2019秋人教版九年级数学上册教材全解读.docx
- 格式:docx
- 大小:126.88 KB
- 文档页数:15
人教版数学九年级上册全册精品精品课件.一、教学内容1. 第十三章:一元二次方程13.1 一元二次方程的概念与求解13.2 一元二次方程的根与系数的关系13.3 一元二次方程的应用2. 第十四章:不等式与不等式组14.1 不等式的概念与性质14.2 一元一次不等式组的解法及应用3. 第十五章:图形的相似15.1 相似图形的概念与性质15.2 位似的判定与性质15.3 相似图形的应用二、教学目标1. 理解并掌握一元二次方程、不等式与不等式组、图形的相似等概念及性质。
2. 学会求解一元二次方程、不等式与不等式组,并能将其应用于实际问题的解决。
3. 掌握相似图形的判定与性质,并能应用于几何问题的解答。
三、教学难点与重点1. 教学难点:一元二次方程的求解、不等式与不等式组的解法、相似图形的性质与应用。
2. 教学重点:理解并掌握一元二次方程、不等式与不等式组、图形的相似的概念与性质,提高解决问题的能力。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、几何模型等。
2. 学具:教材、练习本、圆规、直尺、三角板等。
五、教学过程1. 实践情景引入通过生活实例,引出一元二次方程、不等式与不等式组、图形的相似等概念。
2. 例题讲解讲解一元二次方程、不等式与不等式组、相似图形的典型例题。
3. 随堂练习学生独立完成随堂练习,巩固所学知识。
5. 课堂小结六、板书设计1. 一元二次方程、不等式与不等式组、图形的相似的概念、性质与求解方法。
2. 典型例题及解题步骤。
3. 课堂小结与注意事项。
七、作业设计1. 作业题目一元二次方程、不等式与不等式组、图形的相似的应用题。
探究相似图形的性质及其应用。
2. 答案详见教材课后习题答案。
八、课后反思及拓展延伸1. 反思:对本节课的教学过程、学生掌握程度、教学效果等方面进行反思。
2. 拓展延伸:推荐相关学习资源,鼓励学生进行自主学习,提高数学素养。
重点和难点解析1. 教学内容的详细设计与章节分配。
解一元二次方程知识定位讲解用时:3分钟A、适用范围:人教版初三,基础一般B、知识点概述:本讲义主要用于人教版初三新课,本节课我们要主要学习一元二次方程的求解,重点掌握直接开平方法、因式分解法、配方法以及公式法解一元二次方程,本节的重点是能够根据不同的方程特征选择合适的解法,难点是一元二次方程与其他知识点的结合考查,希望同学们认真学习,熟练使用各种解法,为后面一元二次方程的应用奠定良好基础。
知识梳理讲解用时:30分钟【答案】D【解析】考查了直接开平方法解一元二次方程,由原方程得到:(x ﹣2019)2=﹣2019,∵(x ﹣2019)2≥0,﹣2019<0,∴该方程无解,故选:D. 讲解用时:2分钟 解题思路:先移项,然后利用直接开平方法解方程。
教学建议:形如x 2=p 或(nx+m )2=p (p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程。
难度:3 适应场景:当堂例题 例题来源:余干县校级期末 年份:2019秋 【练习1】已知一元二次方程mx 2+n=0(m≠0),若方程有解,则必须( )。
A .n=0B .mn 同号C .n 是m 的整数倍D .mn 异号【答案】D【解析】此题主要考查了直接开平方法解一元二次方程,mx 2+n=0,则mx 2=﹣n ,即x 2=﹣mn , ∵x 2≥0,m≠0,∴mn 异号,故选:D. 讲解用时:2分钟 解题思路:由mx 2+n=0移项得mx 2=﹣n ,再两边同时除以m ,可得x 2=﹣mn ,再根据偶次幂的非负性可得mn 异号。
教学建议:解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解。
难度:3 适应场景:当堂练习例题来源:海原县校级期中年份:2019秋【例题2】在实数范围内定义运算“★”,其规则为a★b=a2﹣b2,则方程(4★3)★x=13的根为。
【答案】x1=6,x2=﹣6【解析】本题考查的是用直接开平方法解一元二次方程,根据新定义可以列方程:(42﹣32)★x=13,则72﹣x2=13,∴49﹣x2=13,则x2=36,∴x1=6,x2=﹣6,故答案为:x1=6,x2=﹣6.讲解用时:3分钟解题思路:根据新定义列出方程,把方程的左边化成完全平方的形式,右边是一个非负数,用直接开平方法求出方程的根。
最新人教版九年级数学上册全册全套课件200页一、教学内容1. 第十三章:一元二次方程详细内容:一元二次方程的定义、解法(直接开平方法、配方法、公式法)、根的判别式、根与系数的关系、实际应用等。
2. 第十四章:不等式与不等式组详细内容:不等式的性质、一元一次不等式及不等式组的解法、不等式的应用等。
3. 第十五章:图形的相似详细内容:相似图形的定义、性质、判定方法、相似图形的应用等。
4. 第十六章:锐角三角函数详细内容:锐角三角函数的定义、互化公式、解直角三角形等。
二、教学目标1. 理解并掌握一元二次方程、不等式与不等式组、图形的相似、锐角三角函数等基础知识。
2. 能够运用所学知识解决实际问题,提高解决问题的能力。
3. 培养学生的逻辑思维能力和空间想象能力。
三、教学难点与重点1. 教学难点:一元二次方程的解法、不等式组的解法、相似图形的判定与性质、锐角三角函数的应用。
2. 教学重点:一元二次方程的解法、不等式的性质与解法、相似图形的判定与性质、锐角三角函数的定义与互化公式。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、直尺、圆规等。
2. 学具:课本、练习本、铅笔、圆规、三角板等。
五、教学过程1. 导入:通过实际情景引入新课,激发学生兴趣。
2. 新课讲解:详细讲解各章节知识点,结合例题进行讲解。
3. 随堂练习:针对新课内容,设计有针对性的练习题,巩固所学知识。
5. 课后作业:布置适量的课后作业,巩固所学知识。
六、板书设计1. 一元二次方程的解法2. 不等式与不等式组的解法3. 相似图形的判定与性质4. 锐角三角函数的定义与互化公式七、作业设计1. 作业题目:(1)解一元二次方程:x^2 5x + 6 = 0。
(2)解不等式组:2x 3 > 4,x + 5 < 3。
(3)证明:若两个三角形相似,则它们的对应角相等。
(4)计算:sin30°、cos45°、tan60°。
人教版九年级数学上册讲义(全册)第二十一章二次根式教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的;它也是今后学习其他数学知识的基础.教学目标1.知识与技能(1)理解二次根式的概念.(2a≥0)是一个非负数;2=a(a≥0)(a≥0).(3a≥0;b≥0);a≥0;b>0)a≥0;b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.2.过程与方法(1)先提出问题;让学生探讨、分析问题;师生共同归纳;得出概念.•再对概念的内涵进行分析;得出几个重要结论;并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律;用不完全归纳法得出二次根式的乘(除)法规定;•并运用规定进行计算.(3)利用逆向思维;•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果;抓住它们的共同特点;•给出最简二次根式的概念.利用最简二次根式的概念;来对相同的二次根式进行合并;达到对二次根式进行计算和化简的目的.3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神;经过探索二次根式的重要结论;二次根式的乘除规定;发展学生观察、分析、发现问题的能力.教学重点1a≥0a≥0)是一个非负数;2=a(a≥0)(a≥0)•及其运用.2.二次根式乘除法的规定及其运用.3.最简二次根式的概念.4.二次根式的加减运算.教学难点1a≥02=a(a≥0(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键1.潜移默化地培养学生从具体到一般的推理能力;突出重点;突破难点.2.