模拟电子线路(模电) 电压比较器
- 格式:ppt
- 大小:2.08 MB
- 文档页数:21
电压比较器实验报告实验报告课程名称:电路与电子技术实验指导老师:成绩:实验名称:电压比较器及其应用实验类型:电子电路实验同组学生姓名:一、实验目的二、实验内容三、主要仪器设备四、实验数据记录、处理与分析五、思考题及实验心得一、实验目的1.了解电压比较器与运算放大器的性能区别;2.掌握电压比较器的结构及特点;3.掌握电压比较器电压传输特性的测试方法;4.学习比较器在电路设计中的应用。
二、实验内容及原理实验内容1.设计过零电压比较器电路,反相输入端接地,同相输入端接1kHz、1V正弦波信号,测量并绘制输出波形和电压传输特性曲线。
2.设计单门限电压比较器电路,同相输入端接1V直流电压,反相输入端接1kHz、1V正弦波信号,测量3.并绘制输出波形和电压传输特性曲线。
4.设计反相输入(下行)滞回电压比较器,反相输入端接1kHz、1V正弦波信号,测量并绘制输出波形和电压传输特性曲线。
5.设计窗口电压比较器电路,输入为1kHz、5V三角波信号,设置参考电压Vref1为1V直流电压,参考电压Vref2为4V直流电压,测量并绘制输出波形和电压传输特性曲线。
6.设计三态电压比较器电路,输入电压信号Vin为1kHz、5V三角波信号,当输入Vin< p="">实验原理电压比较器(简称为比较器)是对输入信号进行鉴幅和比较的集成器件,它可将模拟信号转换成二值信号,即只有高电平和低电平两种状态的离散信号。
可用作模拟电路和数字电路的接口,也可用作波形产生和变换电路等。
比较器看起来像是开路结构中的运算放大器,但比较器和运算放大器在电气性能参数方面有许多不同之处。
运算放大器在不加负反馈时,从原理上讲可以用作比较器,但比较器的响应速度比运算放大器快,传输延迟时间比运算放大器小,而且不需外加限幅电路就可直接驱动TTL、CMOS等数字集成电路。
但在要求不高情况下也可以考虑将某些运算放大器(例如:LM324、LM358、μA741、TL081、OP07、OP27等)当作比较器使用。
模电自主设计实验—同相滞回电压比较器的研究报告实验目的:通过实验研究同相滞回电压比较器的工作原理和性能,加深对其内部电路结构和特性的理解,提高电路设计和分析能力。
实验原理:同相滞回电压比较器是一种常见的模拟电路,用于对两个输入电压进行比较,输出高电平或低电平。
其基本原理是通过对输入电压进行放大,然后与一个参考电压进行比较,根据比较结果输出高电平或低电平。
实验器材与材料:1.同相滞回电压比较器芯片(LM393)2.电源(+12V,-12V)3.示波器4.信号源5.电阻、电容等元件实验步骤:1.将同相滞回电压比较器芯片(LM393)连接到电源并接地,根据数据手册连接芯片的引脚。
2.将输入电压源和参考电压源连接到芯片的输入引脚,并设置合适的电压值。
3.连接示波器到芯片的输出引脚,以观察输出信号波形。
4.调整输入电压源的电压值,逐步改变输入电压,观察示波器上的波形。
5.记录不同输入电压下的输出电平,分析其特点和变化规律。
6.比较实验结果与理论预期,检验实验结果的准确性。
实验结果与讨论:通过对同相滞回电压比较器的实验研究,我们观察到与输入电压和参考电压的关系对输出电压有明显影响。
当输入电压高于参考电压时,输出为高电平;当输入电压低于参考电压时,输出为低电平。
在输入电压接近参考电压附近时,输出会出现翻转现象,即输入电压经过比较后产生切换效应。
与理论预期相比,实验结果基本一致。
在进行实验时,我们还发现了一些实际电路中的问题,如杂散电容和电源波动等对电路性能的影响。
结论:通过本次实验,我们深入了解了同相滞回电压比较器的工作原理和性能。
实验结果与理论预期基本一致,验证了同相滞回电压比较器的准确性和可靠性。
