极值风速计算方法研究
- 格式:pdf
- 大小:149.65 KB
- 文档页数:5
风电场50年一遇安全风速计算方法的对比分析冯长青;包紫光;王成富【摘要】利用耿贝尔Ⅰ型极值概率法和Meteodyn WT软件(CFD模型),结合气象站与风电场的风速关系,推算了不同复杂程度的风电场轮毂高度处50年一遇的安全风速,并将计算结果进行对比分析.分析结果显示:2种方法计算得到的风电场极大风速存在一定的差别;对于平坦地区,耿贝尔Ⅰ型极值概率法计算得到的极大风速与Meteodyn WT推算结果相差较小,但对于一些复杂地区,2种方法计算得到的极大风速结果相差很大.%Using the Cumbel type Ⅰ extreme value and the Meteodyn WT software (CFD model) respectively, based on the wind speed relationship between the meteorological station and the wind farm, this paper calculates the safe speed occurs once in 50 years at the hub height for different terrains, and then makes comparative studyies of the calculation results. The analysis result shows that: the two maximum instantaneous wind speeds calculated by the two methods are quite different; and in the flat plane area the maximum instantaneous wind speed obtained by the Gumbel type Ⅰ extreme value is less different from the speed calculated by Meteodyn WT than in the terrain of complicated conditions.【期刊名称】《电网与清洁能源》【年(卷),期】2011(027)002【总页数】4页(P67-70)【关键词】风电场;安全风速;计算方法【作者】冯长青;包紫光;王成富【作者单位】内蒙古电力勘测设计院,内蒙古,呼和浩特,010020;内蒙古电力勘测设计院,内蒙古,呼和浩特,010020;宁夏京能宁东发电有限责任公司,甘肃,宁夏,750001【正文语种】中文【中图分类】TM614建设风电场最基本的条件是要有能量丰富、风向稳定的风能资源,但风能资源越好的地区,发生大的破坏性风速的概率越高,容易使风机倒塌造成巨大经济损失。
极值-Ⅰ型风速预测的Bayes方法董峰辉;程进【摘要】为提高极值-Ⅰ型风速预测精度,在Jeffreys准则的基础上,采用Bayes估计中的Lindley近似方法推导极值-Ⅰ型风速预测表达式.采用Monte Carlo法产生服从极值-Ⅰ型分布的伪风速母样,基于伪风速母样分别采用基于Bayes理论和最大似然估计理论的极值-Ⅰ型风速预测方法进行风速预测,并与伪风速母样的理论值进行对比分析.结果表明:与最大似然估计法相比,采用基于Bayes理论建立的极值-Ⅰ型风速预测模型进行风速预测的精度更高,且精度随着伪风速母样样本量的增加而提高,位置参数先验样本数量的增加以及先验方差的增大对计算精度没有影响.%In order to improve prediction accuracy of wind speed of extreme value type Ⅰ distribution,the wind speed prediction model was proposed based on Jeffreys criterion and the Lindley approximation method of Bayesian theory.Monte Carl method was used to generate the pseudo wind speed samples,and the maximum likelihood parameter estimation method and Bayes statistical theory were used to estimate the wind prediction value of the extreme value type Ⅰ distribution,then the prediction value was compared with the theoretical extreme value.The result indicates that the wind speed prediction model of extreme value type Ⅰ distribution is more accurate than the maximum likelihood estimation.The accuracy increases with the increasing of pseudo wind speed sample numbers,but is not affected by the numbers of prior samples and prior variance for location parameter.【期刊名称】《哈尔滨工业大学学报》【年(卷),期】2017(049)003【总页数】5页(P93-97)【关键词】桥梁工程;风速预测;Bayes理论;极值-Ⅰ型;伪风速母样;最大似然估计【作者】董峰辉;程进【作者单位】土木工程防灾国家重点实验室(同济大学),上海200092;土木工程防灾国家重点实验室(同济大学),上海200092【正文语种】中文【中图分类】U441+.2风工程中,建筑结构不但要承受过去某一段时间的风速,还要保证在某一规定的时间期限内安全可靠地承受可能经受的风速.自然界中的风速具有随机性,不同时间有不同的规律,因此有必要根据数理统计的方法来求出建筑结构的设计风速,尤其是对一些重要的对风敏感的结构,如输电塔、桥梁、桅杆等[1-3].大多数荷载规范只能较好地用于建筑结构的风荷载静力分析或是拟静力分析,所以,估算工程场地处重现期内的极值风速是工程抗风设计的首要任务.当以某种极值分布概型拟合风速母样的极值渐近分布时,对重现期内极值风速的估算结果往往与拟合概型和抽样数量有关,桥梁设计规范中规定极值风速分布服从极值-I型[4].目前进行极值-I型分布风速预测的方法主要有最大似然估计法、矩估计法和概率权矩法,这3种估计方法均属于经典统计范畴.在对极值-I型分布风速预测时,采用矩估计法获得的极值风速偏保守,概率权矩法偏危险,最大似然估计法虽然较前两种方法的精度高,但是公式复杂[5].此外,经典统计有3个共同的局限性:一是提高统计推断的精度,主要靠数据多少决定,这对于小样本,往往发生很大困难甚至无能为力;二是在对极值-I型风速预测的过程中均假定位置参数和尺度参数是各自独立的参数,而在理论上的极值-I型分布模型中,位置参数和尺度参数不是相互独立的;三是仅仅依靠样本信息对参数进行估计,而没有依靠模型的先验信息.因此,前述的最大似然估计法、矩估计法和概率权矩法在对极值-I型分布风速进行预测时的精度就受到了限制.