人教版七年级下册数学第五章知识点总结
- 格式:docx
- 大小:95.96 KB
- 文档页数:3
5.3平行线的性质5.3.2命题、定理、证明1.理解命题的概念,能区分命题的条件和结论,并把命题写成“如果……那么……”的形式;(重点)2.了解真命题和假命题的概念,能判断一个命题的真假性,并会对命题举反例.(难点)一、情境导入2015年10月,屠呦呦因发现青蒿素治疗疟疾的新疗法获诺贝尔生理学或医学奖.屠呦呦是第一位获得诺贝尔科学奖项的中国本土科学家、第一位获得诺贝尔生理医学奖的华人科学家.青蒿素是从植物黄花蒿茎叶中提取的有过氧基团的倍半萜内酯药物.其对鼠疟原虫红内期超微结构的影响,主要是疟原虫膜系结构的改变,该药首先作用于食物泡膜、表膜、线粒体、内质网,此外对核内染色质也有一定的影响.青蒿素的作用方式主要是干扰表膜-线粒体的功能.可能是青蒿素作用于食物泡膜,从而阻断了营养摄取的最早阶段,使疟原虫较快出现氨基酸饥饿,迅速形成自噬泡,并不断排出虫体外,使疟原虫损失大量胞浆而死亡.要读懂这段报道,你认为要知道哪些名称和术语的含义?二、合作探究探究点一:命题的定义与结构【类型一】命题的判断下列语句中,不是命题的是()A.两点之间线段最短B.对顶角相等C.不是对顶角不相等D.过直线AB外一点P作直线AB的垂线解析:根据命题的定义,看其中哪些选项是判断句,其中只有D选项不是判断句.故选D.方法总结:①命题必须是一个完整的句子,而且必须做出肯定或否定的判断.疑问句、感叹句、作图过程的叙述都不是命题;②命题常见的关键词有“是”“不是”“相等”“不相等”“如果……那么……”.【类型二】把命题写成“如果……那么……”的形式把下列命题写成“如果……那么……”的形式.(1)内错角相等,两直线平行;(2)等角的余角相等.解:(1)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(2)如果两个角是相等的角,那么它们的余角相等.方法总结:把命题写成“如果……那么……”的形式时,应添加适当的词语,使语句通顺.【类型三】命题的条件和结论写出命题“平行于同一条直线的两条直线平行”的条件和结论.解析:先把命题写成“如果……那么……”的形式,再确定条件和结论.解:把命题写成“如果……那么……”的形式:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.所以命题的条件是“两条直线都与第三条直线平行”,结论是“这两条直线也互相平行”.方法总结:每一个命题都一定能用“如果……那么……”的形式来叙述.在“如果”后面的部分是“条件”,在“那么”后面的部分是“结论”.探究点二:真命题与假命题下列命题中,是真命题的是()A.若a·b>0,则a>0,b>0B.若a·b<0,则a<0,b<0C.若a·b=0,则a=0且b=0D.若a·b=0,则a=0或b=0解析:选项A中,a·b>0可得a、b同号,可能同为正,也可能同为负,是假命题;选项B中,a·b<0可得a、b异号,所以错误,是假命题;选项C中,a·b=0可得a、b 中必有一个字母的值为0,但不一定同时为零,是假命题;选项D中,若a·b=0,则a=0或b=0或二者同时为0,是真命题.故选D.方法总结:判断一个命题是真命题还是假命题,就是判断一个命题是否正确,即由条件能否得出结论.如果命题正确,就是真命题;如果命题不正确,就是假命题.探究点三:证明与举反例 【类型一】 命题的证明求证:两条直线平行,一组内错角的平分线互相平行.解析:按证明与图形有关的命题的一般步骤进行.要证明两条直线平行,可根据平行线的判定方法来证明.解:如图,已知AB ∥CD ,直线AB ,CD 被直线MN 所截,交点分别为P ,Q ,PG 平分∠BPQ ,QH 平分∠CQP ,求证:PG ∥HQ .证明:∵AB ∥CD (已知),∴∠BPQ =∠CQP (两直线平行,内错角相等).又∵PG 平分∠BPQ ,QH 平分∠CQP (已知),∴∠GPQ =12∠BPQ ,∠HQP =12∠CQP (角平分线的定义), ∴∠GPQ =∠HQP (等量代换),∴PG ∥HQ (内错角相等,两直线平行).方法总结:证明与图形有关的命题时,正确分清命题的条件和结论是证明的关键.应先结合题意画出图形,再根据图形写出已知与求证,然后进行证明.【类型二】 举反例举反例说明下列命题是假命题.(1)若两个角不是对顶角,则这两个角不相等;(2)若ab =0,则a +b =0.