三相异步电动机的七种调速方式及其特点
- 格式:doc
- 大小:34.00 KB
- 文档页数:3
三相异步交流电动机的调速方法
三相异步交流电动机是工业中使用最广泛的电动机之一,其调速方法
也很多样化。
本文将就三相异步交流电动机的调速方法进行详细探讨。
一、整流调速法
整流调速法是通过功率半导体整流器实现的,可将交流电电源中的电
能转化为直流电能,再通过换向器将直流电转化为可控的三相交流电,此时可以通过控制换向器的触发器实现对电动机的调速。
整流调速法具有速度调节范围大、可靠性高等优点,但是它需要使用
大量的功率半导体器件,且具有较高的成本。
二、变频调速法
变频调速法是在交流电源中加入变频器,通过变频器将电动机的工作
频率调节到不同的数值,从而达到调节转速的目的。
变频器可以将交
流电源转化为可控的直流电,之后再转化为可调的交流电源,从而实
现对电机的调速。
变频调速法具有调速精度高、操作简单等优点,但是其设备和技术要求相对较高,且需要对电机进行改造。
三、电阻调速法
电阻调速法是在电动机的转子或定子绕组中引入电阻,通过增加或减少电阻的大小来改变电动机的转矩和速度。
电阻调速法具有调速范围大、性能稳定等优点,但是丧失了一部分能量,而且当电阻减小之后可能会发生过热等安全问题。
四、极数调速法
极数调速法是通过改变电动机的极数来实现调速,通常是通过改变转子的连接方式来改变极数。
极数调速法具有体积小、结构简单等优点,但是由于改变极数会影响电机的性能,因此在实际应用面临一定的限制。
综上所述,三相异步交流电动机的调速方法有整流调速法、变频调速法、电阻调速法和极数调速法。
对于不同的应用场景,我们可以选择不同的调速方法,以达到最佳的效果。
三相异步电动机的调速方法调速便是在同一负载下能得到纷歧样的转速,以满意出产进程的央求。
例如各种切削机床的主轴运动跟着工件与刀具的材料、工件直径、加工技能的央求及走刀量的巨细等的纷歧样,央求有纷歧样的转速,以获得最髙的出产率和确保加工质量。
假定选用电气调速,就可以大大简化机械变速安排。
由下式(1)可知,改动电动机的转速有三种或许,即改动电源频率、极对数p及转差率s。
前两者是笼型电动机的调速方法,后者是绕线型电动机的调速方法。
(一)变频调速图1变频调速设备这些年变频调速技能翻开很快,如今首要选用如图1所示的变频调速设备,它首要由整流器和逆变器两大大都构成。
整流器先将频率f为50Hz的三相沟通电改换为直流电,再由逆变器改换为频率可调、电压有用值也可调的三相沟通电,供应三相笼型电动机。
由此可得到电动机的无级调速,并具有硬的机械特性。
通常有下列两种变频调速方法:(1)在,即低于额外转速调速时,应坚持的比值近于不变,也便是两者要成份额地一同调度。
由和两式可知,这时磁通Ф和转矩T 也都近似不变。
这便是恒转矩调速。
假定把转速调低时坚持不变,在减小时磁通Ф则将添加。
这就会使磁路丰满(电动机磁通通常方案在挨近铁心磁丰满点),然后添加励磁电流和铁损,致使电动机过热,这是不容许的。
(2)在,即高于额外转速调速时,应坚持。
在增大时,磁通Ф和转矩T都将减小。
转速n增大,转矩T减小,将使功率近于不变。
这是恒功率调速。
假定把转速调高时的比值不变,在添加的一同也要添加。
跨过额外电压也是不容许的。
频率调度方案通常为0.5~320Hz。
如今在国内由于逆变器中的开关元件(可关断晶闸管、大功率晶体管和功率场效应管等)的制作水平不断跋涉,笼型电动机的变频调速技能的运用也就日益广泛。
(二)变极调速由式可知,假定极对数p减小一半,则旋转磁场的转速便跋涉一倍,转子转速n差不多也跋涉一倍。
因而改动p可以得到纷歧样的转速。
怎样改动极对数呢?这同定子绕组的接法有关。
三相异步电动机的几种调速控制收藏此信息打印该信息添加:佚名来源:未知根据异步电动机的转差率S表达式:可知交流电动机转速公式如下:式中n---电动机的转速,r/min;p---电动机极对数;f1---供电电源频率,Hz;s---异步电动机的转差率。
由上式分析,通过改变定子电压频率f1、极对数p以及转差率s都可以实现交流异步电动机的速度调节,具体可以归纳为变极调速、变转差率调速和变频调速三大类,而变转差率调速又包括调压调速、转子串电阻调速、串级调速等,它们都属于转差功率消耗型的调速方法。
一、变极调速1、变极调速的方法变换异步电动机绕组极数从而改变同步转速进行调速的方式称为变极调速。
其转速只能按阶跃方式变化,不能连续变化。
变极调速的基本原理是:如果电网频率不变,电动机的同步转速与它的极对数成反比。
因此,变更电动机绕组的结线方式,使其在不同的极对数下运行,其同步转速便会随之改变。
异步电动机的极对数是由定子绕组的联接方式来决定,这样就可以通过改换定子绕组的联接来改变异步电动机的极对数。
变更极对数的调速方法一般仅适用于笼型异步电动机。
双速电动机、三速电动机是变极调速中最常用的两种形式。