为了弥补现有极值-I型风速预测方法的不足,本文采用Bayes统计理论[6]建立了极值-I型风速预测方法.该方法有以下特点:1)Bayes统计理论利用样本信息对先验信息进行修正而得到后验信息;2)Bayes统计由于利用了模型的先验信息,因而对于小样本一般也有较好的统计推断效果;3)Bayes统计对于极值-I型模型中的位置参数和尺度参数是否相互独立均适用.最后,通过算例验证了该方法的准确性与有效性.1.1 极值-I型分布极值-I型分布[7-8]的概率密度函数和累计分布函数为式中μ、σ分别为位置参数和尺度参数.对(2)式两边取对数,得到重现期为T(保证率为)的风速预测值为从而,得到百年一遇的风速预测值t0.01为1.2 Bayes理论采用Bayes理论将μ和σ作为随机变量来估计μ和σ的联合概率密度函数π(μ,σ),下面采用Jeffreys无信息先验分布来对进行估计.Jeffreys用Fisher信息矩阵行列式的平方根作为(μ,σ)先验密度的核,用Jeffreys准则寻找无信息先验分布[6,9]的步骤如下.步骤1 写出样本似然函数的对数:L=ln[L(μ,σ)]=ln[(μ,σ)](μ,σ).步骤2 求Fisher信息矩阵:步骤3 求(μ,σ)的无信息先验密度函数:对于极值-I型分布,Fisher信息矩阵为由Jeffreys准则可得下面基于π(μ,σ),采用Lindley近似[9-11]方法推导的解析表达式. 令其中θ=(θ1,θ2,…,θk)为参数向量,L为似然函数的对数.需要注意的是,I为在给定先验分布v(θ)的情况下u(θ)的后验期望.根据Lindley近似方法,由式(10)可得进一步可得E(u(θ))=u(,)(u11σ11+u22σ22)+ (σ11σ22+ L12u1σ22σ11).其中、分别为θ1和θ2的最大似然估计值.极值-I型风速预测表达式为式中μ=θ1,σ=θ2.由此可得u1=1,u2=-b,其中b=ln(),u11=0,u22=0. 因此令、分别为μ、σ的最大似然估计值,可得lnL=-nlnσ.所以,,(ti-μ),L02=[μ)2],,6[μ)2][μ)3],L21=()=[][(ti-μ)],L12=()[]+ [(ti-μ)]- [].因此,可得的Bayes估计值为( L21u2σ11σ22+L12u1σ22σ11).1.3 极值-I型风速的预测从上述Bayes估计理论可得极值-I型风速预测值为.( L21u2σ11σ22+L12u1σ22σ11).式中、分别为μ和σ的最大似然估计值.本文调查和收集了安徽安庆宿松县、望江县两个气象站1971—2011年实测的风速资料(共计744个风速样本),以此提供伪风速母样概率分布模型中位置参数μ和尺度参数σ的合理取值.基于上述伪风速母样概率分布模型参数的合理取值,建立伪风速母样理论模型,然后将Bayes估计和最大似然估计[12-16]的重现期为100 a极值-I型风速预测值与理论模型值进行比较分析.在伪风速母样理论模型的建立过程中,首先,假定伪风速母样概率分布模型中的位置参数μ和尺度参数σ为相互独立的随机变量,位置参数μ服从正态分布,尺度参数σ服从均匀分布[7];其次,考虑样本数量、位置参数μ的先验方差和尺度参数σ的变化对极值-I型风速预测结果的影响;最后,基于位置参数μ和尺度参数σ,采用Monte Carlo法产生伪风速母样.本文采用的极值-I型风速预测流程如图1所示.极值-I型风速预测结果见表1~3,其中,μB表示采用m个先验样本计算位置参数的Bayes估计值,而和分别表示位置参数和尺度参数的最大似然估计值,表示伪风速母样理论值,表示最大似然估计极值-I型风速预测值,B表示Bayes估计极值-I型风速预测值,/和/分别表示采用最大似然估计和Bayes估计的极值-I型风速预测值的误差.由表1~3可以看出:1)当位置参数先验样本数为50,极值-I型风速Bayes估计值比最大似然估计值更接近伪风速母样理论值.2)随着位置参数先验样本数和伪风速母样样本数的增加,尺度参数的增大,极值-I型风速Bayes估计值与最大似然估计值之间的差异越来越小.3)极值-I型风速Bayes估计精度随着伪风速母样样本数的增加而提高.4)位置参数先验样本数量的多少和先验方差的大小对Bayes估计精度没有影响.5)在大多数情况下,极值-I型风速Bayes估计比最大似然估计精度高.选择安徽安庆市宿松县和望江县气象站作为采样测站,调查和收集了两个气象站1971—2011年原始风速记录共2×372个,包含了1971年1月至2011年12月的全部372个月的月最大风速值.选取31个年最大风速值进行百年一遇极值风速预测,采用本文提出的Bayes估计方法预测的安徽安庆宿松县和望江县的百年一遇最大风速值分别为27.89 m/s和24.20 m/s,为安全起见,取27.89 m/s作为本文贝叶斯理论预测的安徽安庆市百年一遇风速值.该计算结果与《公路桥梁抗风设计规范》[4]附表A规定的安徽安庆市百年一遇风速值27.1 m/s相比误差较小,这表明采用本文提出的贝叶斯方法进行实际工程场地极值风速预测是合理可行的.1)基于Bayes理论提出了极值-I型风速预测方法,采用Monte Carlo法产生伪风速母样,分别进行极值-I型风速Bayes估计和最大似然估计,并将两者的估计结果与伪风速母样理论值进行比较.2)与最大似然估计相比,采用Bayes估计进行极值-I型风速预测精度更高.随着极值-I型伪风速母样样本数增加,Bayes估计极值-I型风速的误差变小.极值-I型分布中位置参数的先验样本数和先验方差均不影响Bayes估计极值-I型风速预测精度.3)在大样本和大尺度参数下,采用Bayes估计极值-I型风速预测值与最大似然估计值的差异较小.【相关文献】[1] 黄文锋,周焕林,孙建鹏. 应用台风风场经验模型的台风极值风速预测[J].哈尔滨工业大学学报, 2016, 48(2) : 142-146.HUANG Wenfeng, ZHOU Huanlin, SUN Jianpeng. Prediction typhoon design wind speed with empirical typhoon wind field model [J]. Journal of Harbin Institute of Technology, 2016, 48(2) : 142-146.[2] COLES S G, TAWN J A. Statistical methods for multivariate extremes: an application to structural design [J].Applied Statistics, 1994, 43(1):1-48. DOI: 10.2307/ 2986112.[3] ZHAO Lin, KE Shitang, GE Yaojun. Extreme value estimation of non-Gaussian aerodynamic series of cooling tower [C]//6th International Symposium on Cooling Towers. Bensberg: Luikov Institute of Heat and Mass Transfer of National Academy of Sciences of Belarus, 2012: 20-23.[4] 中交公路规划设计院.公路桥梁抗风设计规范:JTG/T D60-1—2004 [S].