常见的奇偶函数总结
- 格式:docx
- 大小:3.84 KB
- 文档页数:3
奇偶性高考函数知识点高考时,数学是许多学生最令人头痛的科目之一。
其中,奇偶性高考函数是一个经常出现的知识点。
在本文中,我将介绍奇偶性函数的定义、性质和一些例题,帮助学生理解和掌握这一内容。
首先,我们来了解奇偶性函数的定义。
在数学中,奇数和偶数是两个相互对立的概念。
奇数可以被2整除时余数为1,而偶数被2整除时余数为0。
类似地,奇偶性函数也区分为奇函数和偶函数两种。
奇函数满足条件:f(-x) = -f(x),即当自变量取相反数时,函数值取相反数。
偶函数满足条件:f(-x) = f(x),即当自变量取相反数时,函数值保持不变。
了解了奇偶性函数的定义后,我们可以探讨一些奇偶性函数的性质。
首先,偶函数的图像具有对称性,也就是说以y轴为对称轴。
这是因为偶函数在自变量的取相反数时,函数值不变。
例如,y = x^2就是一个常见的二次函数,它是一个偶函数,它的图像是一个关于y轴对称的抛物线。
相反,奇函数的图像具有原点对称性,也就是说以原点为对称中心。
这是因为奇函数在自变量的取相反数时,函数值取相反数。
例如,y = x^3就是一个常见的三次函数,它是一个奇函数,它的图像在原点处对称。
接下来,我们来看一些奇偶性函数的例题,以帮助学生更好地理解和应用这一知识点。
假设我们有一个函数f(x) = x^4 - x^2。
要判断这个函数是奇函数还是偶函数,我们可以进行一些简单的计算。
首先,我们取自变量的相反数,计算f(-x)。
根据奇函数的定义,如果f(-x)等于-f(x),那么函数就是奇函数;如果f(-x)等于f(x),则是偶函数。
对于这个函数,我们有f(-x) = (-x)^4 - (-x)^2 = x^4 - x^2 = f(x),所以可以得出结论,这个函数是一个偶函数。
再来看一个例题,我们有一个函数g(x) = x^3 - x。
同样,我们取自变量的相反数,计算g(-x)。
根据奇函数的定义,如果g(-x)等于-f(x),那么函数就是奇函数;如果g(-x)等于g(x),则是偶函数。
xx x f 1)(+=1)(2+=x x x f xx f 1)(=函数的奇偶性一、函数奇偶性的根本概念1.偶函数:一般地,如果对于函数()x f 的定义域任意一个x ,都有()()x f x f =-,0)()(=--x f x f ,那么函数()x f 就叫做偶函数。
2.奇函数:一般地,如果对于函数()x f 的定义域任一个x ,都有()()x f x f -=-,0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。
注意:〔1〕判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,假设函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。
〔2〕在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及)()(x f x f -=1±是否成立即可来确定函数的奇偶性。
题型一 判断以下函数的奇偶性。
⑴x x x f +=2)(,〔2〕x x x f -=3)( 〔3〕()()()R x x f x f x G ∈--=,(4)(5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断〔1〕判断上述函数的奇偶性的方法就是用定义。
〔2〕常见的奇函数有:x x f =)(,3)(x x f =,x x f sin )(=,〔3〕常见的奇函数有:2)(x x f =,x x f =)(,x x f cos )(= 〔4〕假设()x f 、()x g 都是偶函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 为偶函数,()-x f ()x g 为偶函数。
当()x g ≠0时,)()(x g x f 为偶函数。
〔5〕假设()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ⋅是偶函数,当()x g ≠0时,)()(x g x f 是偶函数。
函数的奇偶性、对称性与周期性常用结论,史上最全函数是高中数学的重点与难点,在高考数学中占分比重巨大。
高考中对函数的考查灵活,相关的结论众多,有奇偶性,对称性,还有周期性,这些结论及变形能否掌握,都影响着学生的最终成绩。
本篇将函数的奇偶性、对称性与周期性常用的结论进行总结,希望对同学们有帮助。
需要WORD 电子文档的同学,可以入群领取。
1.奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或奇偶函数的定义域关于原点对称。
①若为奇函数;则称)(),()(x f y x f x f =-=-()()()0,1()f x f x f x f x +-==-- ②若为偶函数则称)()()(x f y x f x f ==-。
()()-()0,1()f x f x f x f x -==- 2.周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。
《分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y = []a b T b a x -=∈,,。
把)()(a b K KT x x f y -==轴平移沿个单位即按向量)()0,(x f y kT ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。
[][]⎩⎨⎧++∈-∈=b kT a,kT x )(b a, x )()(kT x f x f x f/函数周期性的几个重要结论2、()()f x a f x b +=+ ⇔)(x f y =的周期为a b T -=3、)()(x f a x f -=+ ⇔)(x f y =的周期为a T 2=4、)(1)(x f a x f =+⇔)(x f y =的周期为a T 2= 5、)(1)(x f a x f -=+ ⇔)(x f y =的周期为a T 2=6、)(1)(1)(x f x f a x f +-=+ ⇔)(x f y =的周期为a T 3= "7、 1)(1)(+-=+x f a x f ⇔)(x f y =的周期为a T 2=8、)(1)(1)(x f x f a x f -+=+ ⇔)(x f y =的周期为a T 4= 9、)()()2(x f a x f a x f -+=+ ⇔)(x f y =的周期为a T 6=10、若.2 , )2()(,0p T p px f px f p =-=>则推论:偶函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 2=推论:奇函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 4=、函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A --②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-=④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=-⑤成中心对称。
函数的奇偶性知识提要》》》 1. 奇、偶函数的概念【注意】(1)函数的定义域关于原点对称是函数具有奇偶性的必要不充分条件.一个函数只有定义域关于原点对称,这个函数才有可能是奇函数(或偶函数),如果定义域不关于原点对称,一定不具有奇偶性。
反之,如果一个函数具有奇偶性,那么它的定义域一定关于原点对称.。
(2)是为奇函数的既不充分也不必要条件,但如果奇函数在处有定义,必有 (3)偶函数不一定与y 轴相交(4)函数既是奇函数也是偶函数; 常函数为偶函数.奇偶性定义图像特征定义域特点表达式的常见变形偶函数设函数定义域为D,如果,都有且,那么函数是偶函数图像关于 轴对称定义域关于原点对称;奇函数设函数定义域为D,如果,都有且,那么函数是奇函数图像关于 原点对称定义域关于原点对称;0)0(=f )(x f )(x f 0=x 0)0(=f 0)(=x f )0()(≠=c c x f )(x f D x ∈∀D x ∈-)()(x f x f =-)(x f y |)(|)()(x f x f x f =-=)(x f D x ∈∀D x ∈-)()(x f x f -=-)(x f 0)()(=-+x f x f2. 奇、偶函数的性质(1)若奇函数在处有定义,即有意义,则;(2)奇函数的图象关于原点对称,偶函数的图象关于轴对称,反之也成立.(3)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.(4)在公共定义域内:①奇+奇=奇;②偶+偶=偶;③奇×奇=偶;④偶×偶=偶;⑤奇×偶=奇.方法提炼》》》》1.函数奇偶性的判断方法方法解读适合题型定义法确定定义域,判断是否关于原点对称。
