2015_平面向量的数量积及应用
- 格式:ppt
- 大小:554.50 KB
- 文档页数:23
§5.3 平面向量的数量积1.平面向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积),记作a ·b =|a ||b |cos θ.规定:零向量与任一向量的数量积为__0__.两个非零向量a 与b 垂直的充要条件是 a·b =0,两个非零向量a 与b 平行的充要条件是 a·b =±|a||b|.2.平面向量数量积的几何意义数量积a·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 3.平面向量数量积的重要性质 (1)e·a =a·e =|a |cos θ;(2)非零向量a ,b ,a ⊥b ⇔a·b =0; (3)当a 与b 同向时,a·b =|a||b|;当a 与b 反向时,a·b =-|a||b|,a·a =|a |2,|a |=a·a ; (4)cos θ=a·b|a||b|;(5)|a·b |__≤__|a||b|.4.平面向量数量积满足的运算律 (1)a·b =b·a (交换律);(2)(λa )·b =λ(a·b )=a ·(λb )(λ为实数); (3)(a +b )·c =a·c +b·c .5.平面向量数量积有关性质的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2,由此得到 (1)若a =(x ,y ),则|a |2=x 2+y 2或|a |=x 2+y 2.(2)设A (x 1,y 1),B (x 2,y 2),则A 、B 两点间的距离|AB |=|AB →|=(x 2-x 1)2+(y 2-y 1)2. (3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”(1)向量在另一个向量方向上的投影为数量,而不是向量.( )(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( ) (3)△ABC 内有一点O ,满足OA →+OB →+OC →=0,且OA →·OB →=OB →·OC →,则△ABC 一定是等腰三角形.( )(4)在四边形ABCD 中,AB →=DC →且AC →·BD →=0,则四边形ABCD 为矩形.( )(5)两个向量的夹角的范围是[0,π2].( )(6)已知a =(λ,2λ),b =(3λ,2),如果a 与b 的夹角为锐角,则λ的取值范围是λ<-43或λ>0.( )1.(2014·重庆)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k 等于( ) A .-92B .0C .3D.1522.已知向量a ,b 的夹角为60°,且|a |=2,|b |=1,则向量a 与向量a +2b 的夹角等于( ) A .150° B .90° C .60° D .30°3.已知a =(2,3),b =(-4,7),则a 在b 方向上的投影为________.4.在△ABC 中,M 是BC 的中点,AM =3,点P 在AM 上,且满足AP →=2PM →,则P A →·(PB →+PC →)的值为________.题型一 平面向量数量积的运算例1 (1)(2013·湖北)已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的投影为( ) A.322B.3152C. -322D .-3152(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.(1)已知平面向量a =(x 1,y 1),b =(x 2,y 2),若|a |=2,|b |=3,a ·b =-6.则x 1+y 1x 2+y 2的值为( )A.23 B .-23 C.56 D .-56(2)在△ABC 中,若A =120°,AB →·AC →=-1,则|BC →|的最小值是( ) A. 2 B .2 C. 6 D .6题型二 求向量的模与夹角例2 (1)若平面向量a 与平面向量b 的夹角等于π3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦值等于( ) A.126 B .-126C.112D .-112(2)已知向量a ,b 的夹角为45°,且|a |=1,|2a -b |=10,则|b |=________.(3)(2013·山东)已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若A P →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.(1)(2013·天津)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB 的长为________.(2)(2014·江西)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________. 题型三 数量积的综合应用例3 已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.