培养学生利用二次根式的规定和重要结论进行准确计算的能力;•培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需11课时;具体分配如下:21.1 二次根式3课时21.2 二次根式的乘法3课时21.3 二次根式的加减3课时教学活动、习题课、小结2课时21.1 二次根式第一课时教学内容二次根式的概念及其运用教学目标a≥0)的意义解答具体题目.提出问题;根据问题给出概念;应用概念解决实际问题.教学重难点关键1a≥0)的式子叫做二次根式的概念;2a≥0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y=3x;那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.问题2:如图;在直角三角形ABC中;AC=3;BC=1;∠C=90°;那么AB边的长是__________.BA问题3:甲射击6次;各次击中的环数如下:8、7、9、9、7、8;那么甲这次射击的方差是S2;那么S=_________.老师点评:问题1:横、纵坐标相等;即x=y;所以x2=3.因为点在第一象限;所以所以所求点的坐标).问题2:由勾股定理得问题3:由方差的概念得S= .二、探索新知、;都是一些正数的算术平方根.像这样一些正数的算术平方根的式子;我们就a≥0)•的式子叫做二次根式;”称为二次根号.(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a<0老师点评:(略)例1.下列式子;哪些是二次根式;1xx>0)、、1x y+x ≥0;y •≥0).分析”;第二;被开方数是正数或0.(x>0)、x ≥0;y ≥0)1x、1x y +.例2.当x 在实数范围内有意义?分析:由二次根式的定义可知;被开方数一定要大于或等于0;所以3x-1≥0;才能有意义. 解:由3x-1≥0;得:x ≥13当x ≥13在实数范围内有意义. 三、巩固练习教材P 练习1、2、3.四、应用拓展例3.当x +11x +在实数范围内有意义?分析11x +0和11x +中的x+1≠0. 解:依题意;得23010x x +≥⎧⎨+≠⎩由①得:x ≥-32由②得:x ≠-1当x ≥-32且x ≠-111x +在实数范围内有意义.例4(1)已知;求xy的值.(答案:2)(2);求a 2004+b 2004的值.(答案:25)五、归纳小结(学生活动;老师点评) 本节课要掌握:1(a ≥0)的式子叫做二次根式; 2.要使二次根式在实数范围内有意义;必须满足被开方数是非负数.六、布置作业1.教材P 8复习巩固1、综合应用5.2.选用课时作业设计. 3.课后作业:《同步训练》第一课时作业设计一、选择题1.下列式子中;是二次根式的是()A.BCD.x2.下列式子中;不是二次根式的是()ABCD.1x3.已知一个正方形的面积是5;那么它的边长是()A.5 BC.15D.以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒;其高为0.2m;按设计需要;•底面应做成正方形;试问底面边长应是多少?2.当x2在实数范围内有意义?3.4.x有()个.A.0 B.1 C.2 D.无数5.已知a、b=b+4;求a、b的值.第一课时作业设计答案: 一、1.A 2.D 3.B二、1(a≥0)23.没有三、1.设底面边长为x;则0.2x2=1;解答:2.依题意得:230xx+≥⎧⎨≠⎩;32xx⎧≥-⎪⎨⎪≠⎩∴当x>-32且x≠0x2在实数范围内没有意义.3.1 34.B5.a=5;b=-421.1 二次根式(2)第二课时教学内容1a≥0)是一个非负数;2.2=a(a≥0).教学目标a ≥0)2=a (a ≥0);并利用它们进行计算和化简.(a ≥0)是一个非负数;用具体数据结合算术平2=a (a ≥0);最后运用结论严谨解题.教学重难点关键1a ≥0)是一个非负数;2=a (a ≥0)及其运用.2a ≥0)是一个非负数;•)2=a (a ≥0).教学过程一、复习引入(学生活动)口答 1.什么叫二次根式?2.当a ≥0a<0 老师点评(略).二、探究新知议一议:(学生分组讨论;提问解答)(a ≥0)是一个什么数呢?2=_______;2=_______;2=______;)2=_______;2=______;2=_______;)2=_______.4的算术平方根;是一个平方等于4的非负数;因此有)2=4.同理可得:)2=2;2=9;;2=72;)2=0;所以 例1 计算1.2 2.(2 3.2 4.)2分析)2=a (a ≥0)的结论解题.解:2 =32;(2 =32·2=32·5=45;2=56;2=22724=. 三、巩固练习计算下列各式的值:2 2 (4)2)2 ()222-四、应用拓展例2 计算1.2(x ≥0) 2.2 3.24. 2 分析:(1)因为x ≥0;所以x+1>0;(2)a 2≥0;(3)a 2+2a+1=(a+1)≥0; (4)4x 2-12x+9=(2x )2-2·2x ·3+32=(2x-3)2≥0.所以上面的42=a (a ≥0)的重要结论解题. 解:(1)因为x ≥0;所以x+1>02=x+1(2)∵a 2≥02=a 2 (3)∵a 2+2a+1=(a+1)又∵(a+1)2≥0;∴a 2+2a+1≥0 2+2a+1 (4)∵4x 2-12x+9=(2x )2-2·2x ·3+32=(2x-3) 又∵(2x-3)2≥0∴4x 2-12x+9≥02=4x 2-12x+9 例3在实数范围内分解下列因式:(1)x 2-3 (2)x 4-4 (3) 2x 2-3分析:(略)五、归纳小结本节课应掌握:1a ≥0)是一个非负数;2.2=a (a ≥0);反之:a=2(a ≥0).六、布置作业1.教材P 8 复习巩固2.(1)、(2) P 9 7.2.选用课时作业设计. 3.课后作业:《同步训练》第二课时作业设计 一、选择题1 ). A .4 B .3 C .2 D .12.数a 没有算术平方根;则a 的取值范围是( ). A .a>0 B .a ≥0 C .a<0 D .a=0二、填空题1.()2=________.2_______数.三、综合提高题1.计算(1)2 (2)-2 (3)(12)2 (4)(- 2(5) 2.把下列非负数写成一个数的平方的形式:(1)5 (2)3.4 (3)16(4)x (x ≥0)3=0;求x y 的值. 4.在实数范围内分解下列因式: (1)x 2-2 (2)x 4-9 3x 2-5第二课时作业设计答案:一、1.B 2.C二、1.3 2.非负数三、1.(1)2=9 (2)-)2=-3 (3)(12)2=14×6=32(4)(-2=9×23=6 (5)-62.(1)5=2 (2)3.4=2(3)16=2 (4)x=)2(x ≥0)3.103304x y x x y -+==⎧⎧⎨⎨-==⎩⎩ x y =34=814.(1)x 2-2=()(x )(2)x 4-9=(x 2+3)(x 2-3)=(x 2+3)((x )(3)略21.1 二次根式(3)第三课时教学内容a (a ≥0)教学目标(a ≥0)并利用它进行计算和化简.(a ≥0);并利用这个结论解决具体问题.教学重难点关键1a (a ≥0). 2.难点:探究结论.3.关键:讲清a ≥0a 才成立.教学过程一、复习引入老师口述并板收上两节课的重要内容;1(a ≥0)的式子叫做二次根式;2a ≥0)是一个非负数;3.2=a (a ≥0).那么;我们猜想当a ≥0是否也成立呢?下面我们就来探究这个问题.二、探究新知(学生活动)填空:;=________. (老师点评):根据算术平方根的意义;我们可以得到:110=23=037. 例1(1 (2 (3 (4分析:因为(1)9=-3;(2)(-4)2=42;(3)25=5;(4)(-3)2=32(a ≥0)•去化简.解:(1 (2(3 (4 三、巩固练习教材P 7练习2.四、应用拓展例2 填空:当a ≥0;当a<0;•并根据这一性质回答下列问题.(1;则a 可以是什么数?(2;则a 可以是什么数?(3;则a 可以是什么数?分析(a ≥0);∴要填第一个空格可以根据这个结论;第二空格就不行;应变形;使“( )2”中的数是正数;因为;当a ≤0-a ≥0.(1)根据结论求条件;(2)根据第二个填空的分析;逆向思想;(3)根据(1)、(2│a │;而│a │要大于a ;只有什么时候才能保证呢?a<0.解:(1;所以a ≥0;(2;所以a ≤0;(3)因为当a ≥0;;即使a>a 所以a 不存在;当a<0;;即使-a>a ;a<0综上;a<0例3当x>2 分析:(略)五、归纳小结(a ≥0)及其运用;同时理解当a<0a 的应用拓展.