata3,ydata3]=imtransform(f,tform,'FillValue',255); theta=pi;T=[cos(theta) sin(theta) 0; -sin(theta) cos(theta) 0; 0 0 1]; tform=maketform('affine',T);[g4,xdata4,ydata4]=imtransform(f,tform,'FillValue',255); imshow(f);hold onimshow(g3,'XData', xdata3, 'YData', ydata3)hold onimshow(g4,'XData', xdata4, 'YData', ydata4)axis autoaxis on观察变换结果,要求把经过不同类型几何变换的图像和原图像在同一坐标系内显示输出(请参考课件或教材上的代码)3 读入一幅彩色图像,进行如下图像处理:(1)在RGB彩色空间中对图像进行模糊和锐化处理rgb= imread('flower.jpg');figure; imshow(rgb); title('原图');%平滑滤波r=rgb(:,:,1);g=rgb(:,:,2);b=rgb(:,:,3);m=fspecial('average',[8,8]);r_filtered=imfilter(r,m);g_filtered=imfilter(g,m);b_filtered=imfilter(b,m);rgb_filtered=cat(3,r_filtered,g_filtered,b_filtered);figure; imshow(rgb_filtered); title('模糊后');imwrite(rgb_filtered, 'RGB彩色空间模糊后.jpg');%拉普拉斯lapMatrix=[1 1 1;1 -8 1;1 1 1];i_tmp=imfilter(rgb,lapMatrix,'replicate');i_sharped=imsubtract(rgb,i_tmp);figure; imshow(i_sharped); title('锐化后'); imwrite(i_sharped, 'RGB彩色空间锐化后.jpg');(2)在HSI彩色空间中,对H分量图像进行模糊和锐化处理,转换回RGB格式并观察效果(3)在HSI彩色空间中,对S分量图像进行模糊和锐化处理,转换回RGB格式并观察效果(4)在HSI彩色空间中,对I分量图像进行模糊和锐化处理,转换回RGB格式并观察效果fc = imread('flower.jpg');h = rgb2hsi(fc);H = h (:,:,1);S = h (:,:,2);I = h (:,:,3);subplot(3,3,1);imshow(fc); title('原图');%平滑滤波m=fspecial('average',[8,8]);h_filtered=imfilter(H,m);img_h_filtered = cat(3,h_filtered,S,I);rgb_h_filtered = hsi2rgb(img_h_filtered);subplot(3,3,2);imshow(rgb_h_filtered); title('H分量模糊后');imwrite(rgb_h_filtered, 'H分量模糊后.jpg');%拉普拉斯lapMatrix=[1 1 1;1 -8 1;1 1 1];i_tmp=imfilter(H,lapMatrix,'replicate');H_sharped=imsubtract(H,i_tmp);img_h_sharped = cat(3,H_sharped,S,I);rgb_h_sharped = hsi2rgb(img_h_sharped);subplot(3,3,3); imshow(rgb_h_sharped); title('H分量锐化后'); imwrite(rgb_h_sharped, 'H分量锐化后.jpg');subplot(3,3,4);imshow(fc); title('原图');%平滑滤波m=fspecial('average',[8,8]);s_filtered=imfilter(S,m);img_s_filtered = cat(3,H,s_filtered,I);rgb_s_filtered = hsi2rgb(img_s_filtered);subplot(3,3,5);imshow(rgb_s_filtered); title('S分量模糊后'); imwrite(rgb_s_filtered, 'S分量模糊后.jpg');%拉普拉斯lapMatrix=[1 1 1;1 -8 1;1 1 1];i_tmp=imfilter(S,lapMatrix,'replicate');s_sharped=imsubtract(S,i_tmp);img_s_sharped = cat(3,H,s_sharped,I);rgb_s_sharped = hsi2rgb(img_s_sharped);subplot(3,3,6); imshow(rgb_s_sharped); title('S分量锐化后'); imwrite(rgb_s_sharped, 