储氢材料简介(谷风参考)
- 格式:ppt
- 大小:8.47 MB
- 文档页数:73
储氢材料有哪些
储氢材料是指能够吸附、吸收或储存氢气的材料。
随着氢能源的发展,储氢材
料的研究和开发变得越来越重要。
目前,主要的储氢材料包括金属氢化物、碳基材料、化合物材料等。
这些材料在储氢过程中具有不同的特性和应用。
金属氢化物是一类重要的储氢材料,它们可以通过吸附氢气来实现储氢。
金属
氢化物的储氢能力主要取决于金属和氢原子之间的化学键强度。
常见的金属氢化物包括镁、钛、锆等金属的氢化物。
这些材料在储氢过程中能够释放出大量的能量,因此被广泛应用于氢能源领域。
碳基材料也是重要的储氢材料之一。
碳材料具有较大的比表面积和丰富的微孔
结构,能够有效地吸附氢气。
常见的碳基储氢材料包括活性炭、碳纳米管、石墨烯等。
这些材料具有良好的化学稳定性和储氢性能,因此被广泛应用于氢能源的储氢系统中。
除了金属氢化物和碳基材料,化合物材料也是重要的储氢材料之一。
化合物材
料通常由金属、非金属元素组成,具有较高的储氢容量和储氢速率。
常见的化合物储氢材料包括金属有机框架材料、过渡金属硼化物、氨硼烷等。
这些材料在储氢过程中能够实现高密度的氢储存,因此被广泛应用于氢能源的储氢系统和储氢车辆中。
总的来说,储氢材料的研究和开发对于推动氢能源的发展具有重要意义。
不同
类型的储氢材料具有不同的特性和应用,可以根据具体的需求选择合适的材料。
随着科技的不断进步,相信未来会有更多高效、安全、经济的储氢材料出现,为氢能源的发展注入新的动力。
储氢材料研究现状与发展趋势xxx摘要:氢能作为一种新型的能量密度高的绿色能源,正引起世界各国的重视。
储存技术是氢能利用的关键。
储氢材料是当今研究的重点课题之一,也是氢的储存和输送过程中的重要载体。
本文综述了目前已采用或正在研究的储氢材料,如金属储氢(镁基储氢、Fe-Ti基储氢、金属配位氢化物、钒基固溶体型储氢)、碳基储氢、有机液体储氢等材料,比较了各种储氢材料的优缺点,并指出其发展趋势。
关键字:储氢材料,储氢性能,金属储氢,碳基储氢,有机液体储氢。
1.引言氢原料来源广泛、无污染且能量转换效率高,是解决未来清洁能源需求问题的首选新能源之一。
氢是宇宙中含量最丰富的元素之一。
氢气燃烧后只产生水和热,是一种理想的清洁能源。
氢能利用技术,如氢燃料电池和氢内燃机,可以提供稳定、高效、无污染的动力,在电动汽车等领域有着广泛的应用前景。
由于氢能技术在解决人类面临的能源与环境两大方面的重大作用,国内外对氢能技术都有大量资金投入,以加快氢能技术的研发和应用。
氢能作为一种储量丰富、来源广泛、能量密度高的绿色能源及能源载体,正引起人们的广泛关注。
氢能的开发和利用受到美、日、德、中、加等国家的高度重视,以期在21世纪中叶进入氢能经济(hydrogeneconomy)时代。
氢能的利用需要解决三个问题:氢的制取、储运和应用,而氢能的储运则是氢能利用的瓶颈。
氢在正常情况下以气态形式存在、密度最小、且易燃、易爆、易扩散,这给储存和运输带来很大困难。
当氢作为一种燃料时,必须具有分散性和间歇性使用的特点,因此必须解决储存和运输问题。
储氢和输氢技术要求能量密度大(包含质量储氢密度和体积储氢密度)、能耗少、安全性高。
当氢作为车载燃料使用(如燃料电池动力汽车)时,应符合车载状况的要求。
对于车用氢气存储系统,国际能源署(IEA)提出的目标是质量储氢密度大于5wt%,体积储氢密度大于50kgH2/m3,并且放氢温度低于423K,循环寿命超过1000次;而美国能源部(DOE)提出的目标是到2010年质量储氢密度不低于6wt%,体积储氢密度大于45kgH2/m3;到2015年上述指标分别达9wt%和81kgH2/m3;到2010年车用储氢系统的实际储氢能力大于3.1kg(相当于小汽车行使500km所需的燃料)。
储氢材料的原理与应用1. 储氢材料概述储氢材料是指能够吸收、储存和释放氢气的物质。
随着氢能源的不断发展和应用,储氢材料成为了关键的技术之一。
储氢材料可以被广泛应用于氢燃料电池、氢气存储系统等领域,具有很大的市场潜力。
2. 储氢材料的分类储氢材料可以按照其结构和储氢机制进行分类。
常见的储氢材料包括吸附储氢材料、化学储氢材料和金属储氢材料。
2.1 吸附储氢材料吸附储氢材料是指通过物理吸附作用将氢气吸附到其表面上进行储存。
常见的吸附储氢材料包括活性炭、金属有机骨架材料(MOFs)和石墨烯等。
这些材料具有高比表面积和较大的气孔结构,能够提供较大的吸附容量。