六、布置作业1.教材P8习题21.1 3、4、6、8.2.选作课时作业设计.3.课后作业:《同步训练》第三课时作业设计一、选择题1).A.0 B.23C.423D.以上都不对2.a≥0).AC.二、填空题1.=________.2m的最小值是________.三、综合提高题1.先化简再求值:当a=9时;求的值;甲乙两人的解答如下:甲的解答为:原式=a+(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中;_______的解答是错误的;错误的原因是__________.2.若│1995-a│;求a-19952的值.(提示:先由a-2000≥0;判断1995-a•的值是正数还是负数;去掉绝对值)3. 若-3≤x≤2时;试化简│x-2│答案:一、1.C 2.A二、1.-0.02 2.5三、1.甲甲没有先判定1-a是正数还是负数2.由已知得a-•2000•≥0;•a•≥2000所以a-1=1995;a-2000=19952;所以a-19952=2000.3. 10-x21.2 二次根式的乘除第一课时教学内容a≥0;b≥0)(a≥0;b≥0)及其运用.教学目标a≥0;b≥0)(a≥0;b≥0);并利用它们进行计算和化简a≥0;b≥0)并运用它进行计算;•利用逆向思维;得(a≥0;b≥0)并运用它进行解题和化简.教学重难点关键a≥0;b≥0)(a≥0;b≥0)及它们的运用.(a≥0;b≥0).关键:a<0;b<0)a b;教学过程一、复习引入(学生活动)请同学们完成下列各题.1.填空(1;(2=_______.(3.参考上面的结果;用“>、<或=”填空.2.利用计算器计算填空(1;(2(3(4;(5.老师点评(纠正学生练习中的错误)二、探索新知(学生活动)让3、4个同学上台总结规律.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式;•并且把这两个二次根式中的数相乘;作为等号另一边二次根式中的被开方数.反过来:例1.计算(1(2(3(4分析:a≥0;b≥0)计算即可.解:(1(2(3(4例2 化简(1(2(3(4(5(a≥0;b≥0)直接化简即可.解:(1×4=12(2×9=36(3×10=90(4(5三、巩固练习(1)计算(学生练习;老师点评)①②×(2) 化简:;教材P11练习全部四、应用拓展例3.判断下列各式是否正确;不正确的请予以改正:(1(2=4解:(1)不正确.×3=6(2)不正确.=五、归纳小结本节课应掌握:(1=(a≥0;b≥0)(a≥0;b≥0)及其运用.六、布置作业1.课本P151;4;5;6.(1)(2).2.选用课时作业设计.3.课后作业:《同步训练》第一课时作业设计一、选择题1;•那么此直角三角形斜边长是().A.cm B.C.9cm D.27cm2.化简).A B. D.311x-=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-1 4.下列各等式成立的是().A..C.× D.×二、填空题1.2.自由落体的公式为S=12gt2(g为重力加速度;它的值为10m/s2);若物体下落的高度为720m;则下落的时间是_________.三、综合提高题1.一个底面为30cm×30cm长方体玻璃容器中装满水;•现将一部分水例入一个底面为正方形、高为10cm 铁桶中;当铁桶装满水时;容器中的水面下降了20cm;铁桶的底面边长是多少厘米?2.探究过程:观察下列各式及其验证过程.(1)验证:==(2)验证:=同理可得:==;……通过上述探究你能猜测出:(a>0);并验证你的结论.答案:一、1.B 2.C 3.A 4.D二、1.2.12s三、1.设:底面正方形铁桶的底面边长为x;则x2×10=30×30×20;x2=30×30×2;2.验证:==21.2 二次根式的乘除第二课时教学内容a≥0;b>0)(a≥0;b>0)及利用它们进行计算和化简.a≥0;b>0(a≥0;b>0)及利用它们进行运算.教学重难点关键a≥0;b>0)(a≥0;b>0)及利用它们进行计算和化简.1教学过程一、复习引入(学生活动)请同学们完成下列各题:1.写出二次根式的乘法规定及逆向等式.2.填空(1;=________;(2;(3=________.(43.利用计算器计算填空:(1=_________;(2=_________;(3=______;(4=________.;。
最新人教版九年级数学上册全册全套课件200页一、教学内容1. 第十三章:一元二次方程13.1 一元二次方程及其解法13.2 一元二次方程的判别式13.3 一元二次方程的根与系数的关系13.4 实际问题与一元二次方程2. 第十四章:不等式与不等式组14.1 不等式及其解法14.2 不等式的性质14.3 不等式组14.4 实际问题与不等式组3. 第十五章:函数及其图像15.1 函数的概念与表示方法15.2 函数的性质15.3 一次函数15.4 一次函数的图像与性质4. 第十六章:二次函数16.1 二次函数的概念与表示方法16.2 二次函数的图像与性质16.3 二次函数的顶点式16.4 二次函数与一元二次方程16.5 实际问题与二次函数二、教学目标1. 理解一元二次方程、不等式、不等式组、函数及二次函数的基本概念,掌握它们的解法、性质、图像和应用。
2. 培养学生运用数学知识解决实际问题的能力,提高逻辑思维能力和推理能力。
3. 培养学生团队合作精神,提高自主学习能力。
三、教学难点与重点1. 教学难点:一元二次方程的根与系数的关系、不等式的性质、一次函数与二次函数的图像与性质。
2. 教学重点:一元二次方程的解法、不等式组的解法、函数的概念及其应用。
四、教具与学具准备1. 教具:多媒体教学设备、投影仪、黑板、粉笔、教鞭等。
2. 学具:课本、练习册、草稿纸、直尺、圆规、计算器等。
五、教学过程1. 导入:通过实际问题引入新课,激发学生兴趣。
2. 新课讲解:结合教材,详细讲解各章节知识点,注重理论与实践相结合。
3. 例题讲解:精选典型例题,详细讲解解题思路和方法,引导学生分析问题,提高解题能力。
4. 随堂练习:设计针对性练习,巩固所学知识,及时发现问题并进行解答。
5. 小组讨论:分组讨论,培养学生团队合作精神,提高解决问题的能力。
六、板书设计1. 用大号字体书写,突出主题。
2. 知识点:用不同颜色粉笔书写,分层次、分模块展示。
第二十一章一元二次方程【抛砖引玉】韦达定理一元二次方程的根与系数的关系,常常也称作韦达定理,这是因为该定理是16世纪法国最杰出的数学家韦达发现的.韦达的小传韦达1540年出生在法国东部的普瓦图的韦特奈.他早年学习法律,曾以律师身份在法国议会里工作,韦达不是专职数学爱,但他非常喜欢在政治生涯的间隙和工作余暇研究数学,并做出了很多重要贡献,成为那个时代最伟大的数学家.韦达是第一个有意识地和系统地使用字母表示数的人,并且对数学符号进行了很多改进.他在1591年所写的《分析术引论》是最早的符号代数著作.是他确定了符号代数的原理与方法,使当时的代数学系统化并且把代数学作为解析的方法使用.因此,他获得了“代数学之父”之称.他还写下了《数学典则》(1579年)、《应用于三角形的数学定律》(1579年)等不少数学论著.韦达的著作,以独特形式包含了文艺复兴时期的全部数学内容.只可惜韦达著作的文字比较晦涩难懂,在当时不能得到广泛传播.在他逝世后,才由别人汇集整理并编成《韦达文集》于1646年出版.韦达1603年卒于巴黎,享年63岁.下面是关于韦达的一则趣事:韦达的“魔法”在法国和西班牙的战争中,法国人对于西班牙的军事动态总是了如指掌,在军事上总能先发制人,因而不到两年功夫就打败了西班牙。