此外,还发现了实际电路中可能存在的问题,为电路设计和优化提供了一定的参考。
改进方向:在今后的实验中,我们可以进一步研究同相滞回电压比较器的性能参数,如响应时间、功耗等,以及对其进行电路优化和性能提升。
此外,可以与其他电路进行组合,实现更复杂的功能。
电压比较器电压比较器是对输入信号进行鉴幅与比较的电路,是组成非正弦波发生电路的基本单元电路,在测量和控制中有着相当广泛的应用。
电压比较器的功能是对两个输入电压的大小进行比较,并根据比较结果输出高、低两个电平。
此外由于高电平相当于逻辑“1”,低电平相当逻辑“0”,所以比较器可作为摸拟与数字电路之间的接口电路.由于比较器输出只有两个状态,因此,用作比较器的运放将工作在开环或正反馈的非线性状态。
电压比较器的电路符号电压比较器的基本特性1. 输出 高电平(U oH )和低电平(U oL )用运放构成的比较器,其输出的高电平UoH 和低电平UoL 可分别接近于正电源电压(UCC)和负电源电压(-UCC)。
2. 鉴别灵敏度理想的电压比较器,在高、低电平转换的门限UT 处具有阶跃的传输特性。
这就要求运放:实际运放的Aud 不为无穷大。
在UT 附近存在着一个比较的不灵敏区。
在该区域内输出既非UoH ,也非UoL ,故无法对输入电平大小进行判别。
显然,Aud 越大,则不灵敏区就越小,称比较器的鉴别灵敏度越高。
3.转换速度作为比较器的另一个重要特性就是转换速度,即比较器输出状态发生转换所需要的时间。
ud A =∞u u EEu -u +通常要求转换时间尽可能短,以便实现高速比较。
为此可对比较器施加正反馈,以提高转换速度。
理想集成运放非线性应用时的特点非线性应用的条件:运放开环或施加正反馈。
非线性应用特点:反相电压比较器 电路如图所示, 输入信号u i 加在反相端,参考电压u r 加在同相端。
u i < u r , u o =U OH ui > ur , uo=UOL。
同相电压比较器 电路如图所示, 输入信号u i 加在同相端,参考电压u r 加在反相端。
ui < ur , uo=UOL ui > ur , uo=UOH当参考电压为零时,则为同相过零比较器。
o CC oL o CC oHi i u u u U U u u u U U +--+-+==>≈-=<≈+=其传输特性 uo= f ( ui )简单比较器应用中存在的问题①. 输出电压转换时间受运放的限制,使高频脉冲的边缘不够陡峭;②. 抗干扰能力差。
电压比较器讲义幻灯片1尊敬的各位专家评委,上午好!我试讲的内容为模拟电子技术中的电压比较器一节。
下面我可以我的本次试讲幻灯片2在上一节课中我们分析了一阶、二阶有源滤波器的工作原理、幅频特性以及有源滤波器在实际中的应用,那么在本次课中,我们学习模拟电子技术中另一类比较重要而且应用很广泛的电路-电压比较器。
我们将从三个方面阐述本次课的内容:1、简单的电压比较器;2、滞回电压比较器;3、集成电压比较器。
幻灯片3在讲述本节课内容之前,我们来思考这样的一个问题?在实际工业应用中,某些大功率器件如晶闸管、功率MOS、GTO等器件,它们在工作时都要产生大量的热量,如果不及时散发出去将会导致功率器件损坏,通常,我们采用散热片和散热风扇来保证它们的正常工作,那么这就涉及到一个问题,如何设计简单可行的散热风扇自动控制电路呢?通过本节课的学习我相信大家会有对此设计有一个更深入的认识和理解。
幻灯片4首先我们了解一下电压比较器的几个基本理论电压比较器的作用时用来比较两个输入电压的大小关系,它是通过输出电压的高电平或低电平;来表示两个输入电压的大小关系。
电压比较器的输入电压通常是模拟信号,一般有两路,一路为参考电压信号,一路为要比较的输入电压信号,它的输出只有两种可能的状态:高电平或低电平。