2.2 化学储氢材料化学储氢材料是指通过与氢气发生化学反应将氢气固定在材料内部进行储存。
常见的化学储氢材料包括金属烷化物、氮化物和硼氮化物等。
这些材料在储氢时会发生化学反应,释放出氢气。
2.3 金属储氢材料金属储氢材料是指利用金属与氢气之间的物理或化学作用进行氢气的储存。
常见的金属储氢材料包括钛、镁和铝等。
这些金属材料能够吸附和储存较大量的氢气,具有较高的储氢能力。
3. 储氢材料的原理储氢材料的原理可以归纳为物理吸附、化学反应和氢化反应。
3.1 物理吸附物理吸附是指通过材料表面的吸附力将氢气吸附到材料中。
吸附力主要包括范德华力和静电吸附力等。
吸附储氢材料具有高比表面积和较大的孔隙结构,能够提供较大的吸附容量。
3.2 化学反应化学储氢材料通过与氢气发生化学反应将氢气固定在材料内部。
化学反应的储氢机理包括氢化物形成和烷化物形成等。
这些化学反应能够固定氢气并将其储存起来。
3.3 氢化反应金属储氢材料通过与氢气发生氢化反应将氢气固定在金属内部。
氢化反应是指金属与氢气形成金属氢化物的反应。
金属储氢材料具有较高的储氢能力,能够吸附和储存较大量的氢气。
4. 储氢材料在氢能源领域的应用4.1 氢燃料电池储氢材料作为氢燃料电池的重要组成部分,可以用于储存和供应氢气。
氢燃料电池通过将储氢材料中的氢气与氧气反应,产生电能和水。
储氢材料简介 摘要:化石能源的大规模开发利用带来了严重的能源和环境问题,新能源开发是解决能源危机和环境污染问题的一条出路,氢能因其独特优势而倍受青睐。但氢的储存是氢能利用的瓶颈,高效、安全的储氢方式一直是氢能工作者的不懈追求。储氢材料的研究开发有助于消除储氢的技术障碍,从而促使整个氢工业的发展。本文通过介绍氢的储存方式、一些常用的储氢材料,特别是储氢合金,使读者对储氢材料的储氢原理、分类、各自的优缺点以及应用有个初步的了解。 关键词:氢能 储氢材料 储氢合金 目录 第一章 绪论----------------------------------------------------------------------------- 第二章 储氢方式----------------------------------------------------------------------- 2.1 气态储存----------------------------------------------------------------------- 2.2液化储存------------------------------------------------------------------------ 2.3固态储存------------------------------------------------------------------------ 第三章 储氢材料------------------------------------------------------------------------ 3.1 储氢合金------------------------------------------------------------------------ 3.1.1金属储氢原理---------------------------------------------------------- 3.1.2 储氢合金的要求------------------------------------------------------ 3.1.3储氢合金的分类------------------------------------------------------- 3.1.4储氢合金的应用-------------------------------------------------------- 3.2配位氢化物储氢材料---------------------------------------------------------- 3.3碳质储氢材料------------------------------------------------------------------- 3.3.1活性炭-------------------------------------------------------------------- 3.3.2碳纤维-------------------------------------------------------------------- 3.3.3有机液体氢化物-------------------------------------------------------- 第一章 绪论 人类进入21世纪,节能环保不再只是一句口号。