可怜西班牙的国王对法国人在战争中的“未卜先知”十分脑火又无法理解,认为是法国人使用了“魔法”.原来,是韦达利用自己精湛的数学方法,成功地破译了西班牙的军事密码,为他的祖国赢得了战争的主动权.另外,韦达还设计并改进了历法.所有这些都体现了韦达作为大数学家的深厚功底.【先睹为快】本章主要包括一元二次方程及其相关概念、一元二次方程的解法及一元二次方程的实际应用三个知识点.主要学习用配方法、公式法和因式分解法解一元二次方程,根的判别式以及根与系数的关系,用一元二次方程来解决实际问题.【众说纷纭】老师:怎样才能学好一元二次方程?学生1:我认为,一元二次方程与前面学过的一元一次方程、二元一次方程组很类似,几元就是指几个未知数,几次就是指未知数的次数是几.只要前面这两种方程学好了,学一元二次方程就简单了.学生2:你们知道什么是方程根吗?告诉大家,使方程左右两边相等的未知数的值就是方程的根.一元二次方程的根就是使这个一元二次方程左右边相等的未知数的值.学生3:那一元二次方程根的情况是有时有两个根,有时没有实数根吧?老师:你们理解的对.但是我们要注意一点,一元二次方程必须满足三个条件:一是只含有一个未知数,二是未知数的最高次数是2,三是整式方程.学生1:知道怎么解一元二次方程吗?有三种方法哦,一是配方法、二是公式法,三是因式分解法.学生2:是啊,是啊,三种方法还适合不同的方程形式,有时运用因式分解法好,有时运用配方法好,这一章要学习的内容还挺有意思的,我们共同来期待吧!21.1 一元二次方程【解读课标】1.理解一元二次方程的概念及一般形式,分清二次项及其系数、一次项及其系数与常数项等概念.2.了解一元二次方程根的概念,会检验一个数是不是一元二次方程的根. 【洞悉课本】知识点1 一元二次方程(重点)一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.友情所示:从一元二次方程的定义可知,一元二次方程需具备以下三个条件:(1)只含有一个未知数,即未知数有且只有一个.如果方程中未知数的个数多于1个,那么它就不是一元二次方程.(2)未知数的最高次数是2,即未知数的最高次数不能低于2,也不能高于2.但方程中是否存在一次项或常数项,并没有提出要求.因此,可将方程进行降幂排列,观察未知数的最高次数是否为2.(3)方程的两边是整式.整式是单项式和多项式的统称.说明分母不能含有未知数,被开数不能含有未知数.只要某个方程不符合以上三条中的一条,那它就不是一元二次方程.反之,是一元二次方程,那么它就一定满足以上三个条件.例1 下列方程中是关于x 的一元二次方程的是( ).A.2210x x +=B.20ax bx c ++= C.(1)(2)1x x -+=D.223250x xy y --=【解题思路】根据一元二次方程的定义, 把一个整式方程经化简后含一个未知数且未知数的最高次数为2就是一元二次方程.A 项分母中含有未知数;B 项中未强调a ≠0;D 项中含有两个未知数;把C 项展开整理为x 2-x-3=0,符合一元二次方程的概念.【答案】C. 【方法归纳】判断一个方程是否为一元二次方程,首先要将方程化简,使方程右边为0,然后观察它是否具备一元二次方程的三个条件:(1)只含有一个末知数,(2)末知数的最高次数是2,(3)整式方程,这三个条件缺一不可. 【举一反三】1.(★)下列方程中,关于x 的一元二次方程是( ). A.3(x +1)2=2(x +1) B.2112x x+-=0 C.(a -1)x 2+bx +c =0 D.x 2+2x =x 2-1 2. (★★) 方程(m +2)x |m |+3mx +1=0是关于x 的一元二次方程,则( ).A.m =±2B.m =2C.m =-2D.m ≠±2 知识点2 一元二次方程的一般形式(重点)一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,经过整理,可以化为ax 2+bx +c =0(a ≠0),这种形式叫一元二次方程的一般形式.其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项. 【友情提示】一元二次方程的一般形式是将方程变形和整理后的一种很有规律的表达形式,它的左边是未知数的二次三项式,且其中a 通常写成大于0的形式,而右边是0.一元二次方程的一般形式是用配方法或公式法求一元二次方程根的基础.例2 把下列方程化为一般形式,并写出二次项系数、一次项系数和常数项.(1)x(x+6)=5;(2)(x+1)(x-4)=-4;(3)(2x+1)2=4x.【解题思路】首先对三个方程进行适当的整理,化为一般形式,再指出二次项系数、一次项系数和常数项.【解】(1)x(x+6)=5,去括号,得x2+6x=5,移项,得x2+6x-5=0.其中二次项系数为1,一次项系数6,常数项-5.(2)(x+1)(x-3)=-4,去括号,得x2-4x+x-4=-4,移项,合并同类项,得x2-3x=0.其中二次项系数为1,一次项系数-3,常数项0.(3)(2x+1)2=-7,去括号,得4x2+4x+1=4x,移项,合并同类项,得4x2+1=0.其中二次项系数为4,一次项系数0,常数项1.【方法归纳】一元二次方程化为一般形式后,若没有出现一次项bx,则b=0;若没有出现常数项c,则c=0.【举一反三】3.(★) 一元二次方程3x2+2x-5=0的一次项系数是.4.(★★)把方程5x(x+1)=2(x+5)2+x2-3化成一般形式,并指出二次项系数,一次项系数及常数项.小强的解题过程如下:解:去括号,得5x2+5x=2(x2+25)+x2-3,移项,得5x2+5x-2x2-50-x2+3=0,合并,得2x2+5x-47=0.所以二次项系数是2,一次项系数是5,常数项是-47.小强的解题过程有错误吗?若有,请指出错在什么地方,并给出正确的解题过程.知识点3 一元二次方程的解(根)(难点)一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值,叫做一元二次方程的解,也叫做一元二次方程的根.判定一个数是不是一元二次方程解的方法是:将此数代入这个一元二次方程,若能使等式成立,则这个数是一元二次方程的解;反之,它就不是一元二次方程的解.友情所示:一元二次方程的根的定义可以当作性质定理使用,即若有实数m是一元二次方程ax2+bx+c=0(a≠0)的根,则m必然满足该方程,将m代入该方程,便有am2+bm+c=0(a≠0);定义也可以当作判定定理使用,即若有数m能使am2+bm+c=0(a≠0)成立,则m 一定是ax2+bx+c=0的根.例3 已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是().A.1B.﹣1C.0D.无法确定【解题思路】根据一元二次方程根的定义,只要将方程中的未知数换成相应的根,就可以使问题得到解决.据题意得:(m﹣1)+1+1=0,解得:m=﹣1.【答案】 B【方法归纳】在已知方程的根时,通常需要将方程的根代入原方程,根据要求的结果,进行转化,可通过分解因式,或者整体代入等方法实现要求解的问题. 【举一反三】5.(★) 已知一元二次方程有一个根为1,那么这个方程可以是___________(只需写出一个方程)6.(★★) 已知a 是方程012=-+x x 的一个根,则aa a ---22112的值为( ). AB .251±- C .-1D .1【走出误区】易错点1一元二次方程的概念理解不透彻例1方程(m +2)x |m |+3mx +1=0是关于x 的一元二次方程,则( ). A .m =±2 B .m =2 C .m =-2 D .m ≠±2【解题思路】因为方程(m +2)x |m |+3mx +1=0是关于x 的一元二次方程,所以220.m m ⎧=⎪⎨+≠⎪⎩,解得m =2.故选B .【答案】B【误区分析】错解原因误认为未知数x 的次数是2就可以,忽视了二次项系数m +2≠0这一隐含条件.易错点2 不能准确确定一元二次方程的二次项系数、一次项系数及常数项例2 写出方程3x 2+2x=5二次项系数、一次项系数及常数项. 【解题思路】求一元二次方程的项及各项的系数时,应先把方程化为一般形式后再确定,并注意要带上符号.【解】把3x 2+2x=5化为一般形式为3x 2+2x-5=0,其中二次项系数是3,一次项系数是2,常数项是-5.【误区分析】错解的原因在于未将原方程化为一般形式,忽略了项的系数符号以及混淆了项与项的系数的概念. 【对接中考】【考点透视】中考对这部分内容的考查,主要以一元二次方程的判别、一元二次方程的根以及根的应用为主,试题难度不大,属于简单题,且试题的类型通常以选择题、填空题为主. 【中考典例】例 (2016·宜宾)已知2=x 是一元二次方程022=++mx x 的一个解,则m 的值是 ( ).A .-3B .3C . 0D .0或3【解题思路】把2=x 代入原方程可得到一个关于m 的一元一次方程,再求解,应选A. 【答案】A .【方法归纳】本题考查了一元一次方程的解法及方程解的定义,解题时遇到方程的解可把解代入原方程,这是常用方法. 【真题演练】1.(2016•牡丹江★★)若关于x 的一元二次方程为ax 2+bx+5=0(a≠0)的解是x=1,则2013﹣a ﹣b 的值是( ).A.2018B.2008C.2014D.20122.