若函数的定义域不是关于原点对称的区间,则立即可判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的区间,再判断与的关系函数解析式较简单,抽象函数等图像法奇(偶)函数的充要条件是它的图象关于原点(或轴)对称.函数图像容易确定、分段函数等性质法在公共定义域内①两个奇函数的和是奇函数,两个奇函数的积是偶函数;②两个偶函数的和、积都是偶函数;③一个奇函数,一个偶函数的积是奇函数.组合函数、复合函数温馨提示(1)判断函数的奇偶性应树立“定义域优先的原则”;(2)对于较复杂的函数解析式,可先对其进行化简,在进行判断.)(xf0=x)0(f0)0(=fy)(xf)(xf-y2.函数奇偶性的应用技巧技巧解读求函数解析式中参数的值利用待定系数法求解,根据得到待求参数的恒等式,由系数的对等性得到系数的值或者方程(组),进而得出参数的值.求函数解析式抓住奇偶性,讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于的方程,从而求得的解析式.巧妙构造造奇偶函数求函数值若题设条件给出的函数不具备奇偶性,但通过变形转化为一个新的函数,进而能够确定奇偶性,便可利用此性质求解复杂式子的值,充分体现转化思想和构造技巧的应用.温馨提示(1)利用奇函数的性质求解函数的解析式需注意当时的情况,不能丢掉.(2)利用奇函数的性质求值可利用在定义域R上为奇函数,得到,或者是等特殊值,从而求得参数值.常考题型:题型一、函数奇偶性概念理解题型二、函数奇偶性的判定题型三、函数奇偶性求函数值题型四、函数奇偶性求参数题型五、函数奇偶性与单调性结合——比较大小题型六、函数奇偶性与单调性结合——解不等式题型七、利用函数奇偶性求对称区间上的函数解析式题型八、利用奇偶性构造方程组求解析式题型九、与函数奇偶性、单调性相关的综合解答题)()(=-±xfxf)(xf)(xf=x)(xf)0(=f0)1()1(=+-ff题型一、函数奇偶性概念理解 下列命题:①偶函数的图像一定与轴相交;②奇函数的图像一定通过原点; ③既是奇函数又是偶函数的函数只能是; ④偶函数的图像关于轴对称.⑤奇函数的图像关于原点对称 其中正确的是_______________ 题型二、函数奇偶性的判定 【例1】判断下列函数的奇偶性(1) (2)(3) (4)(5);(6)(7) (8);(9)【练习1】(1) ; (2)(3); (4) (5)(6)y ()()0R f x x =∈y 4)(x x f =5)(x x f =xx x f 1)(+=21)(x x f =122)(2++=x x x x f 232)(x x x f -=2211)(x x x f -+-=()2f x x =-⎩⎨⎧>+-<+=00)(22x x x x x x x f ,,2432)(xx x f +=y =()1xf x x =-()1,0,1,0.x x f x x x +>⎧=⎨-<⎩2532)(x x x f +=4212)(xx x f +=【例2】(1)(多选)下列函数是奇函数的是 ( )A .,()B .C .D . (2)下列函数是奇函数,且在定义域内单调递增是 ( ) A .B .C .D .(3)(多选)下列函数中,既是偶函数又在上单调递增的函数是 ( ) A . B . C . D .【练习2】(1)(多选)下列函数中,既是偶函数又在区间单调递增的是 ( )A . B. C . D . (2)(多选)下列函数是偶函数,且在上单调递增的是 ( )A .. C . D .【例3】设是R 上的任意函数,则下列叙述正确的是 ( )A.是奇函数B.C.是偶函数D.是偶函数【练习3】(1)(2014课标Ⅰ,理3)设函数的定义域都为R,且是奇函数,是偶函数,则下列结论中正确的是 ( )A )是偶函数 B.是奇函数 C.是奇函数 D.是奇函数(2)已知奇函数与偶函数的定义域、值域均为R ,则 ( ) A .是奇函数 B .是奇函数 C .是奇函数D .是偶函数题型y x =[0,1]x ∈23y x =3y x=||y x x =y =3y x x =-1y x=-y =(0,)+∞y x =||1y x =+2y x =21y x =-(0,)+∞22y x =+2y x =-1y x x=+1||-=x y ()0,x ∈+∞()f x =()f x x =()2f x x x =+()2(1)f x x =+)(x f )()(x f x f -|)(|)(x f x f -)()(x f x f --)()(x f x f -+)()(x g x f ,)(x f )(x g )()(x g x f )(|)(|x g x f |)(|)(x g x f |)()(|x g x f ()f x ()g x ()()f x g x +()()f x g x ()()f x g x ()f g x ⎡⎤⎣⎦题型三、函数奇偶性求函数值【例1】已知是上的奇函数,且时,,则. 【例2】若是定义在上的奇函数,当时,,则.【例3】已知,且,则 【例4】已知函数是上的偶函数,若,则_________ 【例5】已知为奇函数,则___________ 【练习】1.已知函数是定义域为的奇函数,当时,,则_____2.已知为定义在R 上的奇函数,当时,,则____________3.已知,(是常数),且,则的值为.4.已知是定义在上的奇函数,若 ,则___________ 题型四、函数奇偶性求参数 【例题剖析】1.已知奇函数的定义域为,则实数__________.2.已知函数是偶函数,则__________.3.已知是定义在上的偶函数,那么的值是______4.设是定义在上的奇函数,则_______5.已知函数是偶函数,则______.6.若函数奇函数,则=_________7.已知函数是奇函数,且,则_________ )(x f R 0>x 142)(2++-=x x x f _____)1(=-f ()f x R 0x >()258f x x x=+-()()05f f +-=2)(35++-=bx ax x x f 17)5(=-f ______)5(=f ()2y xf x =+R ()32f -=()3f =(1)1y f x =++()()02f f +=()f x R 0x >()231=-+f x x x ()3f -=)(x f 0<x 12)(2+-=x x x f =+)0()2(f f 5)(35+++=cx bx ax x f c b a ,,9)5(=f )5-(f ___3)2(-+=x f y R 4)1(=f =)3(f ()y f x =()2,1a a -a =()()21f x x a =++a =bx ax x f +=2)(]21[a a ,-b a +()()322f x x a x x =---+2,3b b b ⎡⎤---⎣⎦()f b =()()322x xx a f x -=⋅-=a ))(12()(a x x xx f -+=a 1)(2++=x b ax x f ()225f =12f ⎛⎫= ⎪⎝⎭8.已知函数的图象关于原点中心对称,则23)1()(x a x x f ++=______=a【练习】 1.已知定义在上的函数是奇函数,则实数的值为______. 2.若为偶函数,则实数3.已知函数是偶函数,定义域为,则. 5.已知定义在上的函数满足,且当时,,,则________6.若为奇函数,则__________7.若函数是定义在上的偶函数,则_________题型五、函数奇偶性与单调性结合——比较大小 【例题剖析】1.已知偶函数在上单调递减,则下列结论正确的是( )A .B .C .D .2.已知是奇函数,且在区间上单调递增,则,,的大小关系是( )A .B .C .D .【练习】1.设函数的定义域为R ,对于任意实数x 总有,当时,单调递增,则,,的大小关系是( )22,a a -⎡⎤⎣⎦()y f x =a )4)(()(-+=x a x x f ______=a b a bx ax x f +++=3)(2]21[a a ,-____)0(=f R ()f x ()()0f x f x -+=0x ≤()22xaf x bx =-+()10f =()3f =()()()211f x x a x a =+++-=a ()21f x x ax =++(,22)b b --2b f ⎛⎫= ⎪⎝⎭()f x (],0∞-()()()152f f f ->>()()()215f f f >->()()()125f f f ->>()()()521f f f >>-()f x [0,)+∞()0.5f -()1f -()0f ()()()0.501f f f -<<-()()()10.50f f f -<-<()()()00.51f f f <-<-()()()100.5f f f -<<-()f x ()()f x f x -=[)0,x ∈+∞()f x ()2f -()πf ()3f -A . B . C .D .