已知向量m =(2sin(ωx +π3),1),n =(2cos ωx ,-3)(ω>0),函数f (x )=m ·n 的两条相邻对称轴间的距离为π2.(1)求函数f (x )的单调递增区间; (2)当x ∈[-5π6,π12]时,求f (x )的值域.高考中以向量为背景的创新题典例:(1)对任意两个非零的平面向量α和β,定义α∘β=α·ββ·β.若两个非零的平面向量a ,b 满足a 与b 的夹角θ∈(π4,π2),且a ∘b 和b ∘a 都在集合{n2|n ∈Z }中,则a ∘b 等于( )A.52B.32 C .1 D.12(2)设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积a ⊗b =(a 1b 1,a 2b 2),已知向量m =(2,12),n =(π3,0),点P (x ,y )在y =sin x 的图象上运动,Q 是函数y =f (x )图象上的点,且满足OQ →=m ⊗OP →+n (其中O 为坐标原点),则函数y =f (x )的值域是________.A 组 专项基础训练 (时间:45分钟)1.若向量a ,b 满足|a |=|b |=|a +b |=1,则a ·b 的值为( ) A .-12 B.12C .-1D .12.已知向量a =(1,3),b =(-1,0),则|a +2b |等于( ) A .1 B. 2 C .2 D .43.已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( ) A.⎝⎛⎭⎫79,73 B.⎝⎛⎭⎫-73,-79 C.⎝⎛⎭⎫73,79D.⎝⎛⎭⎫-79,-73 4.向量AB →与向量a =(-3,4)的夹角为π,|AB →|=10,若点A 的坐标是(1,2),则点B 的坐标为( ) A .(-7,8) B .(9,-4) C .(-5,10)D .(7,-6)5.(2013·福建)在四边形ABCD 中,AC →=(1,2),BD →=(-4,2),则该四边形的面积为( ) A. 5 B .2 5 C .5 D .106.(2014·北京)已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________. 7.(2013·课标全国Ⅱ)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 8.已知a =(2,-1),b =(λ,3),若a 与b 的夹角为钝角,则λ的取值范围是____________. 9.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求a 与b 的夹角θ; (2)求|a +b |和|a -b |.10.已知△ABC 的内角为A 、B 、C ,其对边分别为a 、b 、c ,B 为锐角,向量m =(2sin B ,-3),n =(cos 2B,2cos 2B2-1),且m ∥n .(1)求角B 的大小;(2)如果b =2,求S △ABC 的最大值.B 组 专项能力提升 (时间:20分钟)11.△ABC 的外接圆圆心为O ,半径为2,OA →+AB →+AC →=0,且|OA →|=|AB →|,则CA →在CB →方向上的投影为( )A .1B .2 C. 3 D .312.在△ABC 中,A =90°,AB =1,AC =2.设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R .若BQ →·CP →=-2,则λ等于( ) A.13 B.23 C.43D .2 13.如图所示,在平面四边形ABCD 中,若AC =3,BD =2,则(AB →+DC →)·(AC →+BD →)=________.14.(2014·湖南)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________.15.已知向量p =(2sin x ,3cos x ),q =(-sin x,2sin x ),函数f (x )=p ·q . (1)求f (x )的单调递增区间;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且f (C )=1,c =1,ab =23,且a >b ,求a ,b 的值.§5.4 平面向量应用举例1.向量在平面几何中的应用(1)用向量解决常见平面几何问题的技巧:平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题2.平面向量与其他数学知识的交汇平面向量作为一个运算工具,经常与函数、不等式、三角函数、数列、解析几何等知识结合,当平面向量给出的形式中含有未知数时,由向量平行或垂直的充要条件可以得到关于该未知数的关系式.在此基础上,可以求解有关函数、不等式、三角函数、数列的综合问题.此类问题的解题思路是转化为代数运算,其转化途径主要有两种:一是利用平面向量平行或垂直的充要条件;二是利用向量数量积的公式和性质.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若AB→∥AC→,则A,B,C三点共线.