解析:分清题目的条件和结论,所举的例子满足条件但不满足结论即可.解:(1)两条直线平行形成的内错角,这两个角不是对顶角,但是它们相等;(2)当a =5,b =0时,ab =0,但a +b ≠0.方法总结:举反例时,所举的例子应当满足题目的条件,但不满足题目的结论.举反例时常见的几种错误:①所举例子满足题目的条件,也满足题目的结论;②所举例子不满足题目的条件,但满足题目的结论;③所举例子不满足题目的条件,也不满足题目的结论.三、板书设计命题⎩⎪⎨⎪⎧概念结构真、假命题证明与举反例本节课通过命题及其证明的学习,让学生感受到要说明一个定理成立,应当证明;要说明一个命题是假命题,可以举反例.同时让学生感受到数学的严谨,初步养成学生言之有理、落笔有据的推理习惯,发展初步的演绎推理能力.。
人教版七年級數學下冊知識點大全第五章相交線與平行線5.1.1相交線1、如果兩條直線只有一個公共點,就說這兩條直線相交,該公共點叫做兩直線の交點。
2、如果兩個角有一個公共邊,並且它們の另一邊互為反向延長線,那麼這兩個角互為鄰補角。
性質:鄰補角互補。
(兩條直線相交有4對鄰補角。
)3、如果兩個角の頂點相同,並且兩邊互為反向延長線,那麼這兩個角互為對頂角。
性質:對頂角相等。
(兩條直線相交,有2對對頂角。
)5.1.2垂線4、當兩條直線相交,所成の四個角中有一個角是直角,那麼這兩條直線互相垂直。
其中一條直線叫做另一條直線の垂線,它們の交點叫做垂足。
5、由直線外一點向直線引垂線,這點與垂足間の線段叫做垂線段。
(要找垂線段,先把點來看。
過點畫垂線,點足垂線段。
)6、垂線段是垂線上の一部分,它是線段,一端是一個點,另一端是垂足。
7、垂線畫法:①放:放直尺,直尺の一邊要與已知直線重合;②靠:靠三角板,把三角板の一直角邊靠在直尺上;③移:移動三角板到已知點;④畫線:沿著三角板の另一直角邊畫出垂線.8、垂線性質1:過一點有且只有一條直線與已知直線垂直。
9、過一點畫已知線段(或射線)の垂線,就是畫這條線段(或射線)所在直線の垂線.10、連接直線外一點與直線上各點の所有線段中,垂線段最短。
(垂線段最短.)11、直線外一點到這條直線の垂線段の長度,叫做點到直線の距離。
5.1.3同位角、同旁內角、內錯角12、同位角:如果兩個角都在被截の兩條直線の同方向,並且都在截線の同側,即它們の位置相同,這樣の一對角叫做同位角。
形如字母“F”。
13、內錯角:如果兩個角分別在被截の兩條直線之間(內),並且分別在截線の兩側(錯),這樣の一對角叫做內錯角。
形如字母“Z”。
14、同旁內角:如果兩個角都在被截直線之間(內),並且都在截線の同側(同旁),這樣の一對角叫做同旁內角。
形如字母“U”。
5.2.1平行線15、在同一平面內,不相交の兩條直線叫做平行線,記作:a∥b。
七年级数学下册知识归纳框架图【一】:新人教版七年级数学下册知识点框架总结第五章相交线与平行线知识框架:相交线垂线同位角、内错角、同旁内角平行线平行线的判定平行线的性质平行线的性质命题、定理平移基本概念:1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
4.平行线:在同一平面内,不相交的两条直线叫做平行线。
5.同位角、内错角、同旁内角:6.同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠57.命题:判断一件事情的语句叫命题。
8.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
9.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
定理与性质:1.对顶角的性质:对顶角相等。
2.垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
3.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
4.平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
5.平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
6.平行线的判定:判定1:同位角相等,两直线平行。