随着能源紧张与环境污染问题的日益凸显,新能源和清洁能源的开发利用受到人们越来越多的关注。在众多新能源中,氢能被人们寄予了厚望。 相对于传统化石能源来说,氢能的优势显而易见。首先,氢的来源丰富,储量巨大,海水中就蕴藏着大量的氢元素;其次氢的燃烧性能优越,热值高,燃烧1千克氢能放出142120千焦的热量,相当于汽油的三倍;最后,氢燃烧后生成的是水,并不污染环境,特别符合环保理念。所以,氢能又被称为本世纪最有前途的绿色能源之一。 然而,氢能的开发利用并不如想象中简单,它还需要克服种种技术难题。氢是二次能源,自然界中并不存在可供开采的单质氢;而氢在常温常压是气体,密度很低,这使得单位体积氢的能量很低,仅相当于天然气的1/3,汽油的1/3000;氢分子体积小,很容易逃逸;氢容易发生爆炸,存在安全隐患。氢的特性使得氢能利用面临困难,解决困难,氢才能走进千家万户。 氢能体系主要包括氢的生产、储存和运输、应用3个环节。而氢能的储存是关键,也是目前氢能应用的主要技术障碍。氢气可以被储存,但是很难被高密度地储存,这直接制约了氢能的开发利用。未来氢能的发展将离不开储氢技术的提高,也离不开储氢材料的广泛应用。 当今社会,材料、能源、信息已成为三大支柱。我们有理由相信,氢能作为一种不可多得的清洁能源,必将在未来社会扮演越来越重要的角色,而储氢材料,也必将会大有所为。 第二章 储氢方式 在了解储氢材料之前,让我们先了解氢的储存要求和储存方式。 氢能工业对储氢的要求总的来说是储氢系统要安全、容量大、成本低、使用方便。具体到氢能的终端用户不同又有很大的差别。氢能的用户终端可分为两类,一是民用和工业用氢,二是交通工具用氢。前者强调大容量,后者强大的储氢密度。 根据用途的不同,人们研究开发了各种各样的储氢方法,试图满足储氢要求。储氢方法多种多样,但根据氢存在形态的不同,归结来说可以分为三类:气态储存、液化储存和固态储存。 2.1气态储存 气态储存是对氢气加压,减小体积,以气体形式储存于特定容器中。根据压力大小的不同,气态储存又可分为低压储存和高压储存。 氢气可以像天然气一样用低压储存,使用巨大的水密封储槽。该方法适合大规模储存气体时使用。由于氢的密度太低,应用不多。 气态高压储存是最普通和最直接的储存方式,通过减压阀的调节就可以直接将氢气释放出来。该方法简单易行,但缺点也很突出。首先,高压储氢能耗高,需要消耗别的能量形式来压缩氢气;其次,高压对容器材料强度要求高,对于移动用途而言, 加大氢压来提高携氢量将有可能导致氢分子从容器壁逸出或产生氢脆现象。 加压压缩储氢技术近年来的研究进展主要体现,且公众接受心理存在障碍;最后,高压储氢的单位质量储氢密度,也就是储氢单元内所有储氢质量与整个储氢单元的质量(含容器、储存介质材料、阀及氢气等)之比依然很低。我国使用的容积为40L的钢瓶在15MPa高压下,也只能容纳大约0.5Kg氢气,还不到高压钢瓶重量的1%,储氢量小,运输成本太高。 高压储氢对容器材料要求高,储氢容器先后经历了从钢制、金属内衬纤维缠绕到全复合纤维缠绕的发展历程,穆青国际上正积极开发压力更高的轻质储氢压力容器。 2.2液化储存 液化储存顾名思义,就是将氢气冷却到液化温度以下,以液体形式储存。在化石燃料中,液氢的有效质量密度最高,而液氢的密度是气态氢的865倍,因此以液态储存氢特别适合储存空间有限的运载场合。若仅从质量和体积上考虑,液化储存是一种极为理想的储氢方式。液氢方式储运的最大优点是质量储氢密度高,按目前的技术可以大于5%。但使用液化储氢方式,液氢罐需采用双层壁真空绝热结构,并采用安全保护装置和自动控制装置保证减振和抗冲击。这就增大了储氢系统的复杂程度和总体重量,限制了氢气质量分数的提高。 液氢生产成本高昂,液化所消耗的能量可以达到氢气能量的30-50%。另外,液氢还存在严重的泄露问题。液氢沸点仅为20.38K。气化潜热小,仅0.91kj/mol,因此液氢的温度与外界的温度存在巨大的传热温差,稍有热量从外界渗入容器,即可快速沸腾而损失。即使用真空绝热储槽,液氢也难长时间储存。目前,液氢的损失率达1-2%每天,而汽油通常每月只损失1%,所以,液氢不适合用于间歇使用的场合,如汽车。 2.3固态储存 固态储存是利用固体对氢气的物理吸附或化学反应等作用,将氢储存于固体材料中。固态储存一般可以做到安全、高效、高密度,是气态储存和液化储存之后,最有前途的研究发现。固态储存需要用到储氢材料,需找和研制高性能的储氢材料,成为固态储氢的当务之急,也是未来储氢发展和乃至整个氢能利用的关键。 第三章 储氢材料 储氢材料是一类对氢具有良好的吸附性能或可以与氢发生可逆反应,实现氢的储存和释放的材料。储氢材料有很多,它包括储氢合金、配位氢化物、碳质吸附材料等。其中储氢合金是最常见,也是研究最深入的一类储氢材料。 3.1储氢合金 3.1.1金属储氢原理 氢可以和很多金属反应,生成金属氢化物,总反应式如下所示:
储氢合金材料简介氢是一种高效能且对自然环境无污染的燃料,1千克氢燃烧时可放出14万焦耳的热量,是同样重量汽油发热量的3倍。
氢气可以通过电解水的方法产生,同时它燃烧后又生成水,因此氢气是不污染环境、取之不尽、用之不竭的新型能源。
氢在常温下是气体,脾气很暴躁,当与空气混合浓度达到4~97% 范围时就会与明火燃烧爆炸,这就给使用、运输和储存带来了困难。
因此,若没有一种方便的储存氢气的办法,氢就不可能作为普通的常规能源得到广泛应用。
常规储氢办法包括高压钢瓶装压缩气态氢和一种特制瓶装液态氢两种。
利用高压钢瓶(氢气瓶)来储存氢气,瓶内最高可加压到几百个大气压,但即使这样,由于钢瓶储存氢气的容积小,存储量有限,因此所装氢气的质量不到氢气瓶质量的1%,而且既笨重,又有爆炸的危险。
采用液态氢储存方式,就是先将气态氢降温到-253℃变为液体后保存在一个特殊结构的液体氢储存箱,然而由于液体储存箱非常庞大,而且需要极好的绝热装置来隔热,才能防止液态氢不会沸腾汽化以至流失。
目前,液氢主要用作火箭和航天飞机等特殊领域的液体燃料,它与液氧燃烧放出巨大的能量来推动火箭和航天飞机飞行。
总的来说,高压储氢和液态储氢两种存储氢方式,都需要消耗大量的机械能来压缩氢气或液化氢气,因此能耗非常高,且存在存储容器笨重不便、不安全等缺点,因而其应用受到限制。
图 1 储氢钢瓶图 2 以液氢为燃料的火箭20世纪60年代,材料王国里出现了能储存氢的金属和合金,统称为储氢合金(hydrogen storage metal ),这些金属或合金具有很强的捕捉氢的能力,它可以在一定的温度和压力条件下,氢分子在合金(或金属)中先分解成单个的原子,而这些氢原子便“见缝插针”般地进入合金原子之间的缝隙中,并与合金进行化学反应生成金属氢化物(metal hydrides),外在表现为大量“吸收”氢气,同时放出大量热量。
而当对这些金属氢化物进行加热时,它们又会发生分解反应,氢原子又能结合成氢分子释放出来,而且伴随有明显的吸热效应。
储氢材料的储氢原理储氢材料是一类能够吸附、储存和释放氢气的物质。
它们通常由金属或非金属材料构成,具有较高的氢气吸附能力。
在储氢材料中,氢气分子以氢键或作为氢化物与材料表面或晶体结构之间的化学键形成相互作用。
储氢材料的储氢原理主要有物理吸附、化学吸附、氢化物和电化学吸附。
物理吸附是一种通过van der Waals力吸附氢气的储氢机制。
在物理吸附过程中,氢气分子与储氢材料之间的相互作用是弱的非共价力。
扩大储氢材料的比表面积可以提高物理吸附氢气的容量。
物理吸附的储氢材料一般具有较低的储氢温度和压力要求。
化学吸附是一种通过化学键吸附氢气的储氢机制。
在化学吸附过程中,储氢材料通过与氢气分子之间的化学反应形成强的化学键。
常用的储氢材料有过渡金属和其合金,如镍、钛、铌等。
化学吸附储氢材料的储氢温度和压力一般较高。
氢化物是一种通过形成金属氢化物结构来储存氢气的储氢机制。
在氢化物储氢材料中,氢气分子以金属原子为中心与材料表面或晶体结构之间形成化学键。
氢化物储氢材料的储氢容量相对较高,可以实现高密度储氢。
但氢化物在常温下释放氢气的动力学过程较慢,需要加热或加压来实现释放。
电化学吸附是一种利用电化学电位差来控制氢气吸附和释放的储氢机制。
在电化学储氢材料中,氢气分子通过吸附或离子态与材料表面形成化学键。
电化学储氢材料可以实现快速的氢气吸附和释放,具有较高的储氢动力学性能。
目前正在研究的一些电化学储氢材料包括氢化硼、氮化硼和碳纳米管等。
总的来说,储氢材料的储氢原理主要包括物理吸附、化学吸附、氢化物和电化学吸附。
不同的储氢机制适用于不同的应用需求和储氢条件。
研究和开发高效、经济、可持续的储氢材料对于促进氢能源技术的发展和应用具有重要意义。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。