2.双速电动机的控制线路双速电动机的定子绕组的联接方式常有两种:一种是绕组从三角形改成双星形,如下图(a)所示的连接方式转换成如图(c)所示的连接方式,另一种是绕组从单星形改成双星形,如图(b)所示的连接方式转换成如图(c)所示的连接方式,这两种接法都能使电动机产生的磁极对数减少一半即电动机的转速提高一倍。
双速电动机的定子绕组的接线图下图是双速电动机三角形变双星形的控制原理图,当按下起动按钮SB2,主电路接触器KMl的主触头闭合,电动机三角形连接,电动机以低速运转;同时KA的常开触头闭合使时间继电器线圈带电,经过一段时间(时间继电器的整定时间),KMl的主触头断开,KM2、KM3的主触头闭合,电动机的定子绕组由三角形变双星形,电动机以高速运转。
简述三相笼型异步电动机的调速方法一、定子绕组改变法定子绕组改变法是一种简单且常用的调速方法。
通过改变定子绕组的接法,可以改变电动机的极数,从而改变电机的转速。
常见的定子绕组改变法有两种:星形-三角形启动法和多绕组切换法。
1. 星形-三角形启动法星形-三角形启动法是一种常用的调速方法。
在启动时,将电动机的定子绕组由星形接法切换为三角形接法,可以降低电机的转速。
具体操作步骤如下:(1) 将电动机的定子绕组由星形接法切换为三角形接法;(2) 启动电动机,使之达到额定转速;(3) 在电机达到额定转速后,将定子绕组由三角形接法切换回星形接法。
2. 多绕组切换法多绕组切换法是一种更加灵活的调速方法。
通过改变电动机的绕组连接方式,可以实现多种转速选择。
具体操作步骤如下:(1) 将电动机的绕组由串联接法切换为并联接法,可以提高电机的转速;(2) 将电动机的绕组由并联接法切换为串联接法,可以降低电机的转速。
二、转子电阻改变法转子电阻改变法是一种常用的调速方法。
通过改变电动机转子电阻的大小,可以改变电机的转速。
常见的转子电阻改变法有两种:外加电阻法和液体电阻法。
1. 外加电阻法外加电阻法是一种简单且常用的调速方法。
通过在电动机的转子电路中加入外部电阻,可以改变电机的转速。
具体操作步骤如下:(1) 在电动机的转子电路中加入外部电阻;(2) 调节外部电阻的大小,可以改变电机的转速。
2. 液体电阻法液体电阻法是一种较为复杂但可靠的调速方法。
通过在电动机的转子电路中加入液体电阻,可以改变电机的转速。
具体操作步骤如下:(1) 在电动机的转子电路中加入液体电阻;(2) 调节液体电阻的大小,可以改变电机的转速。
三、变频调速法变频调速法是一种高精度、高效率的调速方法。
通过改变电动机供电的频率,可以精确地控制电机的转速。
变频调速法广泛应用于工业领域。
具体操作步骤如下:(1) 使用变频器将电源频率转换为可调的频率;(2) 调节变频器输出的频率,可以改变电机的转速。
列举三相异步电机常见调速和起动方法三相异步电机是工业中广泛应用的一种电动机,其调速和起动方法有很多种。
本文将列举三种常见的调速和起动方法,并详细介绍其主要内容。
一、变频调速变频调速是目前最为常用的一种三相异步电机调速方法。
其基本原理是通过改变电源输入电压的频率来改变电机转速。
具体实现方式是将交流电源通过整流器转换为直流电源,再通过逆变器将直流电源转换为可控交流电源,从而实现对输出频率和电压的控制。
变频调速具有以下优点:1. 调速范围广:可实现从低转速到高转速的无级调节。
2. 能耗低:在低负载情况下,能够自动降低输出功率,从而减少能耗。
3. 运行平稳:由于控制精度高,可以保证运行平稳、噪音小。
4. 适应性强:适用于各种负载类型和工作环境。
二、星角启动星角启动是一种较为简单的三相异步电机起动方法。
其基本原理是在启动时将三相绕组分别接成星形和三角形两种电路,从而实现电机的起动。
具体实现方式是在启动时通过一个切换器将三相绕组从星形连接切换为三角形连接。
星角启动具有以下优点:1. 简单可靠:由于无需任何控制器件,因此结构简单、可靠性高。
2. 起动电流小:由于起始转矩较小,因此在起动时所需的电流较小。
3. 适用性强:适用于中小功率的三相异步电机。
三、自耦降压启动自耦降压启动是一种常用的三相异步电机起动方法。
其基本原理是通过自耦变压器将输入电源的电压降低,从而减少启动时所需的电流和转矩。
具体实现方式是在启动时通过一个切换器将三相绕组接入自耦变压器中,并逐渐降低输出电压,直到达到正常工作状态。
自耦降压启动具有以下优点:1. 启动平稳:由于可以逐渐升高输出电压,因此可以保证启动过程平稳无冲击。
2. 起始转矩大:由于能够提供足够的起始转矩,因此适用于大功率的三相异步电机。
3. 节能环保:由于启动时所需的电流较小,因此可以减少能耗,降低对环境的污染。
以上是三种常见的三相异步电机调速和起动方法。
不同方法在实际应用中各有优缺点,需要根据具体情况选择合适的方法。
简述三相笼型异步电动机的调速方法三相笼型异步电动机是一种常用的电动机类型,广泛应用于工业生产和生活中的各个领域。
