模糊数学2模糊聚类分析方法模糊综合评判方法
- 格式:ppt
- 大小:1.16 MB
- 文档页数:43
模糊综合评价的方法
模糊综合评价方法是一种用于处理不确定性和模糊性的评价方法,它基于模糊逻辑理论,将模糊集合理论应用于评价问题。
以下是一种常用的模糊综合评价方法:
1. 确定评价指标:首先确定评价对象的各个指标,这些指标可以是
qualitätskriterien(质量标准),wie Snalligkeit(快速性),Zuverlässigkeit (可靠性),剩余期限(余剩期限)等。
这些指标应该与评价对象的特性和要求相关。
2. 选择评价集:根据评价指标的取值范围和等级划分,选择合适的评价集,用于描述指标的表现。
3. 建立模糊评价矩阵:根据评价集和评价指标的要求,建立模糊评价矩阵。
4. 确定权重矩阵:确定各个评价指标的权重,可以采用专家调查、层次分析法等方法。
5. 计算隶属度矩阵:通过将评价指标的取值与评价集进行对比,计算出各个评价指标在不同评价集中的隶属度。
6. 计算模糊评价值:根据权重矩阵和隶属度矩阵,计算出各个评价指标的加权隶属度,并将其进行求和得到模糊评价值。
7. 判断评价等级:根据模糊评价值的大小,将评价对象划分为不同的评价等级,如优秀、良好、一般、较差等。
模糊综合评价方法能够考虑到评价指标之间的相互关系和不确定性因素,提高了评价的准确性和全面性。
但是在实际应用中,需要根据具体情况选择适当的方法和参数,以达到最优的评价结果。
火灾危险评估中的模糊决策方法有哪些火灾是一种极其危险的灾害,给人们的生命财产安全带来了巨大的威胁。
为了有效地预防和控制火灾,对火灾危险进行准确的评估至关重要。
在火灾危险评估中,模糊决策方法因其能够处理不确定性和模糊性信息而得到了广泛的应用。
一、模糊综合评价法模糊综合评价法是一种基于模糊数学的综合评价方法。
它将多个因素对评价对象的影响进行综合考虑,通过建立模糊评价矩阵和确定权重,最终得出综合评价结果。
在火灾危险评估中,首先需要确定评价因素,如火源特性、可燃物分布、建筑结构、消防设施等。
然后,对每个评价因素划分不同的等级,并赋予相应的模糊隶属度。
例如,火源特性可以分为强、中、弱三个等级,分别对应不同的模糊隶属度。
接下来,通过专家打分或实际数据统计等方式确定各评价因素的权重。
最后,利用模糊运算规则计算出综合评价结果,从而判断火灾危险的程度。
这种方法的优点是能够全面考虑多个因素的影响,并且可以处理评价因素的模糊性和不确定性。
但它也存在一定的局限性,例如权重的确定可能存在主观性,评价结果的准确性依赖于评价因素和等级的划分是否合理。
二、模糊层次分析法模糊层次分析法是将层次分析法与模糊数学相结合的一种方法。
层次分析法通过将复杂问题分解为多个层次和因素,并进行两两比较,确定各因素的相对重要性。
而模糊层次分析法则在此基础上,引入了模糊数来表示两两比较的结果,从而更好地处理不确定性。
在火灾危险评估中,运用模糊层次分析法可以构建火灾危险评估的层次结构模型,包括目标层、准则层和指标层。
目标层即为火灾危险程度的评估;准则层可以包括火灾发生的可能性、火灾的危害程度等;指标层则是具体的评估指标,如火源类型、人员密度等。
通过专家判断或问卷调查等方式,对各层次因素进行两两比较,并用模糊数表示比较结果。
然后,利用模糊数的运算规则计算出各因素的权重。
最后,综合各因素的权重和评价结果,得出火灾危险的评估值。
模糊层次分析法在处理复杂系统的多因素决策问题时具有较好的效果,能够有效地降低主观因素的影响,但计算过程相对较为复杂。
聚类分析的方法一、系统聚类法系统聚类分析法就是利用一定的数学方法将样品或变量(所分析的项目)归并为若干不同的类别(以分类树形图表示),使得每一类别内的所有个体之间具有较密切的关系,而各类别之间的相互关系相对地比较疏远。