()(2)解析几何中的坐标、直线平行、垂直、长度等问题都可以用向量解决.()(3)实现平面向量与三角函数、平面向量与解析几何之间的转化的主要手段是向量的坐标运算.()(4)在△ABC中,若AB→·BC→<0,则△ABC为钝角三角形.()(5)已知平面直角坐标系内有三个定点A(-2,-1),B(0,10),C(8,0),若动点P满足:OP→=OA→+t(AB→+AC→),t∈R,则点P的轨迹方程是x-y+1=0.()1.已知△ABC的三个顶点的坐标分别为A(3,4),B(5,2),C(-1,-4),则这个三角形是() A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形2.(2014·山东)已知向量a=(1,3),b=(3,m).若向量a,b的夹角为π6,则实数m等于()A .2 3 B. 3 C .0 D .-33.平面上有三个点A (-2,y ),B ⎝⎛⎭⎫0,y 2,C (x ,y ),若AB →⊥BC →,则动点C 的轨迹方程为__________. 题型一 向量在平面几何中的应用例1 如图所示,四边形ABCD 是正方形,P 是对角线DB 上的一点(不包括端点),E ,F 分别在边BC ,DC 上,且四边形PFCE 是矩形,试用向量法证明:P A =EF .(1)在边长为1的菱形ABCD 中,∠BAD =60°,E 是BC 的中点,则AC →·AE →等于( ) A.3+33B.92C. 3D.94(2)在△ABC 所在平面上有一点P ,满足P A →+PB →+PC →=AB →,则△P AB 与△ABC 的面积的比值是( )A.13B.12C.23D.34题型二 向量在三角函数中的应用例2 已知在锐角△ABC 中,两向量p =(2-2sin A ,cos A +sin A ),q =(sin A -cos A,1+sin A ),且p 与q 是共线向量. (1)求A 的大小; (2)求函数y =2sin 2B +cos ⎝⎛⎭⎫C -3B 2取最大值时,B 的大小.(1)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n=(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角A ,B 的大小分别为( ) A.π6,π3 B.2π3,π6 C.π3,π6D.π3,π3(2)△ABC 的三个内角A ,B ,C 所对的边长分别是a ,b ,c ,设向量m =(a +b ,sin C ),n =(3a +c ,sin B -sin A ),若m ∥n ,则角B 的大小为________. 题型三 平面向量在解析几何中的应用例3 (1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A 、B 、C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________.(2)设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则yx=________. 跟踪训练3 (2013·湖南改编)已知a ,b 是单位向量,a ·b =0.若向量c 满足|c -a -b |=1,则|c |的最大值为________.三审图形抓特点典例:如图所示,把两块斜边长相等的直角三角板拼在一起,若AD →=xAB →+yAC →,则x =________,y = ________.A 组 专项基础训练 (时间:45分钟)1.(2014·福建)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA →+OB →+OC →+OD →等于( ) A.OM → B .2OM → C .3OM →D .4OM →2.平面四边形ABCD 中,AB →+CD →=0,(AB →-AD →)·AC →=0,则四边形ABCD 是( ) A .矩形 B .梯形 C .正方形D .菱形3.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形D .等腰直角三角形4.已知点A (-2,0)、B (3,0),动点P (x ,y )满足P A →·PB →=x 2-6,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线D .抛物线5.若函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象如图所示,M ,N 分别是这段图象的最高点和最低点,且OM →·ON →=0(O 为坐标原点),则A 等于( )A.π6B.712πC.76πD.73π6.已知在△ABC 中,AB →=a ,AC →=b ,a·b <0,S △ABC =154,|a |=3,|b |=5,则∠BAC =________.7.已知|a |=2|b |,|b |≠0且关于x 的方程x 2+|a |x -a·b =0有两相等实根,则向量a 与b 的夹角是________.8.