()()()π32f f f >->-()()()2π3f f f ->->()()()3π2f f f -<-<()()()2π3f f f -<-<2.若偶函数在上单调递增,则,,的大小关系是( )A .B .C .D .3.若奇函数在上是减函数,则下列关系式中成立的是( )A .B .C .D .题型六、函数奇偶性与单调性结合——解不等式【例1】(1)设函数y =f (x )为上的偶函数,且对任意的均,则满足的实数的范围是____________(2)已知定义在上的偶函数在上为减函数,且,则实数的取值范围是__________(3)已知定义在上的奇函数在区间上是减函数,若,则实数的取值范围为__________.(4)定义在上的奇函数,当时,单调递增,则不等式的解集是__________(5)已知函数是定义在上的偶函数,当时,,则使得成立的的取值范围是__________]2,2[-)(x f ]2,0[)()1(m f m f <-m ()f x (0,)+∞(a f =π2b f ⎛⎫= ⎪⎝⎭23c f ⎛⎫= ⎪⎝⎭b ac <<b c a <<a c b <<c a b <<()y f x =(),0-∞523634f f f ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭352463f f f ⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭532643f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭532643f f f ⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭R (]()1212,,0x x x x ∞∈-≠()()()21210f x f x x x ⎡⎤--<⎣⎦()()121f x f x +<-x [4,4]-()f x [0,4](1)(2)f x f +>-x R ()f x [0,)x ∈+∞()f x ()()2110f x f ++≥()f x R 0x ≥()221f x x x =-+()()21f f x ->+x (6)已知函数是定义域为的奇函数,当时,.若,则的取值范围为__________()f x R 0x ≥()()2f x x x =+()()3370f m f m ++->m【练习1】(1)已知是定义在上的偶函数,且在区间单调递减,则不等式的解集为__________(2)定义在上的奇函数是减函数,若,实数的取值范围为__________.(3)奇函数在上单调递增,且,则满足的x的取值范围__________(4)已知函数,且,则实数的取值范围是_________(5)已知函数是定义在上的偶函数;且在上单调递增,若对于任意的,不等式恒成立,则的取值范围________________【例2】(1)已知是奇函数,且在内是减函数,又,则的解集______(2)定义在上的奇函数在上单调递减,且,则满足的x 的取值范围是________【练习2】(1)已知函数是偶函数,若在上单调递增,,则的解集为______(2)定义在上的奇函数满足对任意的,有,且,则不等式的解集为____________(3)定义在上的奇函数在上单调递增,且,则不等式的解集为____________()f x R [)0,+∞()()121f x f x ->+)1,1(-)(x f 0)31()1(<-+-a f a f a()f x [)0,+∞()23f =()313f x -≤-≤()()4f x x x =+()()2230f a f a +-<a ()y f x =R (],0-∞x ∈R ()()21f ax f x >+a ()f x (0,)+∞(1)0f =()0x f x ⋅<R ()f x (),0-∞()30f =()()10x f x +≥()f x ()0,∞+()10f =()0f x x<R ()f x ()()1212,0,x x x x ∈+∞≠()()12120f x f x x x ->-()20f =()()10x f x -≤R ()f x ()0,∞+103f ⎛⎫= ⎪⎝⎭()202f x x ≤-题型七、利用函数奇偶性求对称区间上的函数解析式 【例1】(1)已知函数是定义在上的奇函数,当时,.则当时,的解析式为________(2)函数是定义在上的奇函数,已知当时,,求函数的解析式________(3)已知函数是定义在上的偶函数,当时,,则函数在上的表达式为________.(4)已知函数是定义在上的偶函数,当时,,则当x ∈(0,+∞)时,_____________【练习1】(1)已知是定义在上的奇函数,当时,,求时,函数的解析式___________(2)已知函数是定义在上的奇函数,当时,,求的解析式.(3)已知函数f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x (x ―4),则函数f (x )解析式为__________(4)是定义在R 上的奇函数,当时,,则的表达式为_____题型八、利用奇偶性构造方程组求解析式【例1】是奇函数,是偶函数,且,求,的解析式.【练习1】已知函数为奇函数,函数为偶函数,,则_______()f x R 0x ≥()()1f x x x =+0x <()f x ()f x R 0x >2()23f x x x =--()f x ()f x R 0x ≥()()24f x x x =+()f x R ()f x (),∞∞-+(),0x ∞∈-()2f x x x =-()f x =()y f x =R 0x ≥2()2f x x x =-+0x <()f x ()f x R 0x <()22f x x x=-()f x ()f x 0x ≥()22f x x x =-+()f x ()f x ()g x ()()11f xg x x +=-()f x ()g x ()f x ()g x 2()()1f x g x x x +=-+(2)f =题型九、与函数奇偶性、单调性相关的综合解答题 【例1】已知函数,且其定义域为. (1)判定函数的奇偶性;(2)利用单调性的定义证明:在上单调递减;(3)解不等式.【例2】已知函数是定义在上的奇函数,且. (1)求函数的解析式;(2)判断函数在上的单调性,并用定义证明;(3)解不等式.【例3】已知函数f(x)=x 2―1x. (1)判断函数f (x )的奇偶性,并证明;(2)证明f (x )在区间(0,+∞)上是增函数;(3)求函数f (x )在区间[―4,―2]上的最大值和最小值.【例4】已知函数是上的偶函数,当,,(1)求函数的解析式;(2)若,求实数的取值范围.2()1x f x x =-(1,1)-()f x ()f x (0,1)()2(1)10f m f m -+-<()21ax b f x x -=+[]1,1-()11f =-()f x ()f x []1,1-()()210f t f t +->()f x R 0x ≤2()43f x x x =-+-()f x (21)(1)f m f m -<+m【练习1】已知函数f (x )=ax +b 1+x 2是定义在(―1,1)上的奇函数,且f (12)=25. (1)求函数f (x )的解析式;(2)用定义法证明函数f (x )的单调性;(3)若f (m )+f (2m ―1)>0,求实数m 的取值范围.【练习2】已知函数是定义在上的奇函数,且. (1)求的值;(2)判断的单调性,并用定义法证明你的结论;(3)求使成立的实数a 的取值范围.()21mx n f x x +=+[]1,1-()11f =,m n ()f x ()2(1)10f a f a -+-<。
函数奇偶性知识点与经典题型归纳函数奇偶性是解析函数的性质之一,它在函数的图像对称性、定义域及值的关系等方面具有重要作用。
本文将介绍函数奇偶性的基本概念、性质以及一些经典的奇偶函数题型。
一、函数奇偶性的基本概念1. 奇函数和偶函数的定义在解析函数中,如果对于函数f(x)成立f(-x) = -f(x),则该函数称为奇函数;如果对于函数f(x)成立f(-x) = f(x),则该函数称为偶函数。