系统聚类分析最后得到一个反映个体间亲疏关系的自然谱系,它比较客观地描述了分类对象的各个体之间的差异和联系。
根据分类目的不同,系统聚类分析可分为两类:一类是对变量分类,称为R型分析;另一类是对样品分类,称为Q型分析。
系统聚类分析法基本步骤如下(许志友,1988)。
(一)数据的正规化和标准化由于监测时所得到的数值各变量之间相差较大,或因各变量所取的度量单位不同,使数值差别增大,如果不对原始数据进行变换处理,势必会突出监测数据中数值较大的一些变量的作用,而消弱数值较小的另一些变量的作用,克服这种弊病的办法是对原始数据正规化或标准化,得到的数据均与监测时所取的度量单位无关。
设原始监测数据为Xij (i=1,2,…,n;j=1,2,…,m;n为样品个数,m为变量个数),正规化或标准化处理后的数据为Zij (i=1,2,…,n;j=1,2,…,m)。
1. 正规化计算公式如下:(7-32)(i=1,2,…,n;j=1,2,…,m)2. 标准化计算公式如下:(7-33)(i=1,2,…,n;j=1,2,…,m)其中:(二)数据分类尺度计算为了对数据Zij进行分类,须对该数据进一步处理,以便从中确定出分类的尺度,下列出分类尺度计算的四种方法。
1.相关系数R两两变量间简单相关系数定义为:(7-34)(i,j=1,2,…,m)其中一般用于变量的分类(R型)。
有一1≤≤1且愈接近1时,则此两变量愈亲近,愈接近-1,则关系愈疏远。
2.相似系数相似系数的意义是,把每个样品看做m维空间中的一个向量,n个样品相当于m维空间中的n个向量。
第i个样品与第j个样品之间的相似系数是用两个向量之间的夹角余弦来定义,即:(7-35)(i,j=1,2,…,m)常用于样品间的分类(Q型)。
一、模糊评价模糊评价法是应用模糊理论和模糊关系合成的原理,通过多个因素对被评 价事物隶属等级状况进行综合性评价的一种方法。
运用模糊评价法,通过多因素 或多指标,既对被评价事物的变化区间作出某种划分,又对事物属于各评价等级 的程度作出分析,从而更深入和客观地对被评价事物进行描述。
特点:①模糊评价法的结果是一个向量,而不是一个数值,即被评价事物的状况是通过被评价事物的等级隶属度来表示。
②模糊评价法可以是一种多层的评价,即可以先对被评价事物的某一层面进行模糊评价,再将各层面的模糊评价结果进行模糊合成,得出总的模糊评价结果。
③模糊评价法具有指标或因素的自然可综合性。
由于模糊评价法只需确定各指标的等级隶属度,既可用于主观指标,又可用于客观指标,以此而无需专门对指标进行无量纲处理。
1.1模糊评价的应用①人事考核中的应用. ②单位员工的年终评定.③昆山公安信息化建设效绩的评估(下载文档). ④我国商业银行内部控制评价体系研究(下载文档). ⑤石化行业业绩评价(下载文档)等。
1.2一级模糊综合评判模型的建立步骤①确定因素集及评语集确定被评价对象的因素集U.{}12=,,,n U u u u .评语集{}12,,,m V v v v =;②构造模糊关系矩阵R.进行单因素评判。
用ij r 表示U 中的因素i u 对应于V 中等级j v 的隶属关系.则有111212122212=,01m m ij n n nm r r r r r r R r r r r ⎛⎫ ⎪ ⎪≤≤ ⎪⎪⎝⎭③确定各因素的权重用i a 表示第i 个因素的权重.11ni i a ==∑.则评价因素权向量A 为()12,,,n A a a a =。
④综合评判由模糊关系矩阵R 得到一个模糊变换为:()(),R T F U F V →则评判的综合结果为()11121212221212,,,m m n n n nm r r r r r r B A R a a a r r r ⎛⎫⎪ ⎪== ⎪⎪⎝⎭。
模糊综合评价法-简介模糊综合评价法是一种基于模糊数学的综合评标方法。
该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。