(2016贵州省黔西南州★★)已知x=1是一元二次方程x 2+ax+b=0的一个根,则代数式a 2+b 2+2ab 的值是 . 【小试身手】1. (★)下列方程中,关于x 的一元二次方程的是( ). A.02112=-+x xB.()()12132+=+x x C.02=++c bx ax D.122-=+x x x2. (★★)已知关于x 的方程x 2+bx +a =0有一个根是-a (a ≠0),则a -b 的值为( ).A .﹣1B .0C .1D .23. (★)方程3x 2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.4. (★)请你写出一个一元二次方程,它的二次项系数为1,一次项系数为-3,这个一元二次方程是 .5. (★★)已知x = 1是一元二次方程02=++n mx x 的一个根,则222n mn m ++的值为 .6. (★★)当m 为何值时,关于x 的方程22(9)(3)20m x m x m -+-+=(1)是一元一次方程?(2)是一元二次方程?7. (★★)教材或资料会出现这样的题目:把方程2122x x -=化为一元二次方程的一般形式,并写出他的二次项系数、一次项系数和常数项. 现把上面的题目改编为下面的两个小题,请解答. (1)下列式子中,有哪几个是方程2122x x -=所化的一元二次方程的一般形式?(答案只写序号) . ①21202x x --= ②21202x x -++= ③224x x -= ④2240x x -++= 2323430x x --= (2)方程2122x x -=化为一元二次方程的一般形式后,它的二次项系数、一次项系数、常数项之间具有什么关系?【教材习题解答】P (4)1.(1)3x 2-6x+1=0,二次项系数为3,一次项系数为-6,常数项为1. 解析: 直接把一次项6x 移到左边即可.(2)4x 2+5x-81=0,二次项系数为4,一次项系数为5,常数项为-81. 解析:直接把常数项81移到左边即可.(3)x 2+5x=0,二次项系数为1,一次项系数为5,常数项为0. 解析:直接把x(x+5)去括号即可.(4)2x 2-4x+2=0,二次项系数为2,一次项系数为-4,常数项为2. 解析:根据多项式乘以多项式的法则把左边展开:(2x-2)(x-1)=0,得2x 2-4x+2=0.(5)x 2+10=0,二次项系数为1,一次项系数为0,常数项为10. 解析:把左边去括号,同时右边的5x-10移到左边,合并同类项即可.(6)x 2+2x-2=0,二次项系数为1,一次项系数为2,常数项为-2. 解析:左、右两边分别去括号,再把右边的移到左边.(3x-2)(x+1)=x(2x-1),去括号得3x 2+3x-2x-2=2x 2-x ,移项、合并同类项得x 2+2x-2=0.2.(1)设这个圆的半径为Rm ,由圆的面积公式得3.14R 2=6.28,所以3.14R 2-6.28=0 解析:根据圆的面积公式得到方程.(2)设这个直角三角形较长的直角边为xcm ,由三角形的面积公式得21x(x-3)=9,整理得21x 2-23x-9=0. 解析:直接根据三角形的面积公式构造方程. 3.-4,3 解析: 分别把-4,-3,-2,-1,0,1,2,3,4代入到方程x 2+x-12=0的左边,看是否与右边相等,如果相等,则是原方程的根;若不相等,则它不是原方程的根.4.解析:设长方形的宽为xcm ,则长方形的长是(x+1)cm ,由题意得x(x+1) =132,即x 2+x-132=0.5.解析:设长方形的长为xcm ,则长方形的宽是(0.5-x)cm ,由长方形的面积公式x(0.5-x)=0.06,整理得x 2-0.5x+0.06=0.6.解析:设有x 人参加聚会,根据题意可知(x-1)+(x-2)+…+2+1=10,即102)1(=-x x ,整理得010222=--xx . 7.解析:由题意可知,22-c=0,所以c=4,所以原方程x 2-4=0,所以x=±2,即这个方程的另一个根是-2.21.2 降次----解一元二次方程【解读课标】1.理解并掌握一元二次方程的三种解法:配方法、公式法、因式分解法,会选择适当的方法解一元二次方程;2.会用b 2-4ac 判断一元二次方程根的情况; 3.理解一元二次方程的根与系数的关系;4.通过对一元二次方程解法的探索,体会“降次”的基本思想. 【洞悉课本】知识点1 配方法解一元二次方程(难点)配方法就是通过将原方程配成完全平方式来解一元二次方程的方法.配方法的理论依据是完全平方公式.配方法的步骤是:1. 移项:使含未知数的项在左边,常数项在右边;2. 化二次项系数为1:两边同除以二次项系数;3.配方:方程两边都加上一次项系数的一半,写成2()x m n +=的形式;4.求解:利用平方根定义直接开平方(n <0无解).友情所示:(1)配方法是一种很重要的数学方法,但使用起来较复杂,故没有特别说明,一般不使用.但此方法非常重要,以后有着广泛的应用,必须掌握它.(2)运用上面的步骤时,一定要注意先化二次项系数为1,配方时,要注意方程两边都加上一次项系数的一半,不能只加一边.例1 解方程 :22520x x -+=.【解题思路】根据配方法解题的一般步骤,按照解题步骤一步步来,就可以顺利解出来.【解】移项,得2x 2-5x=2, 二次项系数化为1,得2512x x -=-, 配方,得2225551244x x ⎛⎫⎛⎫-+-=-+- ⎪ ⎪⎝⎭⎝⎭即259()416x -=,5344x -=±.解得12122x x ==,.【方法归纳】配方法是一种重要的解题方法,在应用它时主要是依据一般步骤,只要注意一次项的符号,选准和(或差)的平方,就可以得到正确答案. 【举一反三】1.(★) 用配方法解一元二次方程245x x -=时,此方程可变形为( ). A.()221x += B.()221x -= C.()229x += D.()229x -= 2. (★★) 配方法解方程x 2-4x +1=0知识点2 一元二次方程根的判别式(难点)一般地,式子b 2-4ac 叫做方程20ax bx c ++=(a ≠0)根的判别式,通常用希腊字母△来表示,即△=b 2-4ac.用根的判别式可不用解方程直接判断一元二次方程的根的情况.一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可由b 2-4ac 的符号来判定:(1)当b 2-4ac >0时,方程有两个不相等的实数根;(2)当b 2-4ac =0时,方程有两个相等的实数根;(3)当b 2-4ac <0时,方程没有实数根.友情所示:①应用根的判别式要准确确定a 、b 、c 的值;②根的判别式只适用于一元二次方程.例2 不解方程,判断下列方程根的情况.(1)3x 2+8x=3 (2)x 2+4=4x (3)t 2-t+2=0【解题思路】确定各方程中a 、b 、c 的值,将它们代入△=b 2-4ac.由△的符号确定方程根的情况.【解】(1)原方程可化为3x 2+8x-3=0.∵△=b 2-4ac=82-4×3×(-3)=100>0,∴原方程有两个不相等的实数根.(2)原方程可化为x 2-4x+4=0.∵△=b 2-4ac=(-4)2-4×1×4=0,∴原方程有两个相等的实数根.(3)∵△=b 2-4ac=(-1)2-4×1×2=-7<0,∴原方程没有实数根. 【方法归纳】根的判别式是用来判断一元二次方程根的情况的,再应用它来解题时要把方程化为一般形式,再确定a 、b 、c 的值,最后计算出b 2-4ac 的值. 【举一反三】3.(★)一元二次方程0412=++x x 的根的情况是( ). A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根 D .无法确定4. (★★)已知关于x 的一元二次方程(a -1)x 2-2x+1=0有两个不相等的实数根,则a 的取值范围是( ).A.a <2B.a >2C.a <2且a ≠1D.a <-2 5.(★★)若方程2x kx 9=0++有两个相等的实数根,则k= .知识点3 公式法解一元二次方程(难点)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0(a ≠0),当b-4ac ≥0时,方程ax 2+bx+c=0(a ≠0)的实数根可以写为方程ax 2+bx+c=0(a ≠0)的求根公式.