'S分量锐化后.jpg');subplot(3,3,7);imshow(fc); title('原图');%平滑滤波m=fspecial('average',[8,8]);i_filtered=imfilter(I,m);img_i_filtered = cat(3,H,S,i_filtered);rgb_i_filtered = hsi2rgb(img_i_filtered);subplot(3,3,8);imshow(rgb_i_filtered); title('I分量模糊后'); imwrite(rgb_i_filtered, 'I分量模糊后.jpg');%拉普拉斯lapMatrix=[1 1 1;1 -8 1;1 1 1];i_tmp=imfilter(I,lapMatrix,'replicate');i_sharped=imsubtract(I,i_tmp);img_i_sharped = cat(3,H,S,i_sharped);rgb_i_sharped = hsi2rgb(img_i_sharped);subplot(3,3,9); imshow(rgb_i_sharped); title('I分量锐化后'); imwrite(rgb_i_sharped, 'I分量锐化后.jpg');由图看出I分量图像进行模糊和锐化处理的效果最好。
第一部分数字图像处理实验一图像的点运算实验1.1 直方图一.实验目的1.熟悉matlab图像处理工具箱及直方图函数的使用;2.理解和掌握直方图原理和方法;二.实验设备1.PC机一台;2.软件matlab。
三.程序设计在matlab环境中,程序首先读取图像,然后调用直方图函数,设置相关参数,再输出处理后的图像。
I=imread('cameraman.tif');%读取图像subplot(1,2,1),imshow(I) %输出图像title('原始图像') %在原始图像中加标题subplot(1,2,2),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题四.实验步骤1. 启动matlab双击桌面matlab图标启动matlab环境;2. 在matlab命令窗口中输入相应程序。
书写程序时,首先读取图像,一般调用matlab自带的图像,如:cameraman图像;再调用相应的直方图函数,设置参数;最后输出处理后的图像;3.浏览源程序并理解含义;4.运行,观察显示结果;5.结束运行,退出;五.实验结果观察图像matlab环境下的直方图分布。
(a)原始图像 (b)原始图像直方图六.实验报告要求1、给出实验原理过程及实现代码;2、输入一幅灰度图像,给出其灰度直方图结果,并进行灰度直方图分布原理分析。
实验1.2 灰度均衡一.实验目的1.熟悉matlab图像处理工具箱中灰度均衡函数的使用;2.理解和掌握灰度均衡原理和实现方法;二.实验设备1.PC机一台;2.软件matlab;三.程序设计在matlab环境中,程序首先读取图像,然后调用灰度均衡函数,设置相关参数,再输出处理后的图像。
I=imread('cameraman.tif');%读取图像subplot(2,2,1),imshow(I) %输出图像title('原始图像') %在原始图像中加标题subplot(2,2,3),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题a=histeq(I,256); %直方图均衡化,灰度级为256subplot(2,2,2),imshow(a) %输出均衡化后图像title('均衡化后图像') %在均衡化后图像中加标题subplot(2,2,4),imhist(a) %输出均衡化后直方图title('均衡化后图像直方图') %在均衡化后直方图上加标题四.实验步骤1. 启动matlab双击桌面matlab图标启动matlab环境;2. 在matlab命令窗口中输入相应程序。
如何进行MATLAB图像配准和变换引言图像配准和变换是数字图像处理中一项重要任务,它能够将不同空间、不同感知角度或不同时间采集的图像进行对齐,从而实现图像像素之间的准确匹配。
MATLAB作为一种常用的科学计算软件,提供了丰富的图像处理函数和工具箱。
本文将介绍如何使用MATLAB进行图像配准和变换,以帮助读者更好地理解和应用这些功能。
一、图像配准基础1. 图像配准定义图像配准是指将两幅或多幅图像通过某种变化,使得它们的像素点对齐。
这种对齐可以通过平移、旋转、缩放等几何变换来实现。
2. 图像配准应用图像配准在许多领域都有广泛的应用,如医学图像处理、遥感图像处理、计算机视觉等。
例如,在医学领域,图像配准可以用于将不同时间拍摄的磁共振图像对齐,以便医生更好地观察患者的病情变化。
二、MATLAB图像配准函数MATLAB提供了几个常用的图像配准函数和工具箱,方便用户进行图像配准和变换。
下面将介绍一些常用的函数和工具箱。
1. imregister函数imregister函数是MATLAB中一个常用的图像配准函数,它能够将两幅图像进行几何变换以实现图像配准。