2. 奇函数和偶函数的图像特点奇函数的图像关于原点对称,即当点(x, y)在函数图像上时,点(-x, -y)也在函数图像上;偶函数的图像关于y轴对称,即当点(x, y)在函数图像上时,点(-x, y)也在函数图像上。
3. 奇偶函数的性质(1)奇函数的定义域可以是关于原点对称的任意区间,而值域为关于y=0对称的区间;(2)偶函数的定义域可以是关于y轴对称的任意区间,而值域为x 轴正半轴;(3)奇函数与偶函数的和,可以是一个任意的解析函数。
二、函数奇偶性的经典题型归纳题型描述:已知函数的解析式,判断该函数是奇函数还是偶函数。
解题思路:通过函数是否满足奇函数或偶函数的定义来进行判断。
如果满足奇函数定义,则判断为奇函数;如果满足偶函数定义,则判断为偶函数;如果都不满足,则为一般函数。
2. 函数与奇偶函数的四则运算题型题型描述:已知两个函数的奇偶性,求它们的和、差、积或商的奇偶性。
解题思路:根据奇函数与奇函数、奇函数与偶函数、偶函数与偶函数的运算法则可得出结论:(1)奇函数与奇函数的和为偶函数,差为奇函数,积为奇函数,商为一般函数;(2)奇函数与偶函数的和、差、积均为一般函数,商为奇函数;(3)偶函数与偶函数的和为偶函数,差、积为偶函数,商为一般函数。
3. 函数奇函数或偶函数的求解题型题型描述:已知函数满足一定的条件,求证函数的奇偶性。
解题思路:根据已知条件对函数的解析式进行转化或变形,判断奇函数或偶函数的定义是否满足,从而得出结论。
奇偶函数加减乘除介绍奇偶函数是数学中常见的一种类型的函数,它们具有特殊的对称性质。
在本文中,我们将讨论奇偶函数的性质以及它们的加减乘除运算。
奇函数的定义与性质奇函数是指满足下列条件的函数:对于任意实数x,有f(-x) = -f(x)。
换句话说,奇函数在原点处对称,关于y轴对称。
常见的奇函数有正弦函数sin(x)和正切函数tan(x)。
奇函数具有以下性质: - 奇函数在原点处取值为0,也就是f(0) = 0。
- 如果函数f和g都是奇函数,那么它们的和f+g也是奇函数。
偶函数的定义与性质偶函数是指满足下列条件的函数:对于任意实数x,有f(-x) = f(x)。
换句话说,偶函数在原点处对称,关于y轴对称。
常见的偶函数有余弦函数cos(x)和正切函数tan(x)。
偶函数具有以下性质: - 偶函数在原点处与y轴相交,也就是f(0) = f(0)。
-如果函数f和g都是偶函数,那么它们的和f+g也是偶函数。
奇偶函数的加法奇函数和奇函数的和仍然是奇函数,偶函数和偶函数的和仍然是偶函数。
如果奇函数和偶函数相加,结果既不是奇函数也不是偶函数。
奇偶函数的减法奇函数和奇函数的差仍然是奇函数,偶函数和偶函数的差仍然是偶函数。
如果奇函数和偶函数相减,结果既不是奇函数也不是偶函数。
奇偶函数的乘法奇函数和奇函数的乘积是偶函数,偶函数和偶函数的乘积是偶函数。
奇函数和偶函数的乘积是奇函数。
奇偶函数的除法奇函数和奇函数的商是偶函数,偶函数和偶函数的商是奇函数。
奇函数和偶函数的商是奇函数。
总结•奇函数满足f(-x) = -f(x),在原点对称。
•偶函数满足f(-x) = f(x),关于y轴对称。
•奇函数和奇函数的和与差分别是奇函数。
•偶函数和偶函数的和与差分别是偶函数。
•奇函数和偶函数的乘积是偶函数。
•奇函数和偶函数的商是奇函数。
奇偶函数的性质使得它们在数学和物理中有许多重要的应用。
在对称性的研究中,奇偶函数为我们提供了强大的工具。
x x x f 1)(+=1)(2+=x xx f x x f 1)(=函数的奇偶性一、函数奇偶性的基本概念1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,0)()(=--x f x f ,那么函数()x f 就叫做偶函数。
2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-,0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。
注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。
(2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及)()(x f x f -=1±是否成立即可来确定函数的奇偶性。
题型一 判断下列函数的奇偶性。
⑴x x x f +=2)(,(2)x x x f -=3)( (3)()()()R x x f x f x G ∈--=,(4)(5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8)提示:上述函数是用函数奇偶性的定义和一些性质来判断(1)判断上述函数的奇偶性的方法就是用定义。
(2)常见的奇函数有:x x f =)(,3)(x x f =,x x f sin )(=, (3)常见的奇函数有:2)(x x f =,x x f =)(,x x f cos )(=(4)若()x f 、()x g 都是偶函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 为偶函数,()-x f ()x g 为偶函数。
当()x g ≠0时,)()(x g x f 为偶函数。
(5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ⋅是偶函数,当()x g ≠0时,)()(x g x f 是偶函数。
函数奇偶性知识点总结(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如成语大全、谜语大全、汉语拼音、美文、教案大全、实用模板、话题作文、写作指导、试题题库、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical materials for everyone, such as idioms, riddles, pinyin, American writing, lesson plans, practical templates, topic essays, writing instructions, test question banks, other materials, etc. If you want to know different materials Format and writing, please pay attention!函数奇偶性知识点总结导语:虽然瑕庇与错误也是生活的组成部分,我们不能为了追求完美而忽视了我们眼前是生活。
函数奇偶性的归纳总结称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。
②常用的结论:若f(x)是奇函数,且x 在0处有定义,则f(0)=0。
③奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同,最值相反。
奇函数f(x)在区间[a,b](0≤a<b)上单调递增(减),则f(x)在区间[-b,-a]上也是单调递增(减);偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反,最值相同。
偶函数f(x)在区间[a,b](0≤a<b )上单调递增(减),则f(x)在区间[-b,-a]上单调递减(增)④任意定义在R 上的函数f(x)都可以唯一地表示成一个奇函数与一个偶函数的和。
⑤若函数g(x),f(x),f[g(x)]的定义域都是关于原点对称的,则u=g(x),y=f(u)都是奇函数时,y=f[g(x)]是奇函数;u=g(x),y=f(u)都是偶函数,或者一奇一偶时,y= f[g(x)]是偶函数。
复合函数的奇偶性特点是:“内偶则偶,内奇同外”.5、判断函数奇偶性的方法:⑴、定义法:对于函数()f x 的定义域内任意一个x ,都有()()x f x f =-〔或()()1=-x f x f 或()()0=--x f x f 〕⇔函数f (x )是偶函数;对于函数()f x 的定义域内任意一个x ,都有()()x f x f -=-〔或()()1-=-x f x f 或()()0=+-x f x f ⇔函数f (x )是奇函数;判断函数奇偶性的步骤:①、判断定义域是否关于原点对称; ②、比较)(x f -与)(x f 的关系。
③、扣定义,下结论。
⑵、图象法:图象关于原点成中心对称的函数是奇函数;图象关于y 轴对称的函数是偶函数。
,⑶、运算法:几个与函数奇偶性相关的结论: ①奇函数+奇函数=奇函数;偶函数+偶函数=偶函数;②奇函数×奇函数=偶函数;奇函数×偶函数=奇函数。