利用求根公式解一元二次方程的方法叫公式法.一元二次方程ax 2+bx+c=0(a ≠0)推导过程如下:移项,得:ax 2+bx=-c二次项系数化为1,得x 2+b a x=-c a 配方,得:x 2+b a x+(2b a )2=-c a+(2b a )2 即(x+2b a)2=2244b aca -∵b 2-4ac ≥0且4a 2>0直接开平方,得:x+2b a =±2a ,即x=2b a-∴x 1=2b a -,x 2=2b a-【友情提示】公式法是在配方法的基础上推理得到的方法,公式法使解方程的过程简单化,体现了优化思想.公式法可以称为“解一元二次方程的万能公式”. 例3 用公式法解方程:2314x x -=.【解题思路】将方程整理成一般形式,确定出a 、b 、c 的值,将它们代入△=b 2-4ac 计算出数值,当b 2-4ac ≥0时,直接代入公式求解.【解】原方程可化为23410x x --=. 因为341a b c ==-=-,,.241612280b ac -=+=>,所以x ==12x x ==.【方法归纳】公式法是解一元二次方程最常用的方法,它的一般步骤是:(1)把方程化成一元二次方程的一般形式,(2)写出方程各项的系数,(3)计算出b 2-4ac 的值,看b 2-4ac 的值与0的关系,若b 2-4ac <0,则此方程没有实数根, 当b 2-4ac ≥0时, 代入求根公式计算出方程的根.【举一反三】6.(★) 方程2x 2+5x -3=0的解是 .7.(★★)解下列方程:(1)x 2+2x-35=0 (2)2x 2-4x-1=0 (3)2314x x -=.知识点4 因式分解法解一元二次方程(重点)通过因式分解使一元二次方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.友情所示:分解因式法是解一元二次方程较简洁的方法,关键是化方程右边为0,左边能分解因式.但使用起来有一定的局限性,一般方程ax 2+bx +c =0(a ≠0) ,当c=0时用因式分解法比较简单.例4 解方程:(1)x 2-12x=-36 (2))32(4)32(2+=+x x【解题思路】 (1)移项后用完全平方公式分解因式;(2)先把方程右边的代数式移到左边,使右边为0,再把左边进行因式分解.【解】(1)移项,得x 2-12x+36=0,所以(x-6)2=0,即x 1=x 2=6. (2)移项,得0)32(4)32(2=+-+x x ,因式分解,得 0)432)(32(=-++x x . 于是0)432(0)32(=-+=+x x 或,所以21,2321=-x x 【方法归纳】因式分解法是最简单的解一元二次方程的方法,它的一般步骤是:(1)移项,使方程的右边为0;(2)利用提取公因式法,平方差公式,完全平方公式等对左边进行因式分解;(3)令每个因式分别为零,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.【举一反三】8.(★) 方程x (x-2)+x-2=0的解是( ). A.2 B.-2,1 C.-1 D.2,-19.(★★) 我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个..,并选择你认为适当的方法解这个方程. ①2310x x -+=;②2(1)3x -=;③230x x -=;④224x x -=.知识点5 一元二次方程根与系数的关系(选学) 探索一元二次方程根与系数的关系我们知道方程ax 2+bx+c=0(a ≠0,b 2-4ac ≥0)的两根是:x 1=,x 2=2b a-则x 1+x 2=2b a -+2b a-=-22bb a a =-,x 1·x 2=2b a -·2b a-22244b b ac ca a -+==. 规律:x 1+x 2=b a -,x 1·x 2=ca称为一元二次方程根与系数. 有关根与系数的关系的两个重要推论:(1)以x 1、x 2为根的一元二次方程(二次项系数为1)的是x 2-(x 1+x 2)x+x 1·x 2=0.(2)如果方程x 2-px+q=0的两根是x 1、x 2,那么x 1+x 2=-p ,x 1·x 2=q. 友情所示:只有在方程有根即△= b 2-4ac ≥0的前提下,才有x 1+x 2=b a -,x 1·x 2=c a. 例5已知关于x 的一元二次方程x 2﹣bx+c=0的两根分别为x 1=1,x 2=﹣2,则b 与c 的值分别为( ).A.b=﹣1,c=2B.b=1,c=﹣2C.b=1,c=2D.b=﹣1,c=﹣2【解题思路】根据根与系数的关系,由方程的两根分别为x 1=1,x 2=﹣2,即可求得b 与c 的值.【解】∵关于x 的一元二次方程x 2﹣bx+c=0的两根分别为x 1=1,x 2=﹣2,∴x 1+x 2=b=1+(﹣2)=﹣1,x 1•x 2=c=1×(﹣2)=﹣2,∴b=﹣1,c=﹣2.故选D .【方法归纳】若x 1,x 2是方程x 2+px+q=0的两根时,则x 1+x 2=-p ,x 1·x 2=q ;本题也可以利用根的定义,把x 1,x 2分别代入方程,得到b 、c 的方程组进行求解. 【举一反三】 10.(★) 若x 1,x 2是一元二次方程2x 2-7x +4=0的两根,则x 1+x 2与x 1·x 2的值分别是( ). A .-72,-2 B . -72,2 C .72,2 D .72,-2 11.(★★) 已知1x 、2x 是方程2630x x ++=的两个实数根,则2112x x x x +的值等于( ). A . 6 B .-6 C .10 D . -1012.(★★)(1)新人教版初中数学教材中我们学习了:若关于x 的一元二次方程20ax bx c ++=的两根为12,x x ,则1212,b cx x x x a a+=-⋅=.根据这一性质,我们可以求出已知方程关于12,x x 的代数式的值.例如:已知12,x x 为方程2210x x --=的两根,则12x x += ,12x x ⋅= .那么()2221212122x x x x x x +=+-= .请你完成以上的填空.......... (2)阅读材料:已知2210,10m m n n --=+-=,且1mn ≠.求1mn n+的值. 解:由210n n +-=可知0n ≠.∴21110n n +-=.∴21110n n--= 又210,m m --=且1mn ≠,即1m n≠.∴1,m n是方程210x x --=的两根.∴11m n +=.∴1mn n+=1. (3)根据阅读材料所提供的的方法及(1)的方法完成下题的解答.已知222310,320m m n n --=+-=,且1mn ≠.求221m n +的值.【走出误区】易错点1 配方法时出错例1用配方法解方程x 2-2x-8=0【解题思路】配方法通常将一元二次方程ax 2+bx+c=0,化为02=++acx a b x 后,再进行配方.要注意是方程的两边.....同时加上一次项系数一半的平方,最后化成n m x =+2)(的形式,求出解即可.【答案】移项,得x 2-2x=8,x 2-2x+1=8+1 即(x-1)2=9,两边开平方,得x-1=±3 ∴x 1=4,x 2=-2.【误区分析】错解的原因在于只在方程的左边加上一次项系数一半的平方,而方程的右边忘了加.易错点2 用公式法时出错例2用公式法解方程4722=+x x .【解题思路】运用公式法解一元二次方程时,首先要把方程化为一般形式,计算出“△”的值,最后代入公式即可.【答案】移项,得:04722=-+x x ,因为a=2,b=7,c=-4 所以b 2-4ac=49-4×2×(-4)=81,所以794x -±==. 即12142x x =-=,.【误区分析】错解的原因在于没有将方程化成一般形式,造成系数中常数项c 的错误.易错点3 解方程时约分造成失根致错例3 解方程(2x-3)2=3(2x-3).【解题思路】本题方程的两边都含有(2x-3)这个相同的因式,两边不能直接除以(2x-3),要通过移项,借助因式分解来解决.【答案】移项,得:(2x-3)2-3(2x-3)=0,因式分解,得:(2x-3)(2x-3-3)=0,所以2x-3=0或2x-6=0,即12332x x ==,. 【误区分析】错误的原因是变形不属于同解变形,方程两边都除以)32(-x 时,没有考虑)32(-x 也可以为0,从而丢掉了23=x 这个根. 