该函数基于最大互信息和归一化互相关等算法实现,能够自动处理旋转、平移、缩放和扭曲等运动畸变。
2. cpselect工具箱cpselect工具箱是MATLAB中用于图像配准的一个交互式工具箱。
它能够通过用户交互的方式,选择两幅图像中的对应点,计算并输出变换矩阵。
用户可以通过可视化的界面进行点选,并查看配准效果。
三、图像配准步骤基于MATLAB提供的函数和工具箱,进行图像配准的一般步骤如下:1. 加载图像使用imread函数加载待配准的图像,将其转换为灰度图像或彩色图像,存储为变量img1和img2。
2. 预处理图像根据具体情况,对图像进行预处理操作,如去噪、平滑、增强等。
这一步骤可以提高后续配准的准确性和稳定性。
3. 选择对应点使用cpselect工具箱,通过交互方式选择两幅图像中的对应点。
*******************实践教学*******************兰州理工大学计算机与通信学院2012年秋季学期计算机图象处理课程设计题目:图像几何变换程序设计专业班级:姓名:学号:指导教师:成绩:目录摘要 (2)一、前言 (3)二、算法分析与描述 (4)三、详细设计过程 (6)四、调试过程中出现的问题及相应解决办法 (10)五、程序运行截图及其说明 (11)六、简单操作手册 (14)设计总结 (15)参考文献 (16)致谢 (17)附录 (18)摘要本次课程设计我的题目是图像几何变换和图像分割程序设计,计算机图像处理的实现主要以数学模型为基础,通过建立合适的算法来实现具体的图像处理,几何变换是最常见的图像处理手段,通过对变形的图像进行几何校正,可以得出准确的图像。
常用的几何变换功能包括图像的平移、图像的旋转、图像的缩放、图像的错切等。
作为数字图像处理的一个重要部分,一般用MATLAB编程工具设计一个完整的应用程序,实现相应的图像几何变换功能。
图像分割是一种非常重要的图像处理技术,它不仅得到了广泛的重视和研究,也在实际中得到了大量的应用。
本文主要介绍了计算机图像处理中的图像分割程序的设计与实现。
关键词:图像几何变换、平移、旋转、放大缩小一、前言图形图像处理的应用领域涉及人类生活和工作的各个方面,它是从60年代以来随计算机的技术和VLSI的发展而产生、发展和不断成熟起来的一个新技术领域,理论上和实际应用上都并取得了巨大的成就。
数字图像处理与模拟图像处理的根本不同在于,它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化,所以图形图像的处理在我们的生活中又很重要的作用。
在对图像的研究和应用中,人们往往只对图像中的某些部分感兴趣。
这些部分通常称为目标或前景,它们一般对应图像中特定的、具体独特性质的区域。
为了辨识和分析目标,需要将它们分别提取出来,在此基础上才有可能对目标进一步利用。
实验报告二、图像的几何变换一、实验目的1掌握图像几何变换的原理;2 利用MATLAB实现图像的平移、比例缩放和旋转变换。
二、实验要求对一幅图像完成以下几何变换:先对x方向缩小0.5倍,y方向缩小0.25倍,然后平移[20,20],最后旋转90度三、实验环境MA TLAB编程软件四、实验内容1.利用imread()引入原图像2.利用tform=maketform()的矩阵变换来求几何变换3.调用imtransform()4.参考程序I=imread('C:\\ab.jpg');figure;subplot(2,2,1);imshow(I);tform1=maketform('affine',[0.5 0 0;0 0.25 0;0 0 1]');J=imtransform(I,tform1);figure;subplot(2,2,1);imshow(J);tform2=maketform('affine',[1 0 20;0 1 20;0 0 1]');G=imtransform(J,tform2);figure;subplot(2,2,1);imshow(G);tform3=maketform('affine',[cos(90) sin(90) 0;-sin(90) cos(90) 0;0 0 1]');F=imtransform(G,tform3);figure;subplot(2,2,1);imshow(F);五、实验结果六、实验总结1.在编程的过程中,对常用的函数没有完全的理解,并熟练运用。
2.应加强几何变换的练习。
湖南商学院课程_设计目录第一章绪论§ 1非彩色图像在Matlab中的矩阵 (3)§ 2彩色图像在Matlab中的矩阵 (4)第二章图像的镜像变换§ 1图像的水平方向镜像 (5)§ 2图像的垂直方向镜像 (8)第三章图像的旋转变换§ 1图像的旋转变换 (10)第四章图像的转置变换§ 1非彩色图像的转置变换 (13)§ 3彩色图像的转职变换 (13)第五章图像的缩放变换§ 1双线性内插法简介 (15)§ 2图像的缩放 (16)第六章图像的平移变换§ 1图像的平移变换 (19)第一章绪论§ 1非彩色图像在Matlab中的矩阵非彩色图像可以定义为一个二维函数f(x, y),其中x和y是Euclid空间(平面)坐标,任意一个二元组(x,y)处的值f称为该点处的强度或者灰度。