函数奇偶性总结一、函数的奇偶性概念在数学中,我们经常研究函数的性质,其中一个重要的性质就是奇偶性。
函数的奇偶性描述了函数的对称性质。
一个函数$f(x)$被称为奇函数,如果对于任意实数$x$,有$f(-x)=-f(x)$成立。
换句话说,奇函数在原点处对称,图像关于坐标原点对称。
一个函数$f(x)$被称为偶函数,如果对于任意实数$x$,有$f(-x)=f(x)$成立。
换句话说,偶函数在原点处对称,图像关于$y$轴对称。
二、判断函数的奇偶性判断函数的奇偶性有以下几种方法:1. 使用函数表达式对于多项式函数或已知函数表达式,可以通过观察函数表达式中的各项系数来快速判断函数的奇偶性。
- 对于多项式函数,如果函数的各项次数都是偶数,则函数是偶函数;如果函数的各项次数都是奇数,则函数是奇函数。
- 对于已知函数表达式,如果函数表达式中只包含偶数次幂或只包含奇数次幂的项,则函数是奇函数或偶函数。
2. 使用图像对称性通过观察函数的图像可以判断函数的奇偶性。
- 如果函数图像关于$y$轴对称,则函数是偶函数。
- 如果函数图像关于原点对称,则函数是奇函数。
3. 使用微积分方法利用微积分的性质可以判断函数的奇偶性。
- 奇函数的导函数是偶函数。
- 偶函数的导函数是奇函数。
通过求导函数,可以判断函数的奇偶性。
三、函数奇偶性的应用函数的奇偶性在数学和物理中具有广泛的应用。
- 在函数的图像对称性的研究中,奇函数和偶函数是常见的对象。
- 在积分计算中,奇函数在对称区间上的积分为零,只需要计算一个半区间的积分即可。
- 在物理学中,奇函数和偶函数经常用于描述对称性问题,如电荷分布的对称性等。
四、总结函数的奇偶性是函数的重要性质,可以通过函数表达式、图像对称性和微积分方法等多种方法来判断函数的奇偶性。
了解函数的奇偶性对于解决数学问题和物理问题都具有重要的意义。
函数的奇偶性、对称性与周期性常用结论,史上最全函数是高中数学的重点与难点,在高考数学中占分比重巨大。
高考中对函数的考查灵活,相关的结论众多,有奇偶性,对称性,还有周期性,这些结论及变形能否掌握,都影响着学生的最终成绩。
本篇将函数的奇偶性、对称性与周期性常用的结论进行总结,希望对同学们有帮助。
需要WORD 电子文档的同学,可以入群领取。
1.奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或奇偶函数的定义域关于原点对称。
①若为奇函数;则称)(),()(x f y x f x f =-=-()()()0,1()f x f x f x f x +-==-- ②若为偶函数则称)()()(x f y x f x f ==-。
()()-()0,1()f x f x f x f x -==- 2.周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。
分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y =[]a b T b a x -=∈,,。
把)()(a b K KT x x f y -==轴平移沿个单位即按向量)()0,(x f y kT a ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。
[][]⎩⎨⎧++∈-∈=b kT a,kT x )(b a, x)()(kT x f x f x f函数周期性的几个重要结论2、()()f x a f x b +=+ ⇔)(x f y =的周期为a b T -=3、)()(x f a x f -=+ ⇔)(x f y =的周期为a T 2=4、)(1)(x f a x f =+⇔)(x f y =的周期为a T 2= 5、)(1)(x f a x f -=+⇔)(x f y =的周期为a T 2=6、)(1)(1)(x f x f a x f +-=+ ⇔)(x f y =的周期为a T 3=7、 1)(1)(+-=+x f a x f ⇔)(x f y =的周期为a T 2= 8、)(1)(1)(x f x f a x f -+=+ ⇔)(x f y =的周期为a T 4=9、)()()2(x f a x f a x f -+=+ ⇔)(x f y =的周期为a T 6= 10、若.2, )2()(,0p T p px f px f p =-=>则推论:偶函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 2=推论:奇函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 4=函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A -- ②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-= ④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=- ⑤成中心对称。
函数奇偶性的归纳总结函数的奇偶性是指函数图像关于一些点或一些线对称的性质。
具体来说,对于函数f(x),如果对于所有的x,都有f(x)=f(-x),则称该函数为偶函数;如果对于所有的x,都有f(x)=-f(-x),则称该函数为奇函数;如果既不满足偶函数的性质,也不满足奇函数的性质,则称该函数为非奇非偶函数。
奇偶性是函数的一个重要特征,它可以帮助我们更好地理解和分析函数的性质。
下面将对函数奇偶性的归纳总结进行详细介绍。
1.偶函数的特点:对于任意的x,都有f(x)=f(-x)。
即关于y轴对称。
具体来说,偶函数的图像关于y轴对称,即将y轴作为对称轴进行对称,对称后的图像与原图像完全重合。
偶函数可以表达为f(x)=f(-x)的形式,其中x和-x的取值范围相同。
2.奇函数的特点:对于任意的x,都有f(x)=-f(-x)。
即关于原点对称。
具体来说,奇函数的图像关于原点对称,即将原点作为对称点进行对称,对称后的图像与原图像完全重合。
奇函数可以表达为f(x)=-f(-x)的形式,其中x和-x的取值范围相同。
3.非奇非偶函数的特点:即既不满足偶函数的性质,也不满足奇函数的性质。
对于非奇非偶函数,其图像既不关于y轴对称,也不关于原点对称。
它可能存在对称轴,但不是y轴;也可能存在对称点,但不是原点。
非奇非偶函数的图像可以是任意形状,没有特定的对称性。
4.奇偶函数的性质:(1)偶函数与偶函数之和、差仍然是偶函数;(2)奇函数与奇函数之和、差仍然是奇函数;(3)偶函数与奇函数之积仍然是奇函数;(4)奇函数与偶函数之积仍然是偶函数。
以上是根据函数的定义对奇偶性进行的总结,接下来将从数学的角度对函数的奇偶性进行归纳推理。
首先,我们知道任意一个函数f(x)可以表示为其奇部分和偶部分的和或差。
偶函数可以表示为f(x)=g(x)+h(x),其中g(x)是偶函数,h(x)也是偶函数;奇函数可以表示为f(x)=g(x)-h(x),其中g(x)是奇函数,h(x)也是奇函数。
五大奇偶函数在高考中的应用函数作为高考重点考查方向,其中函数的三大性质--单调性、奇偶性及周期性又凸显了重要地位,而对于函数奇偶性的又会考查几个常见的模型,利用常见模型及奇偶性的运算法则来考查函数图像、求参数值、解不等式、判单调性、证明奇偶性等.五大常见函数模型:指数型:xxaa x f -+=)((其中0>a 且1≠a )为偶函数x x a a x f --=)((其中0>a 且1≠a )为奇函数分式指数型:11)( x x a a x f ±=(其中0>a 且1≠a )为奇函数对数分式型:m x m x x f a ±=log )(或xm xm x f a ±=log )((其中0>a 且1≠a ,R m ∈)为奇函数对数根式型:()⎪⎭⎫⎝⎛±+=mx n mx x f a 2log )((其中0>a 且1≠a ,R n m ∈、)为奇函数高考中经常会直接考查五大奇偶函数或间接考查与七类基本初等函数结合的形式.下面就每类考查的类型逐一说明.一、指数型例1【2017北京,理5】已知函数1()3()3x xf x =-,则()f x (A )是奇函数,且在R 上是增函数(B )是偶函数,且在R 上是增函数(C )是奇函数,且在R 上是减函数(D )是偶函数,且在R 上是减函数试题分析:一道典型的指数型问题,其中3=a ,可知1()3()3x xf x =-为奇函数,且由x y 3=在R 上是增函数及xy ⎪⎭⎫ ⎝⎛-=31在R 上是增函数,可速得答案A.本小题考查了函数的奇偶性与单调性,属于基础题目.练习:【2015广东,理3】下列函数中,既不是奇函数,也不是偶函数的是().A .y =B .1y x x=+C .122x xy =+D .exy x =+1.