已知在平面直角坐标系中,O (0,0),M (1,1),N (0,1),Q (2,3),动点P (x ,y )满足不等式0≤OP →·OM →≤1,0≤OP →·ON →≤1,则z =OQ →·OP →的最大值为________.9.已知△ABC 中,∠C 是直角,CA =CB ,D 是CB 的中点,E 是AB 上一点,且AE =2EB ,求证:AD ⊥CE .10.已知A ,B ,C 三点的坐标分别为A (3,0),B (0,3),C (cos α,sin α),其中α∈(π2,3π2).(1)若|AC →|=|BC →|,求角α的值. (2)若AC →·BC →=-1,求tan(α+π4)的值.B 组 专项能力提升 (时间:20分钟)11.(2014·浙江)记max{x ,y }=⎩⎪⎨⎪⎧ x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y ,设a ,b 为平面向量,则( )A .min{|a +b |,|a -b |}≤min{|a |,|b |}B .min{|a +b |,|a -b |}≥min{|a |,|b |}C .max{|a +b |2,|a -b |2}≤|a |2+|b |2D .max{|a +b |2,|a -b |2}≥|a |2+|b |212.(2013·浙江)设△ABC ,P 0是边AB 上一定点,满足P 0B =14AB ,且对于边AB 上任一点P ,恒有PB →·PC →≥P 0B →·P 0C →,则( ) A .∠ABC =90° B .∠BAC =90° C .AB =ACD .AC =BC13.已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),若∠ABC 为锐角,则实数m 的取值范围是________.14.已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________.15.在△ABC中,设内角A,B,C的对边分别为a,b,c,向量m=(cos A,sin A),向量n =(2-sin A,cos A),若|m+n|=2.(1)求内角A的大小;(2)若b=42,且c=2a,求△ABC的面积.。
平面向量的数量积为了更好地理解平面向量的数量积及其相关概念,我们先从基本定义开始。
1. 数量积的定义平面中的两个向量a和b的数量积(也称为点积或内积)定义为:a · b = |a| |b| cosθ,其中,|a|和|b|分别表示向量a和b的模(长度),θ表示a和b之间的夹角。
2. 计算数量积对于已知两个向量a = (a₁, a₂)和b = (b₁, b₂),我们可以通过以下步骤计算它们的数量积:a ·b = a₁b₁ + a₂b₂3. 物理意义平面向量的数量积在物理学中具有重要的意义。
根据定义,当两个向量的夹角为0度时(即cosθ=1),数量积达到最大值。
而当两个向量的夹角为90度时(即cosθ=0),数量积为0。
这一性质使得数量积能够帮助我们判断向量之间的垂直关系。
4. 判断两个向量的垂直关系根据数量积的性质,如果两个非零向量a和b的数量积为0,则可以判断它们垂直。
也就是说,a · b = 0当且仅当a和b垂直。
5. 数量积的性质(1)交换律:a · b = b · a(2)分配律:(a + b) · c = a · c + b · c(3)数量积与夹角的关系:a · b = |a| |b| cosθ6. 应用示例(1)计算向量的模:根据数量积的定义,我们可以通过a · a = |a|²来计算向量a的模。
(2)计算向量的夹角:根据数量积的定义,我们可以通过θ = arccos(a · b / (|a| |b|))来计算向量a和b之间的夹角。
总结:平面向量的数量积是一种重要的概念,它可以帮助我们判断向量之间的垂直关系,并且在物理学等领域有广泛的应用。
了解和理解平面向量的数量积的定义、计算方法和相关性质,将有助于我们更好地理解和应用向量的概念。
以上就是关于平面向量的数量积的内容,希望对您有所帮助。
平面向量的数量积及应用复习一、知识要点: 1.向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ (001800≤≤θ)叫做向量a 与b 的夹角,当θ=0时,a ,b 同向,当θ=π时,a ,b 反向,当θ=2π时,a ,b 垂直。
2.平面向量的数量积:定义:已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos θ 叫作a 与b的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,规定零向量与任一向量的数量积为0,即0·a =0. 3.向量的数量积的性质:①设两个非零向量a ,b ,其夹角为θ,则: 0a b a b ⊥⇔•=; ②当a ,b 同向时,a •b =a b ,特别地,222,a a a a a a =•==; 当a 与b 反向时,a •b =-a b ;当θ为锐角时,a •b >0,且 a b 、不同向,0a b ⋅>是θ为锐角的必要非充分条件;当θ为钝角时,a •b <0,且 a b 、不反向,0a b ⋅<是θ为钝角的必要非充分条件;③非零向量a ,b 夹角θ的计算公式:cos a b a bθ•=;④||||||a b a b •≤。