当x,y 和灰度值f是离散的数值时,我们称改图像为数字图像。
每一个非彩色图像在Matlab中都是一个二维矩阵A n m,而我们知道变换是指集合自身到自身的映射,所以对非彩色图像的变换其实质就是对二维矩阵人m 进行变换得到另一个二维矩阵B.m的过程。
例如图像1.1图1.1其在Matlab中的表示:>> A=imread('Fig3.24.jpg');>> size(A)ans = 298 252 %A是一个298行252列的矩阵§ 2彩色图像在Matlab中的矩阵不同于非彩色图像,每一个彩色图像在Maltab中都是三维矩阵A, m s。
例如图像2.1图2.1>> A=imread('Koala.jpg');>> size(A)ans =768 1024 3A是一个三维矩阵,768行1024列3层,3层是RGB三色的数值。
示意图:第二章图像的镜像变换§ 1图像的水平方向镜像1.1对于非彩色图像实现水平镜像操作,我们每次只需提取一列,使其与对称的列交换位置即可:aij a iiI Ia2 j a2i‘: 其中j 1I I I Ia nj」.a ni」原图像经过变换后为:132 152 210例1:对99 172 10进行水平方向镜像。
Matlab数字图像处理实验指导实验目的:通过实验,深入理解和掌握图像处理的基本技术,提高动手实践能力。
实验环境:Matlab变成实验一图像的几何变换实验内容:设计一个程序,能够实现图像的各种几何变换。
实验要求:读入图像,打开图像,实现图像的平移变换、比例缩放、转置变换、镜像变换、旋转变换等操作。
实验原理:图像几何变换又称为图像空间变换,它将一幅图像中的坐标位置映射到另一幅图像中的新坐标位置。
学习几何变换的关键就是要确定这种空间映射关系,以及映射过程中的变化参数。
几何变换不改变图像的像素值,只是在图像平面上进行像素的重新安排。
一个几何变换需要两部分运算:首先是空间变换所需的运算,如平移、镜像和旋转等,需要用它来表示输出图像与输入图像之间的(像素)映射关系;此外,还需要使用灰度插值算法,因为按照这种变换关系进行计算,输出图像的像素可能被映射到输入图像的非整数坐标上。
设原图像f(x0,y0)经过几何变换产生的目标图像为g(x1,y1),则该空间变换(映射)关系可表示为:x1=s(x0,y0)y1=t(x0,y0)其中,s(x0,y0)和t(x0,y0)为由f(x0,y0)到g(x1,y1)的坐标换变换函数。
一、图像平移图像平移就是将图像中所有的点按照指定的平移量水平或者垂直移动。
二、图像镜像镜像变换又分为水平镜像和垂直镜像。
水平镜像即将图像左半部分和右半部分以图像竖直中轴线为中心轴进行对换;而竖直镜像则是将图像上半部分和下半部分以图像水平中轴线为中心轴进行对换。
三、图像转置图像转置是将图像像素的x坐标和y坐标呼唤。
图像的大小会随之改变——高度和宽度将呼唤。
四、图像的缩放图像缩放是指将图像大小按照指定的比率放大或者缩小。
图像缩放函数imresize();调用格式如下:B=imresize(A,Scale,method);参数A为要进行缩放的原始图像。
Scale为统一的缩放比例。
如果希望在x和y方向上以不同比例进行缩放,可用如下调用形式。
一.图像几何变化(1)放大,缩小,旋转程序:I=imread('111.jpg');J=imresize(I,1.5);L=imresize(I,0.75);K=imrotate(I,35,'bilinear');subplot(221),subimage(I); title('原图像');subplot(222),subimage(J); title('放大后图像');subplot(223),subimage(L); title('缩小后图像');subplot(224),subimage(K);title('旋转后图像');二.图像频域变换(1)傅里叶变换真彩图像灰度图像傅里叶变换谱程序:I=imread('111.jpg');figure(1);imshow(I);B=rgb2gray(I);figure(2);imshow(B)D=fftshift(fft2(B));figure(3);imshow(log(abs(D)),[ ]);(2)离散余弦变换真彩图灰度图进行离散余弦变换后程序:RGB=imread('111.jpg');figure(1);imshow(RGB);G=rgb2gray(RGB);figure(2);imshow(G);DCT=dct2(G);figure(3);imshow(log(abs(DCT)),[]);三.