北京:人民交通出版社, 2004.CCCC Highway Consultants Co., Ltd.. Wind-resistant design specification for highway bridges: JTG/T D60-1—2004 [S]. Beijing: China Communications Press, 2004.[5] 卢安平,赵林,郭增伟,等.基于Monte Carlo法的极值分布类型及其参数估计方法比较[J].哈尔滨工业大学学报, 2013, 45(2) : 88-95.LU Anping, ZHAO Lin, GUO Zengwei, et al. A comparative study of extreme value distribution and parameter estimation based on the Monte Carlo method [J].Journal of Harbin Institute of Technology, 2013, 45(2) : 88-95.[6] BERNARDO J M, SMITH F M. Bayesian theory: Wiley series in probability and mathematical statistics: probability and mathematical statistics[M]. Chichester:John Wiley & Sons Ltd., 1994.[7] KANG M, KO K, HUH J. Determination of extreme wind values using the Gumbel distribution [J]. Energy, 2015, 86: 51-58. DOI: 10.1016/j. energy.2015.03.126.[8] VIDAL I. A Bayesian analysis of the Gumbel distribution: an application to extreme rainfall data [J]. Stochastic Environmental Research and Risk Assessment, 2014, 28(3):571-582. DOI: 10.1007/ s00477-013-0773-3.[9] MILADINAVIC B, TSOKOS C P. Ordinary, Bayes, empirical Bayes, and non-parametric reliability analysis for the modifiedGumbel failure model [J]. Nonlinear Analysis, 2009,71(12):1426-1436. DOI: 10.1016/j.na.2009.01.181.[10]GUURE C B, IBRAHIM N A. Approximate Bayesian estimates of Weibull parameters with Lindley’s method [J]. Sains Malaysiana, 2014, 43 (9): 1433-1437.[11]ALI S. On the Bayesian estimation of the weighted Lindley distribution [J]. Journal of Statistical Computation and Simulation, 2015, 85(5):855-880. DOI: 10.1080/00949655.2013.847442.[12]葛耀君.桥梁结构风振可靠性理论及其应用研究[D].上海:同济大学,1997.GE Yaojun. Research on the bridge structure wind-induced reliability theory and application [D]. Shanghai: Tongji University, 1997.[13]项海帆,葛耀君,朱乐东,等.现代桥梁抗风理论与实践[M].北京:人民交通出版社, 2005. XIANG Haifan, GE Yaojun, ZHU Ledong, et al. Modern theory and practice on bridge wind resistance [M]. Beijing: China Communications Press, 2005.[14]陈政清.工程结构的风致振动、稳定与控制[M].北京:科学出版社, 2013.CHEN Zhengqing. Wind-induced vibration, stability and control of engineering structure. [M]. Beijing: Science Press, 2013.[15]葛耀君.大跨度悬索桥抗风[M].北京:人民交通出版社, 2011.GE Yaojun. Wind resistance of long span suspension bridges [M]. Beijing: China Communications Press, 2011.[16]葛耀君.大跨度拱式桥抗风[M].北京:人民交通出版社, 2014.GE Yaojun. Wind resistance of long arch suspension bridges [M]. Beijing: China Communications Press, 2014.。
第40卷增刊2019年12月气象研究与应用JOURNAL OF METEOROLOGICAL RESEARCH AND APPLICATIONVol.40SDec.2019文章编号:1673-8411(2019)S-0039-03来宾多年一遇最大风速和极大风速推算韦力榕,莫钧,韦菊(来宾市气象局,546100)摘要:利用来宾市兴宾区1956-2018年年最大风速及1999-2018年年极大风速资料,采用极值I型概率分布公式推算最大风速、极大风速的多年一遇重现期及基本风压。
结果表明,来宾市兴宾区10a、20a、50a和100a—遇的最大风速值分别为16.6m・sT、18.7m・sT、21.5m・sT和23.6m-s'1,10a,20a,50a和100a—遇的年极大风速值分别为21.5m-s_l,24.0m-s_l,27.1nrs_l和29.5m-s'1,基本风压为0.3kN•m'2o关键词:最大风速;极大风速;基本风压;高度订正;极值I型概率分布中图分类号:P468文献标识码:A引言多年来,来宾市兴宾区多次出现大风天气受灾情况,极端大风天气灾害给来宾市兴宾区的正常生产生活带来了许多不利的影响,导致房屋倒塌、农作物受灾等,造成了严重的经济损失。
因此,在进行农业设施建设以及楼房设计时,要充分考虑其抗风性。
本文利用来宾市兴宾区气象站风资料对其年最大风速以及年极大风速进行模拟分析,并推算各重现期的年最大风速和年极大风速值。
基本风压是工程设施抗风设计中的重要参数,因此可利用所推算得出的年最大风速值推算基本风压。
1资料与方法1.1资料收集整理来宾市兴宾区1956-2018年的风速观测资料,可获得1956-2018年来宾市兴宾区63a 的年最大风速观测资料;由于来宾市兴宾区1999年开始对极大风速进行观测,故仅可获得1999-2018年共20a的年极大风速观测资料。