_七年级数学下册知识归纳框架图。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
第六章实数知识框架:重难点聚焦:_七年级数学下册知识归纳框架图。
算术平方根和平方根的概念及其求法;平方根和实数的概念。
知识要点回顾:_七年级数学下册知识归纳框架图。
4、实数的三个非负性:|a|≥0,a≥0,2≥0(a≥0)5、实数的运算:∠加减法:类比合并同类项∠乘法:=(a≥0,b≥0)∠除法:(a≥0,b>0)6、算术平方根与平方根的区别与联系.区别: ① 定义不同;② 个数不同;③ 表示方法不同;④ 取值范围不同. 联系: ① 具有包含关系;②存在条件相同;③ 0的算术平方根与平方根是0.提示:1. 正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;零的平方根和算术平方根都是零;负数没有平方根.2. 实数都有立方根,且一个数的立方根只有一个,它的符号与被开方数的符号相同.3. 所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中,有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.4. 无理数分成三类:①开方开不尽的数,如,等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…5. 有理数和无理数统称实数,实数和数轴上的点一一对应.6. 实数的运算:实数运算的基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算.正确地确定运算结果的符号和灵活运用各种运算律来进行运算是掌握好实数运算的关键.第七章平面直角坐标系知识框架:有序数对平面直角坐标系用坐标表示地理位置坐标方法的简单应用用坐标表示平移基本概念:1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
最新⼈教版七年级数学下册各章节知识点归纳七年级数学下册知识点归纳第五章相交线与平⾏线5.1 相交线⼀、相交线两条直线相交,形成4个⾓。
1、两条直线相交所成的四个⾓中,相邻的两个⾓叫做邻补⾓,特点是两个⾓共⽤⼀条边,另⼀条边互为反向延长线,性质是邻补⾓互补;相对的两个⾓叫做对顶⾓,特点是它们的两条边互为反向延长线。
性质是对顶⾓相等。
①邻补⾓:两个⾓有⼀条公共边,它们的另⼀条边互为反向延长线。
具有这种关系的两个⾓,互为邻补⾓。
如:∠1、∠2。
②对顶⾓:两个⾓有⼀个公共顶点,并且⼀个⾓的两条边,分别是另⼀个⾓的两条边的反向延长线,具有这种关系的两个⾓,互为对顶⾓。
如:∠1、∠3。
③对顶⾓相等。
⼆、垂线1.垂直:如果两条直线相交成直⾓,那么这两条直线互相垂直。
2.垂线:垂直是相交的⼀种特殊情形,两条直线垂直,其中⼀条直线叫做另⼀条直线的垂线。
3.垂⾜:两条垂线的交点叫垂⾜。
4.垂线特点:过⼀点有且只有⼀条直线与已知直线垂直。
5.点到直线的距离:直线外⼀点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外⼀点与直线上各点的所有线段中,垂线段最短。
三、同位⾓、内错⾓、同旁内⾓两条直线被第三条直线所截形成8个⾓。
1.同位⾓:(在两条直线的同⼀旁,第三条直线的同⼀侧)在两条直线的上⽅,⼜在直线EF的同侧,具有这种位置关系的两个⾓叫同位⾓。
如:∠1和∠5。
2.内错⾓:(在两条直线内部,位于第三条直线两侧)在两条直线之间,⼜在直线EF的两侧,具有这种位置关系的两个⾓叫内错⾓。
如:∠3和∠5。
3.同旁内⾓:(在两条直线内部,位于第三条直线同侧)在两条直线之间,⼜在直线EF的同侧,具有这种位置关系的两个⾓叫同旁内⾓。
如:∠3和∠6。
5.2 平⾏线及其判定(⼀) 平⾏线1.平⾏:两条直线不相交。
互相平⾏的两条直线,互为平⾏线。
a∥b(在同⼀平⾯内,不相交的两条直线叫做平⾏线。
)2.平⾏公理:经过直线外⼀点,有且只有⼀条直线与这条直线平⾏。
第五章相交线与平行线
5.1相交线
5.1.1相交线有关概念
邻补角:假如两个角有一条公共边,它们的另一边互为反向延长线,那么这两个角互为邻补角。
对顶角:假如一个角的两边是另一个角的两边的反向延长线,那么这两个角互为对顶角。
对顶角的性质: 对顶角相等.