图像增强:(1)指数变换程序:f=imread('111.jpg')f=double(f);g=(2^2*(f-1))-1;f=uint8(f);g=uint8(g);subplot(1,2,1),subimage(f);subplot(1,2,2),subimage(g);(2)直方图均衡程序:I=imread('111.jpg');I=rgb2gray(I);figuresubplot(221);imshow(I);subplot(222);imhist(I)I1=histeq(I);figure;subplot(221);imshow(I1)subplot(222);imhist(I1)(3)空域滤波增强锐化滤波(Roberts算子Sobel算子拉普拉斯算子)程序:I=imread('000.tif');J1=edge(I,'roberts'); %Roberts算子figure;imshow(uint8(I));title('原图');figure;subplot(221);imshow(J1);title('Roberts算子锐化'); J2=fspecial('Sobel'); %Sobel算子J2=J2';TJ1=filter2(J2,I);J2=J2';TJ2=filter2(J2,I);subplot(222),imshow(TJ1,[]),title('垂直模板'); subplot(223),imshow(TJ2,[]),title('水平模板');f=fspecial('laplacian'); %拉普拉斯算子J3=imfilter(I,f);subplot(224),imshow(J3);title('拉普拉斯算子');平滑滤波及中值滤波程序:I=imread('000.tif');J=imnoise(I,'salt & pepper',0.02);subplot(221),imshow(I);title('原图像');subplot(222),imshow(J);title('添加椒盐噪声图像');k1=filter2(fspecial('average',3),J); %进行3*3模板平滑滤波k2=medfilt2(J); %进行3*3模板中值滤波subplot(223),imshow(uint8(k1));title('3*3模板平滑滤波');subplot(224),imshow(k2);title('3*3模板中值滤波');(4)频域滤波增强低通滤波程序:I=imread('000.tif');J=imnoise(I,'salt & pepper',0.02);subplot(121),imshow(J);title('添加椒盐噪声图像');J=double(J);f=fft2(J); %采用傅里叶变换g=fftshift(f) %数据矩阵平衡[M,N]=size(f);n=3;d0=20n1=floor(M/2)n2=floor(N/2)for i=1:M %进行低通滤波for j=1:Nd=sqrt((i-n1)^2+(j-n2)^2)h=1/(1+(d/d0)^(2*n));g1(i,j)=h*g(i,j);endendg1=ifftshift(g1);g1=uint8(real(ifft2(g1)));subplot(122);imshow(g1);title('低通滤波后的图像'); %显示低通滤波结果 高通滤波程序:I=imread('000.tif');J=imnoise(I,'salt & pepper',0.02);subplot(221),imshow(J);title('添加椒盐噪声图像');J=double(J);f=fft2(J); %采用傅里叶变换[M,N]=size(f);n=2;d0=20n1=floor(M/2)n2=floor(N/2)for i=1:M %进行巴特沃斯高通滤波及巴特沃斯高通加强滤波for j=1:Nd=sqrt((i-n1)^2+(j-n2)^2);if d==0;h1=0;h2=0.5;elseh1=1/(1+(d0/d)^(2*n));h2=1/(1+(d0/d)^(2*n))+0.5;endgg1(i,j)=h1*g(i,j);gg2(i,j)=h2*g(i,j);endendgg1=ifftshift(gg1);gg1=uint8(real(ifft2(gg1)));subplot(222);imshow(gg1);title('巴特沃斯高通滤波后的图像'); %显示结果gg2=ifftshift(gg2);gg2=uint8(real(ifft2(gg2)));subplot(223);imshow(gg2);title('巴特沃斯高通滤波加强后的图像');同态滤波程序:J=imread('000.tif');subplot(121);imshow(J);title('原图像');J=double(J);f=fft2(J); %采用傅里叶变换[M,N]=size(f);d0=10;r1=0.5;rh=2c=4;n1=floor(M/2);n2=floor(N/2);for i=1:M %进行同态滤波for j=1:Nd=sqrt((i-n1)^2+(j-n2)^2)h=(rh-r1)*(1-exp(-c*(d.^2/d0.^2)))+r1;g(i,j)=h*g(i,j);endendg=ifftshift(g);g=uint8(real(ifft2(g)));subplot(122);imshow(g);title('同态滤波后的图像'); %显示同态滤波结果。
实验四:图像几何变换(编程报告)
一、实验目的
(1)学习几种常见的图像几何变换,并通过实验体会几何变换的效果;