1.2计算方法我国《建筑结构荷载规范(GB50009-2012))规定,年最大风速值采用极值I型概率分布拟合。
一种新型的风电场50年一遇安全风速计算方法的对比分析摘要:采用极值I型函数和EWM模型,结合气象站与风电场测风塔的数据,推算风电场轮毂高度处50年一遇的最大风速,并将计算结果进行对比分析。
结果显示:对于山地风电场,采用极值I型推算得到50年一遇最大风速与通过EWM 模型测试得到的50年一遇最大风速的结果存在较大差异。
而对于地势平坦的风电场,这两种测算50年一遇的最大风速的结果比较接近。
关键词:50年一遇最大风速; 极值I型函数、EWM模型ABSTRACT:With the data of meteorological station and meteorology mast on the wind farm, The extreme wind speed of 50 years at hub height is calculated using extreme value type I function and EWM model.The results show that there is a big difference for mountain wind farm between extreme wind speed of 50 years using extreme value type I function and extreme wind speed of 50 years using EWM model, but there is a close result for flat wind farm between extreme wind speed of 50 years using extreme value type I function and extreme wind speed of 50 years using EWM model.KEY WORDS: The 50-year Extreme Wind Speed ;Extreme Value type I Function.EWM model前言:风电场建设的最基本要求是风能资源丰富,风向较稳定的区域。
用短期大风资料推算极值风速的一种方法
张秀芝;陈乾金
【期刊名称】《应用气象学报》
【年(卷),期】1993(4)1
【摘要】根据复合极值分布理论,试用二项—对数正态复合极值分布,利用海上短期实测大风资料求算海面多年一遇极值风速,并以此作为基础值,以沿岸站长年代大风经验公式计算风速为订正值,基础值与订正值的叠加作为海面多年一遇工程设计风速。
该方法计算结果与皮尔逊Ⅲ型、泊松—龚贝尔复合极值分布计算结果相近,较单纯由二项—对数正态分布计算稳定度增大。
【总页数】7页(P105-111)
【作者】张秀芝;陈乾金
【作者单位】不详;不详
【正文语种】中文
【中图分类】P458.123
【相关文献】
1.短期风速资料在风速推算中的应用 [J], 张磊;佘小建;崔峥;毛宁
2.用皮尔森Ⅲ和极值Ⅰ型分布推算四会市日最大风速 [J], 李文斌;邓明;黄河
3.利用北极地区定时风观测资料推算年最大风速的重现期 [J], 全利红;宋丽莉;袁春红
4.浙江近海冬季大风风速推算和ASCAT风速订正方法探讨 [J], 姚日升;涂小萍;蒋
璐璐;丁烨毅;王武军
5.基于短期资料的重庆风速极值渐进分布分析 [J], 陈朝晖;管前乾
因版权原因,仅展示原文概要,查看原文内容请购买。
风速问题的公式风速问题是天气学中研究风的速度和运动方向的一个重要问题。
风速是指风在单位时间内所通过的距离,通常以米/秒(m/s)为单位。
在气象学中,常用的风速单位还有千米/小时(km/h)和节(knots)。
风速可以通过不同的方法进行测量和计算。
以下是一些常用的方法和公式。
1. 线性风速计算线性风速是指风在某一方向上的速度,可以通过测量该方向上的风压差来计算。
常见的线性风速计算公式为:V = k * √(2 * Δp / ρ)其中V为线性风速,k为比例常数,Δp为风的压差,ρ为空气密度。
这个公式基于风速与风压差成正比的关系。
2. 转速风速计算转速风速是指固定在风向上的转子的旋转速度,可以通过测量旋转的周数和时间来计算。
常见的转速风速计算公式为:V = 2πr * n其中V为转速风速,r为转子半径,n为转子每分钟的转数。
3. 声速风速计算声速风速是指风速达到声速(即音速)的风速。
常见的声速风速计算公式为:V_s = √(γ * R * T)其中V_s为声速风速,γ为空气的绝热指数,R为气体常数,T为绝对温度。
4. 麦克氏风速计算麦克氏风速是一种通过测量一定时间内风通过标准开口面积的体积来计算的方法。
常见的麦克氏风速计算公式为:V = Q / A其中V为麦克氏风速,Q为风通过的体积,A为开口的面积。
风速问题的计算与测量涉及到空气密度、压差、转速、半径、温度等因素的影响。
在实际应用中,还需要考虑环境条件的变化,进行数据的修正和处理。
除了上述公式和方法,还有其他一些相关的内容可以作为参考。
比如风速的影响因素包括地形、气温、湿度、气压等;气象观测中常用的仪器包括风杆、风速计和风向计等;风速可以通过卫星、雷达和气球等不同的观测方法来获取;风速问题在航空、气象、环境科学等领域具有重要的应用价值。
综上所述,风速问题涉及到多个方法和公式的计算和测量。
了解这些内容可以帮助我们更好地理解和研究风的运动规律,提高对天气和环境的预测和理解能力。
极值风速风向的联合概率密度函数楼文娟;段志勇;庄庆华【摘要】基于最大熵原理,构建极值风速风向的联合概率密度函数,并与Copula函数建立相互关联.以我国某地的极值风数据为例,建立极值风速的Gumbel分布模型以及对应风向的二阶混合von Mises分布模型;使用非线性参数优化算法确定极值风速风向的联合分布模型.采用该模型计算各风向角下不同重现期的基本风速值,并与建筑结构荷载规范值(GB 50009-2012)进行对比.结果表明,联合分布模型能够有效表征实际风速风向的概率分布特征.分别采用Spearman秩相关系数和线性-角度变量相关系数对模型的相关性予以验证,探究模型的有效性.%A joint probability density function for representing both extreme wind direction and speed was constructed based on the maximum entropy principle and established relationship with Copula function.Taking the extreme wind records of somewhere in China as an example, the Gumbel distribution model for extreme wind speed and the second order mixture von Mises distribution model for corresponding wind direction were established respectively;then the joint probabilistic distribution model was determined using nonlinear optimization