易错点4 忽视根的情况致错例4 当a 取何值时,关于x 的方程0)1(2)13(2=+++-a x a ax 有两个不相等的实根1x 、2x ,且有a x x x x -=+-12211?【解题思路】求关于方程两根的问题时,借助于根与系数的关系,并要考虑二次项的系数不等于零,且根的判别式大于或等于零.本题是有两个不相等的实根1x 、2x ,故△>0,同时注意二次项系数不能为0.【答案】因为方程有两个不等的实根,所以a ≠0,且)1(24)]13([2+⨯⨯-+-=∆a a a =2)1(-a ≥0,所以a ≠1,因为两实根为1x 、2x ,所以aa x x a a x x )1(2,132121+=⋅+=+,所以a aa a a -=+-+1)1(213,解得1±=a ,因为a ≠1,所以1-=a . 【误区分析】忽视题目中的两个不相等实根的条件,其实1-=a 时方程有两个相等的实数根.【对接中考】 【考点透视】中考对这部分内容的考查,主要以一元二次方程的解法、一元二次方程根的情况以及根的判别式的应用为主,同时有根与系数的关系的简单应用,试题难度中等,属于中等难度题,且试题的类型通常以选择题、填空题、解答题为主. 【中考典例】例1(2013白银)现定义运算“★”,对于任意实数a 、b ,都有a★b=a 2﹣3a+b ,如:3★5=32-3×3+5,若x★2=6,则实数x 的值是 .【解题思路】根据题中的新定义将所求式子转化为一元二次方程,求出一元二次方程的解即可得到x 的值.根据题中的新定义将x ★2=6变形得:x 2﹣3x+2=6,即x 2-3x-4=0,因式分解得:(x-4)(x+1)=0,解得:x 1=4,x 2=-1,则实数x 的值是-1或4. 【答案】-1或4.【方法归纳】此题考查了解一元二次方程﹣因式分解法,利用此方法解方程时,首先将方程右边化为0,左边变为积的形式,然后根据两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.例2(2013贵州省六盘水)已知关于x的一元二次方程(k -1)x 2-2x+1=0有两个不相等的实数根,则k的取值范围是( ).A.k <﹣2B.k <2C.k >2D.k <2且k≠1【解题思路】根据题意得:△=b 2-4ac=4-4(k-1)=8-4k >0,且k-1≠0,解得:k <2,且k≠1. 【答案】D【方法归纳】求一元二次方程方程中字母的取值范围内,要根据方程根的情况,借助根的判别式的值,列出关于所求字母的不等式,求出不等式的解集即可得到相应的字母的取值范围.例3 (2013湖北省鄂州市)已知m ,n 是关于x 的一元二次方程x 2-3x+a=0的两个解,若(m-1)(n-1)=-6,则a 的值为( ). A.-10 B.4 C.-4 D.10【解题思路】利用根与系数的关系表示出m+n 与mn ,已知等式左边利用多项式乘多项式法则变形,将m+n 与mn 的值代入即可求出a 的值.根据题意得:m+n=3,mn=a ,∵(m-1)(n-1)=mn-(m+n )+1=-6,∴a-3+1=-6,解得:a=-4. 【答案】C.【方法归纳】此类题目需先求出两根之和,两根之积,然后代入所给式子求出字母的值.熟练掌握根与系数的关系是解本题的关键.例4(2013四川省乐山)已知关于x 的一元二次方程x 2-(2k+1)x+k 2+k=0. (1)求证:方程有两个不相等的实数根;(2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根.第三边BC 的长为5,当△ABC 是等腰三角形时,求k 的值. 【解题思路】(1)先计算出△=1,然后根据判别式的意义即可得到结论;(2)先利用公式法求出方程的解为x1=k ,x2=k+1,然后分类讨论:AB=k ,AC=k+1,当AB=BC 或AC=BC 时△ABC 为等腰三角形,然后求出k 的值.(1)【证明】∵△=(2k+1)2﹣4(k 2+k )=1>0, ∴方程有两个不相等的实数根;(2)【解】一元二次方程x 2﹣(2k+1)x+k 2+k=0的解为x=2112k +±,即x 1=k ,x 2=k+1, 当AB=k ,AC=k+1,且AB=BC 时,△ABC 是等腰三角形,则k=5;当AB=k ,AC=k+1,且AC=BC 时,△ABC 是等腰三角形,则k+1=5,解得k=4, 所以k 的值为5或4.【方法归纳】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了三角形三边的关系以及等腰三角形的性质.【真题演练】1.(2013四川省成都★)一元二次方程220x x +-=的根的情况是( ).A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根 2.(2013湖北天门、潜江★)已知α,β是一元二次方程x2﹣5x ﹣2=0的两个实数根,则α2+αβ+β2的值为( ). A.-1 B.9 C.23 D.27 3.(2013•四川绵阳★★)已知整数k <5,若△ABC 的边长均满足关于x 的方程280x -+=,则△ABC 的周长是 .【小试身手】1. (★) 一元二次方程x (x -2)=2-x 的根是( ).。
教材分析第二■-一章一元二次方程【知识网络】【知识解读】1.一元二次方程的定义只含有一个未知数,并且未知数的次数是二次的整式方程,叫做一元二次方程.它的一般形式:ax2+Z>x+c = O (a*o).(1)判断一个方程是不是一元二次方程时应抓住三点:①只含有一个未知数;②未知数的最高次数是2;③方程是整式方程(即含有未知数的式子是整式).三者必须同时满足,否则就不是一元二次方程.(2)京+bx + c = O (a, b, c为常数,a.O)称为一元二次方程的一般形式,其中水0是定义中的一部分,不可缺少,否则就不是一元二次方程.履叫做二次项,a 叫做二次项系数,二者是不同的概念,不可混淆.2.一元二次方程的解法注意事项:解一元二次方程常见的思维误区是忽略几个关键:用因式分解法解方程的关键是先使方程的右边为0;用公式法解方程的关键是先把一元二次方程化为一般形式,正确写出a、b、c的值;用直接开平方法解方程的关键是先把方程化为(mx-n) 25的形式;用配方法解方程的关键是先把二次项系数化为1,再把方程的两边都加上一次项系数一半的平方.解具体的一元二次方程时,要分析方程的特征,灵活选择方法.公式法是解一元二次方程的通法,而配方法又是公式法的基础(公式法是直接利用了配方法的结论).分解因式法可解某些特殊形式的一元二次方程.掌握各种方法的基本思想是正确解方程的根本.一般说来,先特殊后一般,即先考虑分解因式法,后考虑公式法.没有特别说明,一般不用配方法.3.一元二次方程的实际应用方程是解决实际问题的有效模型和工具,解方程的技能训练要与实际问题相联系,在解决问题的过程中体会解方程的技巧,理解方程的解的含义. 利用方程解决实际问题的关键是找出问题中的等量关系,找出题目中的已知量与未知量,分析已知量与未知量的关系,再通过等量关系,列出方程,求解方程,并能根据方程的解和具体问题的实际意义,检验解的合理性.列一元二次方程解应用题的一般步骤可归纳为审、设、列、解、验、答. 审:读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的等量关系;设:设元,也就是设未知数;列:列方程,这是非常重要的关键步骤,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程;解:解方程,求出未知数的值;验:检验方程的解能否保证实际问题有意义;答:写出答语.相等关系的寻找应从以下几方面入手:①分清本题属于哪一类型的应用题,如行程问题,则其基本数量关系应明确(vt=s).②注意总结各类应用题中常用的等量关系.如工作量(工程)问题.常常是以工作量为基础得到相等关系(如各部分工作量之和等于整体1等).③注意语言与代数式之间的转化.题目中多数条件是通过语言给出的,我们要善于将这些语言转化为我们列方程所需要的代数式.④从语言叙述中寻找相等关系.如甲比乙大5应理解为“甲=乙+ 5”⑤在寻找相等关系时,还应从基本的生活常识中得出相等关系.总之,找出相等关系的关键是审题,审题是列方程的基础,找相等关系是列方程解应用题的关键.【易错点】一、忽视一元二次方程定义中的条件例1关于X的一元二次方程(a + l)x2 + x + a2-l = 0的一个根为0,则错解:...0是一元二次方程的根,.•.将x = 0代入方程得a? -1 = 0, ."= ±L剖析:因为方程为一元二次方程,所以二次项系数a-l#0,即a左一1。