(2)掌握图像平移、剪切、缩放、旋转、镜像、错切等几何变换的算法原理及编
程实现
(3)掌握matlab编程环境中基本的图像处理函数
(4)掌握图像的复合变换
二、涉及知识点
(1)图像几何变换不改变图像像素的值,只改变像素所在的几何位置
(2)图像裁剪imcrop函数,语法格式为:
B=imcrop(A);交互式用鼠标选取区域进行剪切
B=imcrop(A,[left top right bottom]);针对指定的区域[left top right bottom]进行剪切
(3)图像缩放imresize函数,语法格式为:
B = imresize(A,m,method)
这里参数method用于指定插值的方法,可选用的值为'nearest'(最邻近法),'bilinear'(双线性插值),'bicubic'(双三次插值),默认为'nearest'。
B = imresize(A,m,method)返回原图A的m倍放大的图像(m小于1时效果是
缩小)。
(4)图像旋转imrotate函数,语法格式为:
B = imrotate(A,angle,’crop’),参数crop用于指定裁剪旋转后超出图像的部分。
三、实验内容
(1)将图像hehua.bmp裁剪成200X200大小
(2)制作动画,将一幅图像逐渐向左上角平移移出图像区域,空白的地方用白色
填充
(3)利用剪切图像函数制作动画
(4)将图像分别放大1.5倍和缩小0.8倍,插值方法使用双线性插值法,分别显
示图像。
(5)将图像水平镜像,再顺时针旋转45度,显示旋转后的图。
(6)将图像分别进行水平方向30度错切,垂直方向45度错切,分别显示结果
四、实验环境
Windows下matlab编程环境
五、实验源代码及结果
1.f=imread('hehua.bmp');
figure;
imshow(f);
title('原图');
f2=imcrop(f,[50,50,250,250]);
figure;
imshow(uint8(f2));
title('裁剪后');
imwrite(f2,'d:/5/hehua1.bmp');
2.f=imread('hehua1.bmp');
[m,n,x]=size(f);
f=double(f);
for i=1:10
mx=10*i;
my=10*i;
g=zeros(m,n,x)+255;
%g(mx+1:m,my+1:n,1:x)=f(1:m-mx,1:n-my ,1:x);
g(1:m-mx,1:n-my ,1:x)=f(mx+1:m,my+1:n,1:x);
figure;
imshow(uint8(g));
end
3.f=imread('hehua1.bmp');
[m,n]=size(f);
for i=50:10:200
m=i;
n=i;
f2=imcrop(f,[n,n,m,m]);
figure;
imshow(uint8(f2));
end
4.f=imread('hehua1.bmp');
figure;
imshow(f);
title('原图');
f=double(f);
f1=imresize(f,1.5,'bilinear');
figure;
imshow(uint8(f1));
title('放大1.5倍');
f2=imresize(f,0.8,'bilinear');
figure;
imshow(uint8(f2));
title('缩小0.8倍');
5.f=imread('hehua1.bmp');
subplot(131);
imshow(f);
title('原图');
[m,n,x]=size(f);
g=zeros(m,n,x);
for i=1:m
for j=1:n
for k=1:x
g(i,j,k)=f(i,n-j+1,k);
end
end
end
subplot(132);
imshow(uint8(g));
title('水平镜像');
f2=imrotate(g,45,'crop');
subplot(133);
imshow(uint8(f2));
title('顺时针旋转45度');
6.f=imread('hehua1.bmp');
subplot(131);
imshow(f);
title('原图');
h=size(f);
f1=zeros(h(1)+round(h(2)*tan(pi/6)),h(2),h(3));
for m=1:h(1)
for n=1:h(2)
f1(m+round(n*tan(pi/6)),n,1:h(3))=f(m,n,1:h(3));
end
end
subplot(132);
imshow(uint8(f1));
title('水平30度');
f2=zeros(h(1),h(2)+round(h(2)*tan(pi/4)),h(3));
for m=1:h(1)
for n=1:h(2)
f2(m,n+round(m*tan(pi/4)),1:h(3))=f(m,n,1:h(3));
end
end
subplot(133);
imshow(uint8(f2));
title('垂直45度');
六、心得体会。