algorithm.Reference wind speeds of different recurrence intervals in all directions were calculated by applying the model, which were compared to the code values of building structure load (GB 50009-2012).Results show that the proposed joint probabilistic model describes the characteristics of the distribution of actual extreme wind speed and direction effectively.The correlation of joint probabilistic model wasverified by checking the Spearman rank and the linear-angular correlation coefficient respectively, which proves its validity.【期刊名称】《浙江大学学报(工学版)》【年(卷),期】2017(051)006【总页数】7页(P1057-1063)【关键词】极值风速;风向;联合概率密度函数;基本风速;相关系数【作者】楼文娟;段志勇;庄庆华【作者单位】浙江大学结构工程研究所,浙江杭州 310058;浙江大学结构工程研究所,浙江杭州 310058;温州瓯江口产业集聚区管理委员会,浙江温州 325026【正文语种】中文【中图分类】TU318在建筑设计中,风荷载是计算风振响应、确定抗风设计的基础.对于高层建筑、大跨度结构等柔性结构,风荷载是主要的控制性荷载,合理的风荷载值关乎工程建设的安全性和经济性.作为典型的随机动力荷载,风荷载通常是以极值风速为变量通过建立风速的概率密度函数而确定的,如我国建筑结构荷载规范(GB 50009-2012)[1]规定,以极值I型分布作为极值风速的概率分布模型确定建筑设计风荷载.国内外学者开展了大量关于极值风速概率密度分布数学模型和计算理论的研究[2-4],提出了有效的样本筛选、模型建立和参数优化方法.在样本筛选方面,提出了年最大值法、跨阈法和独立风暴法等抽样方法;在数学模型方面,建立了Gumbel分布、Frechet分布、Weibull分布、广义Pareto分布[5]等极值分布理论;基于数学模型和参数特征,发展了矩法、极大似然法、粒子群算法等参数优化方法.尽管这些方法理论不一,但在以极值风速为单值变量的基本风速预测中,均具有较好的计算优度.然而,风向角也是极值风速的重要特征参数,仅考虑风速大小而忽略风向角是不合理的.Simiu等[6]研究了飓风区的极值风荷载,指出若不考虑风向的影响,50 a重现期的极值风荷载明显偏保守.Goyal等[7]研究了风向对混合住宅群的结构可靠性影响,结果表明忽略风向将高估计算值.王钦华等[8]研究了风向对某超高层建筑等效静力风荷载的影响,结果表明不考虑风向影响的建筑物等效风荷载偏保守,应考虑风向对基本风压的影响.日本风荷载规范考虑风向对建筑物效应的影响,给出了建筑结构设计的风向折减因子[9].因此,以极值风速和风向角为双变量,建立极值风速风向的联合概率密度(joint probabilistic density function,JPDF)模型,对更精确、合理地计算结构风荷载具有重要的现实意义.有关极值风速风向的JPDF模型研究较少,主要原因是风向角变量是周期性的,且观测记录多为非连续的方位角.Johnson等[10]基于谐波函数建立了离散角变量的连续概率密度结构,能有效地拟合方向角变量的概率密度直方图,但该模型采用多个三角函数拟合,形式繁琐,且无法给出固定的概率分布.目前,比较常见的角变量分布有均匀分布、心形分布、包柯西分布、缠绕正态分布和von Mises分布等;其中,von Mises分布和混合von Mises分布被认为是最有效的描述角变量统计特性的分布[11],在图像分析[12]、大气污染防治[13]、风能评估[14]等领域得到了广泛的应用. 在风速风向的JPDF建模方面,陈隽等[15]采用谐波函数模拟风向角分布,并基于不同风向间风速分布相互独立的假定建立了风速风向的JPDF分析方法;范文亮等[16]基于乘法定理导出了离散-连续混合联合分布模型,并建立了风向风速的二维连续联合分布模型.这些模型需要对每个方位角的极值风速样本一一给出概率分布,并对不同风向下的极值风速分布相关性做出假定.然而,由于极值风速样本数量稀少,分布在某些方位角下的极值风速样本量更少,一般较难获得各方位角下的极值风速分布.事实上,风速和风向的联合分布属于角度-线性分布.Johnson等[10]从理论上推导得出,当给定角度变量和线性变量的边缘分布,可以根据最大熵原理导出2个变量的JPDF 结构.目前国外已有学者将该理论应用于风能预测[17]领域.本文根据我国某地的月极值风速和对应风向记录,分别建立极值风速的Gumbel分布和风向的二阶混合von Mises分布模型;在此基础上,使用最大熵原理构建极值风速风向的联合概率密度结构,并与Copula函数建立相互关联;采用该联合分布模型计算不同重现期下的基本风速,与建筑结构荷载规范(GB 50009-2012)中的规范值进行对比;最后,分别采用Spearman秩相关系数和线性-角度变量相关系数对模型的相关性予以验证,探究模型的有效性.1.1 极值风速分布在不同的抽样方法下,学者分别发展了相适应的数学模型和参数估计理论用于重现期下的基本风速计算[4].目前,运用最多的2种抽样方法分别是年最大值法和跨阈法[5].一般认为,以年最大值形成的风速样本服从极值I型(即Gumbel)分布,我国建筑结构荷载规范(GB 50009-2012)即采用该方法计算基本风速.跨阈法通过设置特定的阈值,建立由超越阈值风速形成的极值风速样本,并假定该极值风速样本服从广义帕累托(generalized pareto distribution,GPD)分布.为准确计算极值风速的边缘分布,采用上述2种模型进行对比.Gumbel分布和GPD分布的数学模型如下:Fv(v)=exp[-exp(-y)].(1) Gv(v)=1-(1+by)-1/b,y=(v-u)/a.(2)式中:a、u和b分别为尺度参数、位置参数和形状参数,v为极值风速度量.对Gumbel分布,采用极大似然法确定a、u的参数估计;对GPD分布,采用核拟合优度统计量法确定u,再根据极大似然函数法计算a、u的最佳近似值.1.2 风向圆周分布气象站一般以有限方位角形式记录风向,如国家基本站和一般站采用16个方位角整编风向.由于风向角的非连续性,通常基于风向概率密度直方图对风向分布进行建模.假设有一组离散风向角数据,分散于单位圆(0≤θ<2π)的不同角度区间.将单位圆等分为m份,集中在第k(1≤k≤m)区间的观测点数为nk,则各区间的风向角频度Pk和概率密度f(θk)分别为式中:x=Fv(v)、y=Fθ(θ).Johnson等[10]建议采用谐波函数对风向角直方图进行拟合,为防止概率密度函数出现负值或旁瓣过大,建议同时引入Bartlett窗函数作为权重函数.这种方法需要将与方位角数相等的谐波进行叠加,因此,其数学形式复杂,且不具有对风向分布的普适性.