(2010•广东)若函数f (x )=3x +3﹣x与g (x )=3x ﹣3﹣x 的定义域均为R ,则()A .f (x )与g (x )均为偶函数B .f (x )为奇函数,g (x )为偶函数C .f (x )与g (x )均为奇函数D .f (x )为偶函数,g (x )为奇函数2.(2011•湖北)若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=()A .e x ﹣e ﹣xB .(e x +e ﹣x )C .(e ﹣x ﹣e x )D .(e x ﹣e ﹣x )3.(2014•广东)下列函数为奇函数的是()A .2x ﹣B .x 3sinxC .2cosx +1D .x 2+2x二、分式指数型例2(2015山东,文8)若函数ax f x x -+=212)(是奇函数,则使3)(>x f 成立的x 的取值范围为()A .(﹣∞,﹣1)B .(﹣1,0)C .(0,1)D .(1,+∞)试题分析:一道典型的分式指数型函数,由已知ax f x x -+=212)(为奇函数可知1=a ,则3)(>x f 考查利用函数单调性解不等式问题,由12211212)(-+=-+=xx x x f 知函数)(x f 在),0(+∞上单减,又3)1(=f ,故)1()(3)(f x f x f >⇔>,可得1>x ,从而选D..本题考查函数奇偶性与单调性,能够掌握函数模型,根据单调性比较快可以得解.练习:【2009山东,理6】函数y=的图象大致为()A .B .C .D .【2014上海,理20】(本题满分14分)本题有2个小题,第一小题满分6分,第二小题满分1分.设常数0≥a ,函数aa x f xx -+=22)((1)若a =4,求函数)(x f y =的反函数)(1x fy -=;(2)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由.三、对数分式型例3【2014四川,理9】已知()()()ln 1ln 1f x x x =+--,()1,1x ∈-.现有下列命题:①()()f x f x -=-;②()2221x f f x x ⎛⎫= ⎪+⎝⎭;③()2f x x .其中的所有正确命题的序号是().A.①②③B .②③C .①③D .①②试题分析:由()()()1ln 1ln 1ln1x f x x x x+=+--=-知,函数)(x f 为奇函数,从而①正确;又()222221211ln ln()221111xx x x f f x x x x x ++⎛⎫+=== ⎪+-⎝⎭-+,故②正确;令()()2ln(1)ln(1)2g x f x x x x x =-=+---,)1,0[∈x 则21111)('--++=x x x g 01222≥-=x x 恒成立,从而)(x g 在)1,0[上单增,故0)0()(=≥g x g 所以)1,0[∈x 时,有x x f 2)(≥成立,又02,0)(≥≥x x f ,故x x f 2)(≥成立由)(x f y =,xy 2=都为奇函数可得,()0,1-∈x 时xx f 2)(≥也成立,从而选A.本题综合性比较强,但仍然是以基本函数模型为切入点,从而可以解答.练习:【2015湖南,8文】设函数f (x )=ln (1+x )﹣ln (1﹣x ),则f (x )是()A .奇函数,且在(0,1)上是增函数B .奇函数,且在(0,1)上是减函数C .偶函数,且在(0,1)上是增函数D .偶函数,且在(0,1)上是减函数4.(2009•全国卷Ⅱ)函数y=log 2的图象()A .关于直线y=﹣x 对称B .关于原点对称C .关于y 轴对称D .关于直线y=x 对称四、对数根式型例4【2018新课标Ⅲ,文16】已知函数()11ln )(2+-+=x x x f ,4)(=a f 则)(a f -=.试题分析:函数)(x f 本身不具有奇偶性,但它是由一个奇函数与一个常数偶函数组成的,结合已知)(a f ,求)(a f -可预判考查函数的奇偶性,从而问题解答思路出现,因2)()(=-+x f x f ,故2)()(=-+a f a f ,又因为4)(=a f ,从而2)(-=-a f .能够预出函数模型的奇偶性,结合函数的组成模式,从而得解.练习:【2013辽宁,文7】已知函数()1391ln )(2+-+=x x x f 则21(lg )2(lg f f +=()A .﹣1B .0C .1D .2五、综合型例5.【2017课标3,理11】已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .1试题分析:题目形式比较复杂,并且求唯一零点问题,里面含有指数型xxe e y -+=的偶函数模型,只需向右平移一个单位就可以得到11+--+=x x e ey ,再观察函数)(x f 前半部分x x y 22-=,图像的对称轴为1=x ,从而211()2()x x f x x x a e e --+=-++的图像关于1=x 对称,若函数211()2()x x f x x x a e e --+=-++有唯一零点,则零点必为1=x ,故有0)1(=f ,即21=a .本题如果利用常规方法求解,会比较繁琐,巧用函数模型,会迅速得到答案.练习:【2017江苏,11】已知函数31()2e e xxf x x x =-+-,其中e 是自然对数的底数.若2(1)(2)0f a f a -+≤,则实数a 的取值范围是.【2018新课标Ⅱ,文3)函数f (x )=的图象大致为()A .B .C .D .【2015全国I ,理13】若函数()(ln =+f x x x 为偶函数,则=a .。
高考数学中的函数的奇偶性与周期性总结函数是数学中一个十分重要的概念,而在高考数学中,函数的奇偶性和周期性更是具有重要的意义。
本文旨在对高考数学中函数的奇偶性与周期性进行总结,帮助学生更好地掌握这一知识点。
奇偶性首先,我们来看函数的奇偶性。
一个函数的奇偶性指的是函数在定义域上是否满足一定的对称性质。
定义域上的对称性质可以分为两种:奇对称和偶对称。
如果对于定义域上任意一个实数$x$,函数$f(x)$满足$f(-x)=-f(x)$,则称该函数在定义域上是奇对称的。
如果对于定义域上任意一个实数$x$,函数$f(x)$满足$f(-x)=f(x)$,则称该函数在定义域上是偶对称的。
有些函数既不是奇对称也不是偶对称,这样的函数称为一般函数。
下面我们来看一些具体的例子。
1. 奇函数最简单的奇函数当属平凡函数$y=x$。
因为对于任意实数$x$,有$(-x)=-x$,因此$f(-x)=-(-x)=x=f(x)$,故平凡函数是奇函数。
另一个常见的奇函数是正弦函数$y=\sin{x}$。
由于$\sin{(-x)}=-\sin{x}$,所以正弦函数是奇函数。
2. 偶函数最简单的偶函数当属常量函数$y=c$。
由于对于任意实数$x$,有$(-x)=x$,因此$f(-x)=f(x)$,故常量函数是偶函数。
另一个常见的偶函数是余弦函数$y=\cos{x}$。
由于$\cos{(-x)}=\cos{x}$,所以余弦函数是偶函数。
3. 一般函数最简单的一般函数当属同学们都非常熟悉的二次函数$y=ax^2+bx+c$。
显然,一般函数既不是奇函数也不是偶函数。
那么,大家可能会问,为什么要研究奇偶性呢?因为当我们知道一个函数的奇偶性之后,就可以轻松地求出函数的对称轴,从而更好地画出函数图像、解决一些简单的函数方程等问题。
周期性接下来,我们来看函数的周期性。
一个函数的周期性指的是函数在其自变量上是否具有一定的重复性或周期性。
定义域上的周期性可以分为两种:正周期和负周期。