⑤e ·a =a ·e =︱a ︱cos θ (e 为单位向量); 4.平面向量数量积的坐标表示:设向量a =(x 1,y 1),b =(x 2,y 2),θ为向量a ,b 的夹角.(1)数量积:a ·b =|a ||b |cos θ=x 1x 2+y 1y 2. (2)模:|a |=2a =x 21+y 21.(3)夹角:cos θ=a ·b|a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.(4)两非零向量a ⊥b 的充要条件:a ·b =0⇔x 1x 2+y 1y 2=0. (5)| a ·b |≤|a ||b |(当且仅当a ∥b 时等号成立)⇔|x 1x 2+y 1y 2|≤ x 21+y 21·x 22+y 22.5.平面向量数量积的运算律:(1) a ·b =b ·a (交换律). (2)λa ·b =λ(a b b )=a ·(λb )(结合律). (3)( a +b )·c =a ·c +b ·c (分配律). 6.重要结论:①向量垂直的充要条件:0||||a b a b a b a b ⊥⇔⋅=⇔+=- 12120x x y y ⇔+=. 特别地()()AB AC AB AC ABACABAC+⊥-。
高中数学基础之平面向量的数量积及应用平面向量的数量积定义:已知两个非零向量a 与b ,它们的夹角为θ,我们把数量|a ||b |cos θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ.规定:零向量与任一向量的数量积为0.平面向量数量积的几何意义:设a ,b 是两个非零向量,AB→=a ,CD →=b ,它们的夹角是θ,e 是与b 方向相同的单位向量,过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为向量a 向向量b 投影,A 1B 1→叫做向量a 在向量b 上的投影向量.记为|a |cos θ e . 一、平面向量数量积的运算例1 已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则BC→·AF →的值为( ) A .-58 B .18 C .14 D .118答案 B解析 如图,由条件可知BC→=AC →-AB →,AF →=AD →+DF →=12AB →+32DE →=12AB →+34AC →,所以BC →·AF →=(AC →-AB →)·⎝ ⎛⎭⎪⎫12AB →+34AC →=34AC →2-14AB →·AC →-12AB →2.因为△ABC 是边长为1的等边三角形,所以|AC→|=|AB →|=1,∠BAC =60°,所以BC →·AF →=34-18-12=18.例2 在梯形ABCD 中,AB ∥CD ,CD =2,∠BAD =π4,若AB →·AC →=2AB →·AD →,则AD →·AC →=________.答案 12解析 如图,建立平面直角坐标系xAy .依题意,可设点D (m ,m ),C (m +2,m ),B (n,0),其中m >0,n >0,则由AB→·AC →=2AB →·AD →,得(n,0)·(m +2,m )=2(n,0)·(m ,m ),所以n (m +2)=2nm ,化简得m =2.故AD→·AC →=(m ,m )·(m +2,m )=2m 2+2m =12.例3 在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且BE→=23BC →,DF →=16DC →,则AE →·AF →的值为________.答案 2918解析 在等腰梯形ABCD 中,AB ∥DC ,AB =2,BC =1,∠ABC =60°,∴CD =1,AE →=AB →+BE →=AB →+23BC →,AF →=AD →+DF →=AD →+16DC →,∴AE →·AF →=⎝ ⎛⎭⎪⎫AB →+23BC →·⎝ ⎛⎭⎪⎫AD →+16DC →=AB →·AD→+AB →·16DC →+23BC →·AD →+23BC →·16DC →=2×1×cos60°+2×16+23×12×cos60°+23×16×12×cos120°=2918.方法:解决涉及几何图形的向量的数量积运算常用两种方法:一是定义法,二是坐标法.定义法可先利用向量的加、减运算或数量积的运算律化简后再运算,但一定要注意向量的夹角与已知平面几何图形中的角的关系是相等还是互补;坐标法要建立合适的坐标系.(1)当已知向量的模和夹角时,可利用定义法求解,即a ·b =|a ||b |cos 〈a ,b 〉.(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.二、平面向量数量积的应用.例4 已知向量a ,b 为单位向量,且a ·b =-12,向量c 与a +b 共线,则|a +c |的最小值为( )A .1B .12C .34D .32答案 D解析 ∵向量c 与a +b 共线,∴可设c =t (a +b )(t ∈R ),∴a +c =(t +1)a +t b ,∴(a +c )2=(t +1)2a 2+2t (t +1)a ·b +t 2b 2,∵向量a ,b 为单位向量,且a ·b =-12,∴(a +c )2=(t +1)2-t (t +1)+t 2=t 2+t +1≥34,∴|a +c |≥32,∴|a +c |的最小值为32.