实际上,对风向的圆周分布,目前应用更为广泛的是混合von Mises分布[14].von Mises分布常被称为圆周正态分布,是最主要的用于描述方向数据的一种模型,其概率密度函数为式中:-π<μ≤π,κ>0;I0(κ)为零阶修正贝塞尔函数,计算式为研究表明,风向角变量的概率密度分布一般具有多峰值,单一von Mises分布不能完整描述风向圆周分布特性,通常采用多阶混合von Mises分布表示风向角变量的分布[18],其具体计算式为:式中:c为混合von Mises分布的阶数,根据风向峰值分布特征确定;ωi为各阶von Mises分布的权重系数;φi={ωi,μi,κi}为各阶参数.目前,关于von Mises分布的参数估计方法比较多,如MSBC算法[19]、SU算法[18]等.然而,这些迭代算法计算过程均较为繁琐,且涉及手动查表,实用性较差.因此,本文采用高效简捷的LM算法(Levenberg-Marquardt algorithm)进行参数估计.为保证良好的收敛性,需要对各参数进行初始赋值,具体赋值参见文献[14].1.3 基于最大熵原理的联合分布极值风速风向的联合分布属于角度-线性分布(angular-lineardistribution,AL),Johnson等[10]基于最大熵原理导出了AL分布的概率密度结构,可有效用于描述风速风向的联合分布.假设fv(v)和fθ(θ)分别为极值风速和相应风向的概率密度函数,对应的分布函数为Fv(v)和Fθ(θ),则根据最大熵原理可导出极值风速风向的JPDF形式如下式所示:式中:g(·)是角变量ξ的函数,本文采用二阶混合von Mises函数形式予以表示.从式(8)可以看出,最大熵原理实际上是将风速风向的联合分布函数与其各自的边缘分布函数连接在一起.早在1959年,Sklar指出:可以将一个联合分布分解为多个边缘分布和一个Copula函数,这个Copula函数描述了变量间的相关性[21].根据该理论,极值风速变量与风向变量间的Copula函数存在如下关系:式中:C=C[Fv(v),Fθ(θ)],为极值风速风向变量间的Copula函数.1.4 拟合优度检验为检验文中JPDF的拟合优度,采用确定系数计算理论值与实际值的差异:式中:Tk为理论累积频度值;T为Tk的平均值.η2介于0~1,其值越大,拟合效果越好. 本研究的极值风速风向样本源自我国某地1971年1月1日——2000年12月31日全部360 m的月最大风速和相应风向记录(以正北方向为0°,顺时针为正).月最大风速指每个月内10 min风速样本中的最大值,风向记录包含16个方位角.极值风速频度分布和风向玫瑰分别如图1、2所示.从图中可以看出,月极值风速主要集中在0~20 m/s以内,对应风向记录主要在NNE和SSW方向,具有典型的双峰值分布特征.因此,本文采用二阶混合von Mises拟合风向分布函数,即c=2.根据实测数据,计算得到实测风速风向的联合概率分布,结果如图3所示(图中θ表示风向).从图中可以看出,联合概率分布函数主要集中在10~15 m/s风速区间,风向峰值在25°和200°附近.对极值风速样本分别使用Gumbel分布和GPD分布建立模型,拟合参数如表1所示,分布曲线如图4所示,图中Fv为极值风速的累积分布值.可以看出,Gumbel分布与月极值风速样本的实测分布拟合得很好,计算拟合结果的确定系数接近于1,说明由极大似然估计法确定的Gumbel分布与实际累积分布的差异很小;GPD分布风速分位值略大于Gumbel分布,且与实测累积分布差异较大.因此,采用Gumbel模型建立极值风速风向联合分布.分别采用谐波函数和二阶混合von Mises分布建立风向圆周分布模型,各参数估计值如表2所示,拟合曲线如图5所示.可以看出,在峰值风向处,混合von Mises分布的计算结果略大于谐波函数值.由确定系数计算得到的两类函数拟合优度分别为R2F=0.998和R2von=0.988,说明这2种模型都能较好地表征风向圆周分布.下文将采用二阶混合von Mises分布模型建立极值风速风向联合分布.根据极值风速和风向的边缘分布模型,基于最大熵理论建立联合概率分布JPDF,其中g(ξ)仍采用二阶von Mises函数,拟合参数如表2所示,联合分布如图6所示.对比图3和图6可以看出,联合分布模型呈现2个明显的峰值,与实测分布吻合良好,但模型的连续、光滑处理导致实测数据局部“毛刺”现象消失.我国建筑结构荷载规范(GB 50009-2012)规定采用极值I型分布确定不同重现期下的基本风速.设重现期为N,则基本风速UGN的计算式为式中:a、u的具体取值参见表1.由式(12)计算得到的是不考虑风向角分布的基本风速.采用联合分布模型同样可计算得到全风向角下的基本风速UJN,其计算公式为理论上,由式(13)与式(12)计算获得的解析解应满足UJN=UGN;在特定风向角下,联合分布模型计算的极值风速边缘分布应与由相应风向角的极值风速Gumbel分布模型一致,即Fv,θ(v|θ)=G(v|θ).采用上述原理可检验联合分布模型建立过程是否正确.如图7、8所示分别为全风向角(即不考虑风向角的概率分布)下不同重现期的基本风速曲线,及风向角为NNE时的概率分布模型对比.从图中可以看出:1)由联合分布模型JPDF计算得到的基本风速-重现期曲线与由Gumbel分布模型计算得到的基本风速-重现期曲线完全吻合,说明参数优化过程正确有效;2)当风向角为NNE时,联合分布模型JPDF确定的极值风速边缘分布与实测结果及Gumbel分布模型几乎一致.上述检验结果表明:JPDF模型能够有效表征实际风速风向的概率分布特征. 现采用极值风速风向的JPDF分布模型计算不同风向角的基本风速.由定义确定不同风向角下基本风速U的计算式如下:式中:fv,θ(v|θ)表示风向角为θ时,极值风速的条件分布函数.式(14)较复杂,难以获得解析解.本文采用数值迭代法求解基本风速. 如图9所示为当重现期N=100 m时基本风速随风向角的变化规律.可以看出,在不同风向角下,基本风速具有一定波动,其中风向角θ=200°附近时,基本风速值最大,该结果与图3所呈现处的现象一致.如图10所示为当重现期分别为N=5,10,50, 100,600 m时的基本风速玫瑰图,图中同时列出由式计算得到的基本风速以示对比.从图中可知,在30°~210°区间(顺时针),由JPDF分布模型(式(14))计算得到基本风速值大于按规范计算得到的结果(式(12));而在区间210°~30°(顺时针)内,现象与之相反.值得注意的是,虽然由联合分布模型JPDF计算得到的基本风速具有波动性,但波动的幅度比较小.计算表明对50 a重现期即N=600 m时,波动幅度小于5%.这说明,计算样本中极值风速与风向的相关性较差.为验证上述结论,下文对极值风速风向的相关性进行计算.根据Sklar提出的Copula理论,Copula函数(式(10))表征2个变量间的相关性.基于Copula函数计算2个变量间的相关性测度,采用Spearman秩相关系数ρ进行衡量,计算式[21]为式中:x=Fv(v)、y=Fθ(θ).根据Copula函数的拟合结果,计算得到Spearman秩相关系数|ρ|=0.066 8,说明极值风速和风向正向变化的一致性较差.Spearman秩相关系数仅对变量间的变化方向一致性进行度量,并不能衡量变量间相关性程度. Mardia[22]提出采用线性-角度变量相关系数计算极值风速风向的相关性:式中:rvc=fcorr(v,cosθ),rvs=fcorr(v,sinθ),rvc= fcorr(cosθ,sinθ),fcorr(·)表示序列间的相关系数.