5.1.2垂线有关概念
1.垂直定义:当两条直线相交所成的四个角中,有一个角是直角时,这两条直线相互垂直,其中一条直线叫另一条
直线的垂线,它们的交点叫垂足。
从垂直的定义可知,
推断两条直线相互垂直的关键:只要找到两条直线相交时四个交角中一个角是直角。
2 垂直的表示:
1)图形:
2)文字:a、b相互垂直, 垂足为O
3)符号:a⊥b或b⊥a,若要强调垂足,则记为:a⊥b, 垂足为O 3.垂直的书写形式:
如图,当直线AB与CD相交于O点,∠AOD=90°时,AB⊥CD,垂足为O。
3 书写形式:
①断定:∵∠AOD=90°(已知)
∴AB⊥CD(垂直的定义)
反之,若直线AB与CD垂直,垂足为O,那么,∠AOD=90°。
书写形式:
②性质:∵ AB⊥CD (已知)
∴∠AOD=90°(垂直的定义) (∠AOC=∠BOC=∠BOD=90°)
4.垂线的性质
(1)过一点有且只有一条直线与已知直线垂直. 垂线的性质
(2)连接直线外一点与直线上各点的全部线段中,垂线段最短或说成垂线段最短直线外一点到这条直线的垂线段的长度,叫做点到直线的间隔。
5.1.3同位角、内错角、同旁内角
5.2平行线及其断定
5.2.1平行线有关概念
1.平行线的定义:在同一平面内不相交的两条直线叫做平行线。
2.平行线的表示:我们通常用符号“//”表示平行。
同一平面内的两条不重合的直线的位置关系只有两种:相交或平行
3.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
假如两条直线都和第三条直线平行,那么这两条直线也相互平行
假如a//c, b//c;
那么a//b
假如两条直线都垂直于第三条直线,那么这两条直线相互平行.
假如a⊥c, a⊥b;
那么b//c 5.2.2
5.2.2平行线的断定
有关概念
一般地,断定两直线平行有以下的方法:
1.两条直线被第三条所截,假如同位角相等,那么这两条直线平行.简洁地说,同位角相等,两直线平行.
2.两条直线被第三条直线所截,假如内错角相等,那么这两条直线平行. 简洁说成:内错角相等,两直线平行.
3.两条直线被第三条直线所截,假如同旁内角互补,那么这两条直线平行. 简洁说成:同旁内角互补,两直线平行.
5.3 平行线的性质
5.3.1 平行线的性质
1.平行线的性质1
两条平行线被第三条直线所截,同位角相等. 简写为:两直线平行,同位角相等.
2.平行线的性质2
两条平行线被第三条直线所截,内错角相等. 简写为:两直线平行,内错角相等.
3.平行线的性质3
两条平行线被第三条直线所截,同旁内角互补. 简写为:两直线平行,同旁内角互补.
5.3.2命题、定理
推断一件事情的语句叫做命题。
留意:
1、只要对一件事情作出了推断,不管正确与否,都是命题。
2、假如一个句子没有对某一件事情作出任何推断,那么它就不是命题。
命题是由题设(或条件)和结论两局部组成。
题设是已知事项,结论是由已知事项推出的事项。
两直线平行,同位角相等。
题设(条件)结论
命题一般都写成“假如…,那么…”的形式。
“假如”后接的局部是题设,“那么”后接的局部是结论。
留意:添加“假如”、“那么”后,命题的意义不能变更,改写的句子要完好,语句要通顺,使命题的题设和结论更明朗,易于辨别,改写过程中,要适当增加词语,切不行生搬硬套。
正确的命题叫真命题,错误的命题叫假命题。
真命题的正确性是经过推理证明的,这样的真命题叫做定理。
5.4平移
1、把一个图形整体沿某一个方向挪动,会得到一个新的图形.新图形与原图形的形态和大小完全一样。
2、新图形中的每一点,都是由原图形中的某一点挪动后得到的,这两个点就是对应点。
连接各组对应点的线段平行且相等。
3、图形的这种挪动,叫做平移变换,简称平移。
形态不变,大小不变,位置变更 .。