故选D.例5 已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.答案223解析 因为a 2=(3e 1-2e 2)2=9-2×3×2×12×cos α+4=9,所以|a |=3,因为b 2=(3e 1-e 2)2=9-2×3×1×12×cos α+1=8,所以|b |=22,又a ·b =(3e 1-2e 2)·(3e 1-e 2)=9e 21-9e 1·e 2+2e 22=9-9×1×1×13+2=8,所以cos β=a ·b |a ||b |=83×22=223.例6 若向量a =(k,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3解析 ∵2a -3b 与c 的夹角为钝角,∴(2a -3b )·c <0,即(2k -3,-6)·(2,1)<0,∴4k -6-6<0,∴k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92.当k =-92时,2a -3b =(-12,-6)=-6c ,即2a -3b 与c 反向.综上,k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3.例7 已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.答案 712解析 因为AP →⊥BC →,所以AP →·BC →=0.又AP →=λAB →+AC →,BC →=AC →-AB →,所以(λAB→+AC →)·(AC →-AB→)=0,即(λ-1)AC →·AB →-λAB →2+AC →2=0,所以(λ-1)|AC →||AB →|·cos120°-9λ+4=0,即(λ-1)×3×2×⎝ ⎛⎭⎪⎫-12-9λ+4=0,解得λ=712.例8 已知平面向量a ,b 的夹角为π6,且|a |=3,|b |=2,在△ABC 中,AB →=2a +2b ,AC →=2a -6b ,D 为BC 的中点,则|AD→|等于( )A .2B .4C .6D .8答案 A解析 因为AD →=12(AB →+AC →)=12(2a +2b +2a -6b )=2a -2b ,所以|AD →|2=4(a -b )2=4(a 2-2a ·b +b 2)=4×⎝⎛⎭⎪⎫3-2×3×2×cos π6+4=4,则|AD →|=2.故选A. 例9 已知向量|OA →|=3,|OB →|=2,OC →=mOA →+nOB →,若OA →与OB →的夹角为60°,且OC →⊥AB→,则实数m n的值为( ) A.16 B .14 C .6 D .4答案 A解析 因为向量|OA →|=3,|OB →|=2,OC →=mOA →+nOB →,OA →与OB →的夹角为60°,所以OA →·OB →=3×2×cos60°=3,所以AB→·OC →=(OB →-OA →)·(mOA →+nOB →)=(m -n )OA →·OB →-m |OA →|2+n |OB →|2=3(m -n )-9m +4n =-6m +n =0,所以m n =16.故选A.例10 已知在直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB→|的最小值为________.答案 5解析 建立平面直角坐标系如图所示,则A (2,0),设P (0,y ),C (0,b ),则B (1,b ),则P A →+3PB →=(2,-y )+3(1,b -y )=(5,3b -4y ).所以|P A →+3PB →|=25+(3b -4y )2(0≤y ≤b ).当y =34b 时,|P A →+3PB →|min=5.例11 设向量a ,b 满足|a +b |=10,|a -b |=6,则a ·b 等于( ) A .1 B .2 C .3 D .5答案 A解析 a ·b =14[(a +b )2-(a -b )2]=14×(10-6)=1.故选A.例12 已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( )A .1B .2C .2D .22 答案 C解析 设OA→⊥OB →,且OA →=a ,OB →=b ,OC →=c ,D 为线段AB 的中点,因为|a |=|b |=1,所以AB =2,AD =22,(a -c )·(b -c )=CA →·CB →=|CD →|2-|DA →|2=|CD →|2-12=0,所以|CD→|=22,上式表明,DC→是有固定起点,固定模长的动向量,点C 的轨迹是以22为半径的圆,因此|c |的最大值就是该轨迹圆的直径 2.故选C.例13 如图所示,正方形ABCD 的边长为1,A ,D 分别在x 轴、y 轴的正半轴(含原点)上滑动,则OC→·OB →的最大值是________.答案 2解析 如图,取BC 的中点M ,AD 的中点N ,连接MN ,ON ,则OC→·OB →=OM →2-14.