计算结果表明,文中采用的极值风速与对应风向间的相关系数为r2=0.001 3,说明极值风速与对应风向不仅正向变化一致性较差,其相关性程度也较弱.这一结论与由联合分布模型计算得到的基本风速风向间的相关性表现一致.因此,极值风速风向联合分布模型能够较好地表征实际样本间的相关性.总体而言,该模型能比较有效地预测极值风速风向的概率分布.(1)二阶混合von Mises分布能较好地表征风向角的圆周分布,基于最大熵原理建立的极值风速风向联合概率密度函数与实测值吻合良好.(2)采用本文所建立的极值风速风向联合概率密度函数JPDF可以较有效地计算不同重现期下的基本风速,且在特定风向角下的极值风速分布与建筑结构荷载规范(GB 50009-2012)的分布规律相一致.(3)由Spearman秩相关系数和线性-角度变量相关系数计算结果表明,本文采用的极值风速与风向序列相关性较差,符合极值风速风向联合概率密度函数确定的变量相关性,验证了模型的有效性.需要说明的是,本文在建立极值风速风向的联合概率分布模型时,由于非主风向角和高风速值的数据量较少,对高保证率(如50年一遇、100年一遇)的基本风速值精度尚有待考证,后续工作应对数据量更丰富的风速风向样本进行研究.【相关文献】[1]中华人民共和国国家标准.建筑结构荷载规范:GB 50009-2012[S].北京:中华人民共和国住房和城乡建设部,2011.[2]FIELD C ing the GH distribution to model extreme wind speeds[J].Journal of Statistical Planning and Inference,2004,122(1):15-22.[3]段忠东,欧进萍,周道成.极值风速的最优概率模型[J].土木工程学报,2002,35(5):11-16.DUAN Zhong-dong,OU Jin-ping,ZHOU Dao-cheng. The optimal probabilistic distribution for extreme wind speed[J].China Civil Engineering Journal,2002, 35(5):11-16.[4]李宏男,王杨,伊廷华.极值风速概率方法研究进展[J].自然灾害学报,2009,18(2):15-26.LI Hong-nan,WANG Yang,YI Ting-hua.Advance in research on extreme wind speed models[J].Journal of Natural Disasters,2009,18(2):15-26.[5]SIMIU E,HECKERT N A.Extreme wind distribution tails:aƶpeaks over threshold approach[J].Journal of Structural Engineering,2014,122(5):539-547.[6]SIMIU E,HECKERT N A.Ultimate wind loads and direction effects in non-hurricane and hurricane-prone regions[J].Environmetrics,1998,9(4):433-444.[7]GOYAL P K,DATTA T K.Effect of wind directionality on the vulnerability of rural houses due to cyclonic wind[J].American Society of Civil Engineers,2014, 14(4):258-267.[8]王钦华,石碧青,张乐乐.风向对某超高层建筑等效静风荷载的影响[J].汕头大学学报:自然科学版,2012, 27(2):48-53.WANG Qing-hua,SHI Bi-qing,ZHANG Le-le.Influence of wind direction on equivalent static wind loads of a super high-rise building[J].Journal of Shantou University:Natural Science,2012,27(2):48-53.[9]TAMURA Y,OHKUMA T,KAWAI H,et al.Revision of AIJ recommendations for wind loads on buildings[C]∥Structures Congress.Portland:[s.n.],2015:1-10.[10]JOHNSON,RICHARD A,WEHRLY,et al.Some angular-linear distributions and related regression models[J].Journal of the American Statistical Association, 1978,73(363):602-606.[11]KAMISAN N A B,HUSSIN A G,ZUBAIRI Y Z. Finding the best circular distribution for southwesterly monsoon wind direction in Malaysia[J].Sains Malaysiana,2010,39(3):387-393.[12]CALDERARA S,CUCCHIARA R,PRATI A.Detection of abnormal behaviors using a mixture of von Misesdistributions[C]∥Proceedings of the 2007 IEEE Conference on Advanced Video and Signal Based Surveillance.London:IEEE,2007:141-146.[13]ALLEN C T,YOUNG G S,HAUPT S E.Improving pollutant source characterization by better estimating wind direction with a genetic algorithm[J].Atmospheric Environment,2007,41(11):2283-2289.[14]CARTA J A,BUENO C,RAMIREZ P.Statistical modelling of directional wind speeds using mixtures of von Mises distributions:Case study[J].Energy Conversion and Management,2008,49(5):897-907.[15]陈隽,赵旭东.总体样本风速风向联合概率分析方法[J].防灾减灾工程学报,2009,29(1):63-70. CHEN Jun,ZHAO Xu-dong.Analytical method of joint probability density function of wind speed and direction from parent population[J].Journal of Disaster Prevention and Mitigation Engineering,2009, 29(1):63-70.