错解忽视了二次项系数不为零的规定,故答案应为a=l.二、用公式法解方程,忽视化方程为一般形式例2解方程X2-4X =8错解:Va = l,b = -4,c = 8,b2 - 4ac = (-4)2 -4x8 = -16<0•••原方程无解。
剖析:用公式法解一元二次方程时,先要将方程化为一般形式,再确定的值,最后代入公式求解。
上面的解法就是没有将方程化为一般形式致错。
正解:原方程可化为X2-4X-8=0...= l,b = -4,c = 8,b2 - 4ac = (-4)2-4x (-8) = 48a...* = -(:土面=2 ± 2旧•••原方程的解为Xi = 2 + 2V3, x2 = 2 - 2V3.三、忽视等式性质中的条件例3 —元二次方程x(x-2) = x- 2的解是()(A) 1 (B) 1 或2 (C) 0 (D) 0 或2错解:方程两边除以x-2得x=L故应选A。
剖析:若方程两边有公因式,只有在满足公因式不为零时,才能约去公因式,否则,就会违背等式的性质,以至造成方程失根。
正解:移项,得x (x~2)- (x~2)=0,提公因式,得(x-2) (x-1) =0,所以X] = 1,X2=2,故应选B四、概念模糊致错例4已知方程x2 + 3x + m =。
有整数根,m是非负整数,求方程的整数根。
错解:L.方程有整数根,...32 — 4m 2 0, Am <4又是非负整数,.•.蚌1或2当HF1时,方程为X2+3X+1=0,易得,方程无整数解;当m=2 时,方程为"+ 3乂 + 2 = 0, = -1, x2 = -2故方程的整数解为X】=-1, x2 = -2剖析:以上错解是因对“非负整数”的概念模糊不清,仅求出了m是正整数时的根,而漏掉了m为零时的根.正解:由上面的解法,得到两个整数根X】=-1,X2=—2.当m=0 时,方程x2 + 3x + m = 0,解^x3 = 0, x4 = —3.故方程的整数根为Xi = —1, x2= —2, x3 = 0, X4 = —3.五、忽视方程有根的具体含义例5关于X的方程(k一1)x2-2x+1 = 0有实数根,则k的取值范围是错解:因方程有实数根,所以{(宜)! * ?(k— 1) > o'解得k M 2且k^l.剖析:对方程有实数根的正确理解应该是一个实数根或有两个实数根两种情形。
上述解法,只考虑了方程为一元二次方程的情况,而忽视了方程也可能为一元一次方程。
故正确答案是:当kw2时,方程有实数根。
第二十二章二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax"2+bx+c(a, b, c为常数,aKO,且a决定函数的开口方向,a〉0时,开口方向向上,a〈0时,开口方向向下,lai还可以决定开口大小,lai越大开口就越小,lai 越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax"2+bx+c (a, b, c 为常数,a/0)顶点式:y=a(x-h) "2+k[抛物线的顶点P (h, k)]交点式:y=a(x-xi) (x-x,[仅限于与x轴有交点A (x v 0)和B (x2, 0) 的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2a k= (4ac~b'2) /4a Xi, x2=(_b± Vb'2~4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x”2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质1.抛物线是轴对称图形。
对称轴为直线x=-b/2a…对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点 P,坐标为:P(-b/2a, (4ac-b”2)/4a)当-b/2a=0时,P在y轴上;当八=b"2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0, c)6.抛物线与x轴交点个数A=b'2-4ac>0时,抛物线与x轴有2个交点。
A=b'2-4ac=0时,抛物线与x轴有1个交点。
A=b'2-4ac<0时,抛物线与x轴没有交点。
X的取值是虚数(x=-b± Vb~2-4ac的值的相反数,乘上虚数i,整个式子除以2a)V.二次函数与一元二次方程特别地,二次函数(以下称函数)y=ax"2+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即 ax"2+bx+c=0此时,函数图像与X轴有无交点即方程有无实数根。
函数与X轴交点的横坐标即为方程的根。
1,二次函数 y=ax"2, y=a(x-h)"2, y=a (x-h) ”2+k, y=ax"2+bx+c (各式中,a 尹0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:解析式顶点坐标对称轴y=ax^2(0, 0)x=0y=a(x-h)zv2(h,0)x=hy=a(x-h)Zk2+k(h. k)x=hy=ax 八2+bx+c(-b/2a > [4ac-b A21/4a)x=-b/2a当h>0时,y=a(x-h) ”2的图象可由抛物线y=ax”2向右平行移动h个单位得到,当h〈0时,则向左平行移动|h|个单位得到.当h>0, k>0时,将抛物线y=ax”2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h) ”2+k的图象;当h>0, k<0时,将抛物线y=ax”2向右平行移动h个单位,再向下移动|k| 个单位可得到y=a(x-h) ”2+k的图象;当h〈0, k〉0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h) ”2+k的图象;当h<0, k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h) ”2+k的图象;因此,研究抛物线y=ax"2+bx+c(a尹0)的图象,通过配方,将一般式化为 y=a(x-h)"2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.2.抛物线y=ax~2+bx+c (a尹0)的图象:当a〉0时,开口向上,当a〈0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a, [4ac~ b"2]/4a).3.抛物线y=ax~2+bx+c (a尹0),若a〉0,当xW-b/2a时,y随x的增大而减小;当xN-b/2a时,y随x的增大而增大.若a〈0,当xW-b/2a 时,y随x的增大而增大;当xN-b/2a时,y随x的增大而减小.4.抛物线y=ax~2+bx+c的图象与坐标轴的交点:(1)图象与y轴一定相交,交点坐标为(0, c);(2)当左=b~2-4ac>0,图象与x轴交于两点A(x v 0)和B(x2, 0),其中的xl, x2 是一元二次方程 ax"2+bx+c=0(a尹0)的两根.这两点间的距离AB=|X2-X I|当△=().图象与x轴只有一个交点;当△〈().图象与x轴没有交点.当a〉0时,图象落在x轴的上方,x为任何实数时,都有y〉0;当a〈0时,图象落在x轴的下方,乂为任何实数时,都有y〈0.5.抛物线y=ax"2+bx+c的最值:如果a〉O(a〈O),则当x=-b/2a时,y最小(大)值=(4ac-b"2)/4a.顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.6.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax"2+bx+c(a尹0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a (x-h) ”2+k (a尹0).(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-xD (x-x2) (a尹0).7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。