为了满足不同工况下的需求,需要对三相笼型异步电动机进行调速。
本文将简述三相笼型异步电动机的调速方法。
一、电压调制法电压调制法是一种常见的调速方法,通过改变电动机的供电电压来实现调速。
该方法利用调速器对供电电压进行调整,使其在一定范围内变化,从而改变电动机的转速。
电压调制法调速简单、成本低廉,适用于一些负载波动较大的场合。
但是,该方法调速范围有限,无法实现较大范围的调速。
二、电流调制法电流调制法是一种常用的调速方法,通过改变电动机的供电电流来实现调速。
该方法利用调速器对供电电流进行调整,使其在一定范围内变化,从而改变电动机的转速。
电流调制法调速范围较大,适用于一些负载波动较大的场合。
但是,该方法需要配备较复杂的调速器,成本较高。
三、频率调制法频率调制法是一种常用的调速方法,通过改变电动机的供电频率来实现调速。
该方法利用调速器对供电频率进行调整,使其在一定范围内变化,从而改变电动机的转速。
频率调制法调速范围较大,适用于一些负载波动较大的场合。
但是,该方法需要配备较复杂的调速器,成本较高。
三相笼型异步电动机的调速方法主要包括电压调制法、电流调制法和频率调制法。
不同的调速方法适用于不同的场合,可以根据实际需求选择合适的调速方法。
同时,为了保证电动机的正常运行和延长其使用寿命,调速时还需要注意合理控制电动机的负载和温度,避免过载和过热现象的发生。
通过合理选择和运用调速方法,可以为各行各业的生产和生活提供更加灵活和高效的电动机驱动方式。
交流异步电动机的调速方法及特点异步电动机是一种常用的电动机类型,广泛应用于工业生产和日常生活中。
为了满足不同工作条件下的需求,异步电动机需要进行调速。
本文将介绍异步电动机的调速方法及其特点,并从人类视角出发,用自然流畅的语言描述。
一、定子电压调制法定子电压调制法是一种常见的异步电动机调速方法。
其原理是通过改变定子电压的幅值和频率来实现调速。
具体操作是改变电源电压的大小和频率。
当电压增加时,电动机转速会增加;当电压减小时,电动机转速会降低。
这种调速方法的特点是操作简单,调速范围较大,但调速精度较低。
二、转子电流调制法转子电流调制法是另一种常用的异步电动机调速方法。
其原理是通过改变转子电流的幅值和相位来实现调速。
具体操作是改变转子电流的大小和相位差。
当电流增加时,电动机转速会增加;当电流减小时,电动机转速会降低。
这种调速方法的特点是调速响应快,调速精度高,但操作复杂,需要专门的电调设备。
三、频率变换调速法频率变换调速法是一种比较复杂但调速效果较好的异步电动机调速方法。
其原理是通过改变电源频率来实现调速。
具体操作是通过变频器将电源的频率转换为所需的频率。
这种调速方法的特点是调速范围广,调速精度高,但设备成本较高,需要专门的变频器设备。
四、电阻调速法电阻调速法是一种简单但调速范围较小的异步电动机调速方法。
其原理是通过在转子电路中串联电阻来改变转矩和转速。
具体操作是改变电阻的大小。
当电阻增加时,电动机转速会降低;当电阻减小时,电动机转速会增加。
这种调速方法的特点是操作简单,但调速范围有限,调速精度较低。
总结起来,异步电动机的调速方法有定子电压调制法、转子电流调制法、频率变换调速法和电阻调速法。
这些调速方法各有特点,适用于不同的工作条件和需求。
定子电压调制法操作简单,调速范围大;转子电流调制法调速响应快,调速精度高;频率变换调速法调速范围广,调速精度高;电阻调速法操作简单,但调速范围有限。
根据实际需求选择合适的调速方法,可以提高异步电动机的工作效率和稳定性。
本文介绍了三相异步电动机的七种调速方式及其特点,指明其适用的场合、情况。
三相异步电动机转速公式为:n=60f/p(1-s)
从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的。
从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。
在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。
改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。
从调速时的能耗观点来看,有高效调速方法与低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。
有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。
一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。
一、变极对数调速方法
这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下:
具有较硬的机械特性,稳定性良好;