[16]范文亮,李正良,张培.风向风速的联合概率结构建模[J].土木工程学报,2012,45(4):81-90.FAN Wen-liang,LI Zheng-liang,ZHANG Pei.Modeling of the joint probabilistic structure ofwind direction and speed[J].China Civil Engineering Journal, 2012,45(4):81-90.[17]CARTA J A,RAMIREZ P,BUENO C.A joint probability density function of wind speed and direction for wind energy analysis[J].Energy Conversion andManagement,2008,49(6):1309-1320.[18]ERDEM E,SHI parison of bivariate distribution construction approaches for analysing wind speed and direction data[J].Wind Energy,2011,14(1): 27-41.[19]CHANG-CHIEN S J,HUNG W L,YANG M S.On mean shift-based clustering for circular data[J].Soft Computing,2012,16(6):1043-1060.[20]HUNG W L,CHANG-CHIEN SJ,YANG M S.Selfupdating clustering algorithm for estimating the parameters in mixtures of von Mises distributions[J].Journal of Applied Statistics,2012,39(10):2259-2274.[21]韦艳华,张世英.Copula理论及其在金融分析上的应用[M].北京:清华大学出版社,2008.[22]MARDIA K V.Linear-circular correlation coefficients andrhythmometry[J].Biometrika,1976,63(2):403- 405.。
18卷2期2009年4月 自 然 灾 害 学 报J OURNAL OF NATURAL D I SASTERSVo.l 18No .2Apr .2009收稿日期:2008-04-16; 修订日期:2009-02-16基金项目:高等学校学科创新引智计划资助项目(B08014),教育部长江学者和创新团队发展计划(IRT0518),国家自然科学基金重点项目(50638010),国家自然科学基金(50708013),教育部高等学校博士学科点专项科研基金(20060141027,20070141036),中国博士后科学基金面上资助项目(20070420113)作者简介:李宏男(1957-),男,长江学者特聘教授,博士生导师,主要从事地震工程、结构健康监测与控制研究 E-m ai:l hnl@i d l u t 文章编号:1004-4574(2009)02-0015-12极值风速概率方法研究进展李宏男1,王 杨1,伊廷华1,2(1.大连理工大学海岸和近海工程国家重点实验室,辽宁大连116023;2.同济大学土木工程防灾国家重点实验室,上海200092)摘 要:极值风速的研究对于工程结构的设计和安全使用具有重要的现实意义。
阐述了极值风速的研究背景,综述了国内外极值风速的研究进展,对比研究了近年来最新的极值风速概率模型,包括3种极值分布( , , )以及POT 方法、M IS 法、R -LO S 法和相应的改进方法。
在比较各种方法优缺点和适用条件的同时,针对不同的概率分布模型,分别给出了具体所采用的合理的参数估计方法,如最小二乘法、最大似然函数法、概率加权矩法和矩法。
同时对极值风速的不同方法研究现状进行了总结,最后针对当前的一些热点问题进行了展望。
关键词:风荷载;极值风速;概率模型;设计规范中图分类号:TU 973+.213 文献标识码:AAdvance i n research on extre m e w i nd speed modelsLI H ong -nan 1,WANG Y ang 1,Y I T ing -hua 1,2(1.S t ate Key Laboratory of Coastal and O ffs hore Engi n eeri ng ,Dali an Un i versit y ofT echnol ogy ,Dali an 116023,Ch i na ;2.S tateK ey Laborat ory for D isaster Reduction i n C i v ilEng i neeri ng ,TongjiUn ivers it y ,Shanghai 200092,Ch i n a .)Abst ract :Ex tre m e w i n d speed has great sign ificance for the desi g ners .I n this paper ,m ethods to calcu late extre m e w ind speeds w ere descri b ed and rev ie w ed ,such as classicalm ethods based on the genera lized ex tre m e value (GEV )and its three types :Type , and and t h e genera lized Pareto distribution .The paper pays attenti o n to severa l m ethods :annualm ax i m a ,peak-over-threshold approach (POT ),m ethod of i n dependent stor m s(M I S)and t h e R -largest order statistical (R-LOS).M oreover ,severa lm ethods li k e t h e m e t h od ofm o m en,t the m ethod o fm ax-i m um like li h ood esti m ati o n and the leas-t square m ethod w ere m entioned to esti m ate the para m eters o f differentm od -els .F i n ally ,the paper overv ie w s the prob le m s that w e face in this fie l d and the trend of developm en.tK ey w ords :w ind load ;ex tre m e w ind speed ;probability m ode;l design code在土木工程设计、计算和防灾研究中,风荷载和地震作用是最有影响和最易引起工程结构出现故障甚至破坏的荷载,对于高层和高耸结构风荷载显得尤为重要。