因为OM ≤ON +NM =12AD +AB =32,当且仅当O ,N ,M 三点共线时取等号,所以OC →·OB →的最大值为2.极化恒等式(1)极化恒等式:设a ,b 为两个平面向量,则a ·b =14[(a +b )2-(a -b )2].极化恒等式表示平面向量的数量积运算可以转化为平面向量线性运算的模,如果将平面向量换成实数,那么上述公式也叫“广义平方差”公式.(2) 极化恒等式的几何意义:平面向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14,即a ·b =14(|AC →|2-|BD →|2).(3) 极化恒等式的三角形模式:在△ABC 中,若M 是BC 的中点,则AB→·AC →=AM →2-14BC →2.可以利用极化恒等式来求数量积、求最值、求模长.平面向量有“数”与“形”双重身份,它沟通了代数与几何的关系,所以平面向量的应用非常广泛,主要体现在平面向量与平面几何、函数、不等式、三角函数、解析几何等方面,解决此类问题的关键是将其转化为向量的数量积、模、夹角等问题,进而利用向量方法求解.。
平面向量的数量积及向量的应用教案第一章:平面向量简介1.1 向量的概念解释向量的定义:具有大小和方向的量向量表示方法:用箭头表示,箭头长度表示大小,箭头方向表示方向1.2 向量的图形表示绘制向量的方法:在坐标平面上,用箭头表示向量,箭头起点表示向量的起点,箭头终点表示向量的终点1.3 向量的性质向量的大小:向量的长度,称为模向量的方向:向量的起点指向终点的线段第二章:向量的坐标表示2.1 坐标系的建立介绍坐标系的定义和表示方法二维坐标系和三维坐标系的表示方法2.2 向量的坐标表示二维向量的坐标表示方法:用有序数对表示向量的起点和终点坐标三维向量的坐标表示方法:用有序数对表示向量的起点和终点坐标2.3 向量的坐标运算向量的加法运算:对应坐标相加向量的减法运算:对应坐标相减第三章:向量的数量积3.1 向量数量积的定义介绍向量数量积的定义和表示方法向量数量积的计算公式:a·b = |a||b|cosθ3.2 向量数量积的性质交换律:a·b = b·a分配律:a·(b+c) = a·b + a·c标量倍数:k·a = a·k(k为标量)3.3 向量数量积的应用判断两个向量的夹角:cosθ= (a·b) / (|a||b|)计算向量的长度:|a| = √(a·a)第四章:向量的线性相关与线性无关4.1 向量线性相关的定义介绍向量线性相关的定义和表示方法向量线性相关:存在不全为零的标量倍数,使得一组向量相加等于零向量4.2 向量线性无关的定义介绍向量线性无关的定义和表示方法向量线性无关:不存在不全为零的标量倍数,使得一组向量相加等于零向量4.3 向量组的秩介绍向量组的秩的定义和表示方法秩的计算方法:将向量组转化为行阶梯形式,行阶梯形式的行数即为秩第五章:向量的应用5.1 向量在几何中的应用向量的几何表示:向量可以表示为起点到终点的有向线段向量的几何运算:向量的加法、减法、数乘运算5.2 向量在物理中的应用向量在物理学中的表示:速度、加速度、力等物理量都可以用向量表示向量的物理运算:速度的合成与分解、力的合成与分解等5.3 向量在其他领域的应用向量在计算机科学中的应用:图形学中的向量运算、计算机图形处理中的向量计算等向量在工程学中的应用:结构力学中的向量运算、电路分析中的向量计算等平面向量的数量积及向量的应用教案第六章:向量的线性组合与基底6.1 向量的线性组合介绍向量的线性组合的定义和表示方法向量线性组合的运算规则:标量倍数与向量的乘积6.2 基底的概念介绍基底的概念和表示方法基底的选取:线性无关的向量组可以作为基底6.3 向量在基底下的表示向量用基底表示的方法:将向量表示为基底的线性组合向量的坐标:向量在基底下的坐标表示第七章:向量的投影7.1 向量的投影概念介绍向量投影的定义和表示方法向量的正交投影和斜投影7.2 向量的正交投影向量的正交投影的计算方法:将向量垂直投影到另一向量上正交投影的性质:投影长度与投影方向无关7.3 向量的斜投影向量的斜投影的计算方法:将向量沿着非垂直方向投影到另一向量上斜投影的性质:投影长度与投影方向有关第八章:向量的夹角与余弦定理8.1 向量的夹角介绍向量夹角的定义和表示方法向量夹角的计算公式:cosθ= (a·b) / (|a||b|)8.2 余弦定理的应用介绍余弦定理的定义和表示方法余弦定理在三角形中的应用:计算三角形的边长和角度8.3 向量的夹角与余弦定理的关系向量的夹角与余弦定理的关系:夹角的大小与余弦值有关第九章:向量的模与应用9.1 向量的模介绍向量模的定义和表示方法向量模的计算公式:|a| = √(a·a)9.2 向量的模的应用向量模的几何意义:向量长度的表示向量的模在物理中的应用:计算速度、加速度等物理量的模9.3 向量的模的运算向量的模的运算规则:标量倍数与向量的模的乘积第十章:向量的运算律10.1 向量的运算律介绍向量的运算律的定义和表示方法向量的加法运算律、减法运算律、数乘运算律10.2 向量的运算律的应用向量的运算律在计算向量运算时的应用:简化计算过程向量的运算律在几何中的应用:计算向量间的夹角、距离等重点和难点解析:1. 向量的概念与图形表示:向量作为具有大小和方向的量,其图形表示方法在二维和三维坐标系中的绘制是教学的重点。