讲义:常见奇函数与偶函数的分类与判定一、常见奇函数与偶函数的分类:类型一:奇数次方实例f(x)=x n,(n为奇数)是奇函数x1,x3,x5,x7,x9,x11,x13,x15,x17,x19,x21,x23,x25,x27,……类型二:偶数次方实例f(x)=x n,(n为偶数)是偶函数x2,x4,x6,x8,x10,x12,x14,x16,x18,x20,x22,x24,x26,x28,……类型三:奇数次方根实例f(x)=n x,(n为奇数)是偶函数3x,5x,7x,9x,11x,13x,15x,17x,19x,21x,23x,25x,27x,29x,31x,……二、函数奇偶性的合成运算:法则一:1f(x)与f(x)的奇偶性相同.文字语言:奇函数的倒数还是奇函数,偶函数的倒数还是偶函数.实例符号语言:1f(x)与f(x)的奇偶性相同.1x,1x3,1x5,1x7,1x9,1x11,1x13,1x15,……都是奇函数. 1x2,1x4,1x6,1x8,1x10,1x12,1x14,1x16,……都是偶函数.法则二:k·f(x)(k≠0)与f(x)的奇偶性相同.文字语言:将一个函数乘一个非零实数,其奇偶性不变.实例符号语言:k·f(x)(k≠0)与f(x)的奇偶性相同.x3与2x3,-5x3的奇偶性相同,都是奇函数;x2与4x2,-7x2的奇偶性相同,都是奇函数;法则三:加减法则.文字语言:奇±奇=奇偶±偶=偶实例符号语言:f(x),g(x)都是奇函数,则f(x)±g(x)也是奇函数f(x)=x3+2x,g(x)=1x+2x5-5x7都是奇函数;符号语言:f(x),g(x)都是偶函数,则f(x)±g(x)也是偶函数f(x)=x4+2x2,g(x)=1x2+2x2-5x6都是奇函数;归纳:同性相加减,奇偶性不变.法则四:乘除法则.文字语言实例奇×奇=奇f(x),g(x)都是奇函数,则f(x)×g(x),f(x)g(x)都是偶函数f(x)=x 3·1x ,g(x)=2x 5-5x 7x都是偶函数;偶×偶=偶f(x),g(x)都是偶函数,则f(x)×g(x),f(x)g(x)都是偶函数f(x)=x 4+2|x|,g(x)=2x 2-5x 6|x|都是偶函数;奇×偶=奇f(x),g(x)一奇一偶,则f(x)×g(x),f(x)g(x)都是奇函数f(x)=x 3·|x|,g(x)=2x 5-5x 7x 2都是奇函数;归纳:同性相乘得偶,异性相乘得奇.三、一些常见的奇函数、偶函数的判定及其证明(1)f(x)=|x|是偶函数.证明一:∵函数f(x)=|x|的定义域为实数集R ,关于原点对称.又∵f(-x)=|-x|=|x|=f(x),∴函数f(x)=|x|是偶函数.证明二:∵函数f(x)=|x|的图像关于Y 轴对称;∴f(x)=|x|是偶函数.(2)f(x)=|x -3|+|x +3|是偶函数.证明:∵函数f(x)=x+1的定义域为实数集R ,关于原点对称.又∵f(-x)=|-x -3|+|-x +3|=|x +3|+|x -3|=f(x),∴函数f(x)=|x -3|+|x +3|是偶函数.归纳:形如f(x)=|x -a|+|x +a|的函数都是偶函数.(3)f(x)=x 是奇函数.方法一:定义法.∵函数f(x)=x 的定义域(-∞,+∞)关于原点对称,又∵f(-x)=-x =-f(x),∴f(x)=x 是奇函数.方法二:图像法.∵函数f(x)=x 的图像关于原点对称,∴f(x)=x 是奇函数.方法三:特殊值验证法(仅适用于选填题).∵函数f(x)=x 的定义域(-∞,+∞)关于原点对称,又∵f(1)=1f(-1)=-f(-1)=-f(1),符合f(-x)=-f(x),∴f(x)=x 是奇函数.(4)f(x)=1x 是奇函数.判定方法一:定义法.∵函数f(x)=1x 的定义域(-∞,0)∪(0,+∞)关于原点对称;又∵f(-x)=1-x=-1x =-f(x),∴f(x)是奇函数.判定方法二:图像法.∵函数f(x)=x 的图像关于原点对称,∴f(x)=x 是奇函数.判定方法三:特殊值验证法(仅适用于选填题).∵函数f(x)=x 的定义域(-∞,0)∪(0,+∞)关于原点对称,又∵f(1)=1f(-1)=-f(-1)=-f(1),符合f(-x)=-f(x),∴f(x)=x 是奇函数.(5)f(x)=x 2+2是偶函数.证明:∵函数f(x)=x 2+2的定义域R 关于原点对称;又∵f(-x)=(-x)2+2=x 2+2=f(x),∴f(x)是偶函数.(6)f(x)=x 3(x ∈(-1,1))是奇函数.证明:∵函数f(x)=x 3的定义域(-1,1)关于原点对称;又∵f(-x)=(-x)3=-x 3=-f(x),∴f(x)是奇函数.(7)f(x)=x 3(x ∈(-1,1))是奇函数.证明:∵函数f(x)=x 3的定义域(-1,1)关于原点对称;又∵f(-x)=(-x)3=-x 3=-f(x),∴f(x)是奇函数.(8)f(x)=1x 是奇函数.判定方法一:定义法.∵函数f(x)=1x 的定义域(-∞,0)∪(0,+∞)关于原点对称;又∵f(-x)=1-x=-1x =-f(x),∴f(x)是奇函数.判定方法二:合成法.∵y =x 是奇函数,∴f(x)=1x 也是奇函数.f(x)与1f(x)具有相同的奇偶性.(9)f(x)=3x 是奇函数.证明:∵函数f(x)=3x 的定义域(-∞,+∞)关于原点对称;又∵f(-x)=3-x =-3x =-f(x),∴f(x)是奇函数.(10)f(x)=-x 3(x ∈(-1,1))是奇函数.证明:方法一:定义法.∵函数f(x)=x 3的定义域(-1,1)关于原点对称;又∵f(-x)=-(-x)3=x 3=-f(x),∴f(x)是奇函数.方法二:合成法.∵y =x 是奇函数,∴f(x)=1x也是奇函数.f(x)与-f(x)具有相同的奇偶性.(11)f(x)=1-x2|x+3|-3是奇函数.证明:-x2≥0①+3|-3≠0②由①得-1≤x≤1,那么x+3>0,则|x+3|=x+3,从而分母|x+3|-3=x+3-3=x,则f(x)=1-x2x,定义域为[-∞,0)∪(0,+∞],关于原点对称.又∵f(-x)=1-(-x)2-x=-1-x2x=-f(x),∴f(x)为奇函数.(12)f(x)2+2,x>0x2-2,x<0是奇函数.证明:方法一.∵函数的定义域为(-∞,0)∪(0,+∞),关于原点对称.当x>0时,-x<0,则f(-x)=-(-x)2-2=-(x2+2)=-f(x);①当x<0时,-x>0,f(-x)=(-x)2+2=x2+2=-(-x2-2)=-f(x).②∴函数f(x)2+2,x>0x2-2,x<0是奇函数.方法二:特殊值验证法(仅适用于选填题).∵函数f(x)=x的定义域(-∞,0)∪(0,+∞)关于原点对称,又∵f(1)=12+2=3f(-1)=-(-1)2+2=-f(-1)=-f(1),符合f(-x)=-f(x),∴f(x)=x是奇函数.(13)f(x)=-x2+1是偶函数.证明:方法一:定义法.∵函数f(x)=-x2+1的定义域为R,关于原点对称,又∵f(-x)=-(-x)2+1=-x2+1=f(x),∴y=-x2+1是偶函数.方法二:合成法.∵x2是偶函数,那么-x2也是偶函数f(x)与-f(x)具有相同的奇偶性,又∵1也是偶函数,∴f(x)=-x2+1是偶函数.(14)f(x)=1-x 2x -1是非奇非偶函数.证明:∵函数f(x)=1-x 2x -1的定义域为(-∞,1)∪(1,+∞),不关于原点对称,∴函数f(x)=1-x 2x -1是非奇非偶函数.定义域不关于原点对称的函数是非奇非偶函数(15)函数y =2-x 是非奇非偶函数.证明:∵函数y =2-x 的定义域是(-∞,2],不关于原点对称,∴函数y =2-x 是非奇非偶函数.定义域不关于原点对称的函数是非奇非偶函数(16)函数y =1x -4是非奇非偶函数.证明:∵函数y =1x -4的定义域是(-∞,4)∪(4,+∞),不关于原点对称,∴函数y =1x -4是非奇非偶函数.定义域不关于原点对称的函数是非奇非偶函数(17)函数y =(x -1)2x -1是非奇非偶函数.证明:∵函数y =(x -1)2x -1的定义域是(-∞,1)∪(1,+∞),不关于原点对称,∴函数y =(x -1)2x -1是非奇非偶函数.定义域不关于原点对称的函数是非奇非偶函数(18)函数y =x 2x -2是非奇非偶函数.证明:∵函数y =x 2x -2的定义域是(-∞,2)∪(2,+∞),不关于原点对称,∴函数y =x 2x -2是非奇非偶函数.定义域不关于原点对称的函数是非奇非偶函数(19)f(x)=x 3+3x +1x(x ∈(-1,1))是奇函数.证明:方法一:定义法.∵函数f(x)=x 3+3x +1x 的定义域(-1,1)关于原点对称;又∵f(-x)=-(-x)3+3-x +1-x =-(x 3+3x +1x )=-f(x),∴f(x)是奇函数.方法二:合成法.∵x 3,3x ,1x 都是奇函数,∴f(x)=x 3+3x +1x 也是奇函数.奇+奇=奇.(20)f(x)=-x +1x(x ∈(-1,1))是奇函数.证明:方法一:定义法.∵函数f(x)=-x +1x 的定义域(-1,1)关于原点对称;又∵f(-x)=-(-x)+1-x =x -1x =-(-x +1x )=-f(x),∴f(x)是奇函数.方法二:合成法.∵-x ,1x都是奇函数,∴f(x)=-x +1x (x ∈(-1,1))也是奇函数.奇+奇=奇.(21)f(x)=2x 2+4x是奇函数.证明:方法一:定义法.∵函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,∵f(-x)=2(-x )2+4-x =-2x 2+4x =-f(x),∴函数f(x)是奇函数.方法二:合成法.∵2x 2+4是偶函数,x 是奇函数,∴f(x)=2x 2+4x 是奇函数.奇×偶=奇,奇÷偶=奇.(22)f(x)=2x 2+4|x|是偶函数.证明:方法一:定义法.