无转差损耗,效率高;
接线简单、控制方便、价格低;
有级调速,级差较大,不能获得平滑调速;
可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。
本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。
二、变频调速方法
变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。
变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。
其特点:
效率高,调速过程中没有附加损耗;
应用范围广,可用于笼型异步电动机;
调速范围大,特性硬,精度高;
技术复杂,造价高,维护检修困难。
本方法适用于要求精度高、调速性能较好场合。
三、串级调速方法
串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。
大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。
根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:
可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高;
装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70%-90%的生产机械上;
调速装置故障时可以切换至全速运行,避免停产;
晶闸管串级调速功率因数偏低,谐波影响较大。
本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。
四、绕线式电动机转子串电阻调速方法
绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。
串入的电阻越大,电动机的转速越低。
此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。
属有级调速,机械特性较软。
五、定子调压调速方法
当改变电动机的定子电压时,可以得到一组不同的机械特性曲线,从而获得不同转速。
由于电动机的转矩与电压平方成正比,因此最大转矩下降很多,其调速范围较小,使一般笼型电动机难以应用。
为了扩大调速范围,调压调速应采用转子电阻值大的笼型电动机,如专供调压调速用的力矩电动机,或者在绕线式电动机上串联频敏电阻。
为了扩大稳定运行范围,当调速在2:1以上的场合应采用反馈控制以达到自动调节转速目的。
调压调速的主要装置是一个能提供电压变化的电源,目前常用的调压方式有串联饱和电抗器、自耦变压器以及晶闸管调压等几种。
晶闸管调压方式为最佳。
调压调速的特点:
调压调速线路简单,易实现自动控制;
调压过程中转差功率以发热形式消耗在转子电阻中,效率较低。
调压调速一般适用于100KW以下的生产机械。
六、电磁调速电动机调速方法
电磁调速电动机由笼型电动机、电磁转差离合器和直流励磁电源(控制器)三部分组成。
直流励磁电源功率较小,通常由单相半波或全波晶闸管整流器组成,改变晶闸管的导通角,可以改变励磁电流的大小。
电磁转差离合器由电枢、磁极和励磁绕组三部分组成。
电枢和后者没有机械联系,都能自由转动。
电枢与电动机转子同轴联接称主动部分,由电动机带动;磁极用联轴节与负载轴对接称从动部分。
当电枢与磁极均为静止时,如励磁绕组通以直流,则沿气隙圆周表面将形成若干对N、S极性交替的磁极,其磁通经过电枢。
当电枢随拖动电动机旋转时,由于电枢与磁极间相对运动,因而使电枢感应产生涡流,此涡流与磁通相互作用产生转矩,带动有磁极的转子按同一方向旋转,但其转速恒低于电枢的转速N1,这是一种转差调速方式,变动转差离合器的直流励磁电流,便可改变离合器的输出转矩和转速。
电磁调速电动机的调速特点:
装置结构及控制线路简单、运行可靠、维修方便;
调速平滑、无级调速;
对电网无谐影响;
速度失大、效率低。
本方法适用于中、小功率,要求平滑动、短时低速运行的生产机械。
七、液力耦合器调速方法
液力耦合器是一种液力传动装置,一般由泵轮和涡轮组成,它们统称工作轮,放在密封壳体中。
壳中充入一定量的工作液体,当泵轮在原动机带动下旋转时,处于其中的液体受叶片推动而旋转,在离心力作用下沿着泵轮外环进入涡轮时,就在同一转向上给涡轮叶片以推力,使其带动生产机械运转。
液力耦合器的动力转输能力与壳内相对充液量的大小是一致的。
在工作过程中,改变充液率就可以改变耦合器的涡轮转速,作到无级调速,其特点为:
功率适应范围大,可满足从几十千瓦至数千千瓦不同功率的需要;
结构简单,工作可靠,使用及维修方便,且造价低;
尺寸小,能容大;
控制调节方便,容易实现自动控制。
本方法适用于风机、水泵的调速。