它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。
模糊集合理论的概念于1965 年由美国自动控制专家查德(L.A.Zadeh)教授提出,用以表达事物的不确定性。
[1]模糊综合评价法-思想和原理模糊综合评价法在客观世界中存在着许多不确定性,这种不确定性表现在两个方面:一是随机性-事件是否发生的不确定性;二是模糊性-事物本身状态的不确定性。
在客观世界中,存在着大量的模糊概念和模糊现象。
一个概念和与其对立的概念无法划出一条明确的分界,他们是随着量变逐渐过渡到质变的。
例如“年轻”和“年老”、“高与矮”、“胖与瘦”、“美与丑”等没有确切界限的一些对立概念都是所谓的模糊概念。
凡涉及模糊概念的现象被称为模糊现象。
现实生活中的绝大多数现象,存在着中介状态,并非非此即彼,表现出亦此亦彼,存在着许多,甚至无穷多的中间状态。
总之,模糊性是事件本身状态的不确定性,或者说是指某些事物或者概念的边界不清楚,这种边界不清楚,不是由于人的主观认识达不到客观实际所造成的,而是事物的一种客观属性,是事物的差异之间存在着中间过渡过程的结果。
模糊数学就是试图利用数学工具解决模糊现象一门学科。
1965年,美国加州大学的控制论专家扎德发表了一篇题为《模糊集合》的重要论文,第一次成功地运用精确的数学方法描述了模糊概念,从而宣告了模糊数学的诞生。
从此,模糊现象进入了人类科学研究的领域。
模糊数学的产生把数学的应用范围,从精确现象扩大到模糊现象的领域,去处理复杂的系统问题。
模糊数学决不是把已经很精确的数学变得模模糊糊,而是用精确的数学方法来处理过去无法用数学描述的模糊事物。
从某种意义上来说,模糊数学是架在形式化思维和复杂系统之间的一座桥梁,通过它可以把多年积累起来的形式化思维,也就是精确数学的一系列成果,应用到复杂系统里去。
模糊数学知识小结与模糊数学相关的问题模糊聚类分析—根据研究对象本身的属性构造模糊矩阵,在此基础上根据一定的隶属度来确定其分类关系模糊层次分析法—两两比较指标的确定模糊综合评判—综合评判就是对受到多个因素制约的事物或对象作出一个总的评价,如产品质量评定、科技成果鉴定、某种作物种植适应性的评价等,都属于综合评判问题。
由于从多方面对事物进行评价难免带有模糊性和主观性,采用模糊数学的方法进行综合评判将使结果尽量客观从而取得更好的实际效果模糊数学基础一.Fuzzy 数学诞生的背景1)一个古希腊问题:“多少粒种子算作一堆?”2)Fuzzy 概念的广泛存在性,如“找人问题”3)何谓Fuzzy 概念?,如何描述它?由集合论的要求,一个对象x,对于一个集合,要么属于A,要么不属于A,二者必居其一,且仅居其一,绝对不允许模棱两可。
这种绝对的方法,是不能处理所有科学的问题,即现实生活中的一切事物一切现象都进行绝对的精确化时行不通的,从而产生模糊概念。
二.模糊与精确的关系对立统一,相互依存,可互相转化。
- 精确的概念可表达模糊的意思:如“望庐山瀑布”“飞流直下三千尺,凝是银河落九天”- Fuzzy的概念也能表达精确的意思:模糊数学不是让数学变成模模糊糊的东西,而是让数学进入模糊现象这个禁区,即用精确的数学方法去研究处理模糊现象。
三. 模糊性与随机性的区别事物分确定性现象与非确定性现象- 确定性现象:指在一定条件下一定会发生的现象。
- 非确定性现象分随机现象与模糊现象* 随机性是对事件的发生而言,其事件本身有着明确的含义,只是由于发生的条件不充分,事件的发生与否有多种可能性。
* 模糊性是研究处理模糊现象的,它所要处理的事件本身是模糊的。
模糊数学的广泛应用性模糊技术是21世纪的核心技术模糊数学的应用几乎渗透到自然科学与社会科学的所有领域:1)软科学方面:投资决策、企业效益评估、经济宏观调控等。
2)地震科学方面:地震预报、地震危害分析。