∵函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,∵f(-x)=2(-x )2+4|-x |=2x 2+4x f(x),∴函数f(x)是奇函数.方法二:合成法.∵2x 2+4是偶函数,|x|是奇函数,∴f(x)=2x 2+4|x|是奇函数.偶×偶=偶,偶÷偶=偶.(23)f(x)=2x 3+4xx是偶函数.证明:方法一:定义法.∵函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,∵f(-x)=2(-x )3+4×(-x )-x =-2x 3-4-x =2x 3+4xx =f(x),∴函数f(x)是偶函数.方法二:合成法.∵函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,∵2x 3,4x 都是奇函数,则2x 3+4x 也是奇函数,又∵x 是奇函数,∴f(x)=2x 3+4xx 是偶函数.同性相乘除得偶,即:奇×奇=偶,奇÷奇=偶.(24)f(x)=2x 2-x 是非奇非偶函数.证明:方法一:定义法.∵函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,∵f(-x)=2(-x )2-(-x )=2x 2+x2x 2+x ≠2x 2-x 且2x 2+x ≠-(2x 2-x ),f(x)≠f(-x)且f(x)≠-f(x),∴函数f(x)是偶函数.方法二:合成法.∵函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,∵2x 2是偶函数,又∵x 是奇函数,∴f(x)=2x2-x是偶函数.奇±偶=非奇非偶函数.(25)函数y=x2+x是非奇非偶函数.证明:∵函数y=x2+x的定义域是[0,+∞),不关于原点对称,∴函数y=x2+x是非奇非偶函数.定义域不关于原点对称的函数是非奇非偶函数(26)f(x)=5x4-4x2+7是偶函数.证明:方法一:定义法.∵函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,∵f(-x)=f(x)=5×(-x)4-4×(-x)2+7=5x4-4x2+7=f(x),∴函数f(x)是偶函数.方法二:合成法.∵函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,∵5x4,4x2,7都是偶函数,∴f(x)=5x4-4x2+7是偶函数.偶±偶=偶.。
高一函数的奇偶性知识点函数是数学中一个非常重要的概念,它描述了数值之间的关系。
在高中数学中,函数受到了广泛的研究和运用。
其中,函数的奇偶性是一个很重要的概念。
本文将介绍高一函数的奇偶性知识点,并探讨其应用。
一、奇函数和偶函数的定义函数f(x)是定义在一个对称区间上的函数。
如果对任意的x∈该区间,都有f(-x)=-f(x)成立,那么函数f(x)就被称为奇函数;如果对任意的x∈该区间,都有f(-x)=f(x)成立,那么函数f(x)就被称为偶函数。
二、奇函数和偶函数的性质1. 奇函数的图像关于原点对称,即在平面直角坐标系中,关于原点对称。
2. 奇函数的定义域包括原点,而奇函数在原点处取零值。
3. 偶函数的图像关于y轴对称,即在平面直角坐标系中,关于y轴对称。
4. 偶函数的定义域包括y轴,而偶函数在y轴上的任意点处取相等的函数值。
三、奇偶性的判断方法对于一个给定的函数,我们如何确定它是奇函数还是偶函数呢?有以下几种判断方法:1. 利用定义进行判断:根据奇函数和偶函数的定义进行判断。
2. 利用恒等式进行判断:对于一些特定的函数形式,我们可以通过代入x和-x,利用恒等式判断函数的奇偶性。
例如,对于幂函数y=x^n,如果n为偶数,则函数为偶函数;如果n为奇数,则函数为奇函数。
3. 利用图像进行判断:通过观察图像,我们可以发现奇函数的图像具有对称性,而偶函数的图像则具有轴对称性。
四、奇函数和偶函数的应用奇偶性在函数的研究和应用中扮演着重要的角色。
以下是一些常见的应用:1. 函数图像的绘制:通过了解函数的奇偶性,我们可以在绘制函数的图像时,仅仅绘制出对称区间上的一部分,然后通过对称性得到整个图像。
2. 函数性质的研究:通过奇偶性的判断,我们可以推论出一些重要的函数性质。
例如,奇函数与奇函数的和仍然是奇函数;奇函数与偶函数的积是一个偶函数。
3. 函数的积分计算:对于定义在对称区间上的奇函数,其在该区间上的积分等于零。
常见的奇偶函数
8个典型奇偶函数有:
1、正弦函数(y=sinx)是奇函数。
2、正切函数(y=tanx)是奇函数。
3、余切函数(y=cotx)是奇函数。
4、余割函数(y=cscx)是奇函数。
5、反比例函数是奇函数。
6、f(x)=kx是奇函数。
7、f(x)=x^a,其中a为奇数。
8、双曲正弦函数伟奇函数,函数表达式为:f(x)=(e^x-e^-x)/2。
概述
偶函数:若对于定义域内的任意一个x,都有f(-x)=f(x),那么f(x)称为偶函数。
奇函数:若对于定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)称为奇函数。
定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴成轴对称图形。
f(x)为奇函数《==》f(x)的图像关于原点对称。
点(x,y)→(-x,-y)。
奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数在某一区间上单调递增,则在它的对称区间上单调递减。
常见的奇偶函数总结
奇偶函数是数学中常见的一类函数,它们具有一些特殊的性质和规律。
本文将对奇偶函数进行总结和介绍,以帮助读者更好地理解和应用这些函数。
一、什么是奇偶函数
奇偶函数是指满足特定条件的函数。
根据定义,如果对于函数f(x)的定义域内的任意x,都有f(-x) = f(x),则称该函数为偶函数;而如果对于函数f(x)的定义域内的任意x,都有f(-x) = -f(x),则称该函数为奇函数。
换句话说,偶函数关于y轴对称,而奇函数关于原点对称。
二、奇偶函数的性质和特点
1. 对称性:奇函数和偶函数都具有对称性。
奇函数关于原点对称,即当一点(x, y)在函数图像上时,点(-x, -y)也在函数图像上;而偶函数关于y轴对称,即当一点(x, y)在函数图像上时,点(-x, y)也在函数图像上。
2. 奇函数的特点:奇函数在原点O处必须过原点,即f(0) = 0;奇函数的定义域内任意两点(x, f(x))和(-x, -f(x))的斜率相等,即f’(x) = -f’(-x)。
3. 偶函数的特点:偶函数在原点O处也必须过原点,即f(0) = 0;
偶函数的定义域内任意两点(x, f(x))和(-x, f(-x))的斜率相等,即f’(x) = f’(-x)。
4. 奇偶性的判断:对于一个函数,可以通过函数的解析式来判断它的奇偶性。
如果函数的解析式中只包含奇次幂的项,那么该函数就是奇函数;如果函数的解析式中只包含偶次幂的项,那么该函数就是偶函数;如果函数的解析式中既包含奇次幂的项,又包含偶次幂的项,那么该函数既不是奇函数也不是偶函数。
三、常见的奇偶函数及其图像
1. 奇函数:最常见的奇函数是正弦函数(sin x)和正切函数(tan x)。
它们的图像都以原点为对称中心,关于原点对称。
2. 偶函数:最常见的偶函数是余弦函数(cos x)和正切函数(sec x)。
它们的图像都以y轴为对称轴,关于y轴对称。
3. 既是奇函数又是偶函数的函数:常数函数(y = 0)既是奇函数又是偶函数。
因为无论是对于任意的x还是-x,函数值始终为0,所以既满足奇函数的性质,也满足偶函数的性质。
四、奇偶函数的应用
奇偶函数在数学和物理中有着广泛的应用。
以下是一些典型的应用场景:
1. 奇偶函数的积分计算:由于奇函数在对称区间内的积分等于0,而偶函数在对称区间内的积分具有简化计算的特点,所以在计算积分的时候,可以根据奇偶性进行简化。
2. 奇偶函数的傅里叶级数展开:奇函数的傅里叶级数只包含正弦项,而偶函数的傅里叶级数只包含余弦项,这种特性使得奇偶函数的傅里叶级数展开具有简化计算的优势。
3. 奇偶函数的对称性应用:奇偶函数的对称性可以用于简化函数图像的绘制和分析,同时也可以用于简化函数的性质和变化规律的研究。
4. 奇偶函数在物理学中的应用:奇偶函数在物理学中有着广泛的应用,例如描述波动和振动等现象。
正弦和余弦函数经常出现在波动方程和振动方程中,用于描述周期性变化的现象。
五、总结
奇偶函数是数学中常见的一类函数,具有对称性和特殊的性质。
奇函数关于原点对称,偶函数关于y轴对称。
奇偶函数在积分计算、傅里叶级数展开、函数图像绘制和物理学等领域都有着广泛的应用。
对于奇偶函数的研究和运用,有助于深入理解和应用数学的相关知识和技巧。