我们看电压比较器的输入时模拟信号而输出时表示高低电平的数字信号,那么它就可以用来作为模拟信号与数字信号转换的基本电路,作为模拟电路和数字电路的接口,广泛应用于模拟信号/数字信号变换、数字仪表、自动控制和检测技术领域,另外也是波形产生和变换的基本单元电路。
电压比较器可以由集成运放及其附加电路组成,在实际上也可以采用专用的集成电压芯片。
下面我们看一下组成电压比较器的集成运放具有哪些特性?幻灯片5组成电压比较器的集成运放假定它工作在理想状态,它一般工作在非线性区,满足以下的三个关系:当集成运放的同相端的电压大于反相端的电压的时候,集成运放输出为高电平,集成运放趋向于正向饱和,当集成运放的同相端的电压等于反相端的电压的时候,这时集成运放的输出状态是不定的,它要发生状态上的跳转,或者从低电平跳变到高电平,或者从高电平跳变到低电平,那么,同相端电压等于反相端电压比较器状态发生跳转,此时,是我们分析电压比较器的状态变化的重要依据。
电压比较器及其应用在最常用的简单集成电路中,电压比较器仅次于排名第一的运算放大器而排名第二。
各类教科书及相关出版物中可以经常看到关于运算放大器的理论、设计和使用方法的知识内容,而关于比较器的知识内容明显较少。
我们在中等职业技术教学中,补充了一些知识内容,弥补这些不足。
一、电压比较器简介电压比较器可以看作是放大倍数接近“无穷大”的运算放大器。
其功能是比较两个输入电压(或者说一个基准电压和一个待比较电压)的大小,并用输出电压的高电平或低电平,表示两个输入电压比较的结果:当“+”输入端(同相输入端,下同)电压高于“-”输入端(反向输入端,下同)时,输出为高电平;当“+”输入端电压低于“-”输入端时,输出为低电平。
电压比较器可以用作模拟电路和数字电路的接口,还可以用作波形的产生和变换等。
利用电压比较器可将正弦波变换为同频率的方波或矩形波。
电压比较器的输入是线性量,而输出是开关量(高电平或低电平)。
一般应用中,可以用线性运算放大器,在不加负反馈的情况下,构成电压比较器来使用。
所有的运算放大器都可用作电压比较器,例如LM324、LM358、μA741、TL081、OP27等,这些都可以做成电压比较器。
LM339、LM393是专业的电压比较器,切换速度快,延迟时间小,可用在专门的电压比较场合。
电压比较器有的使用单电源工作,如图1所示。
有的单电源和双电源都可以使用,图2所示使用的就是双电源。
我们经常使用的四电压比较器LM339,既可使用最大值36V的单电源,也可使用±18V的双电源。
电压比较器的输出端,有的自身可以输出高电平及低电平,例如输出级采用推挽式结构的;而有的电压比较器输出级是一只集电极开路的三极管,称作集电极开路输出,参见图3。
也有场效应管漏极开路输出型,与集电极开路输出型类似。
对于集电极开路输出和漏极开路输出的电压比较器,使用时要连接上拉电阻R,输出端才可能有高电平,如图4所示。
上拉电阻R一端连接在比较器的输出端,另一端则有两种选择:一是连接在芯片自身的电源端Vcc上,如图4a,二是连接至另一独立电源,如图4b中的Vcc2上。
实验十集成运放基本应用之三--电压比较电路班级:姓名:学号:2016.1.6一、实验目的1、掌握电压比较器的电路构成及特点。
2、学会测试比较器的方法。
二、实验仪器及器件三、实验原理图10-1(a)所示为一最简单的电压比较器,图10-1(b)为10-1(a)图比较器的传输特性。
(a)电路图(b)传输特性图10-1电压比较器当v i<V REF时,运放输出高电平,稳压管Dz反向稳压工作。
输出端电位被其箝位在稳压管的稳定电压V Z,即:v o=V Z;当v i>V REF时,运放输出低电平,Dz正向导通,输出电压等于稳压管的正向压降V D,v o=-V D。
1、过零比较器电路如图10-2(a)所示为加限幅电路的过零比较器,其电压传输特性如图10-2(b)所示。
(a)过零比较器(b)电压传输特性图10-2过零比较器2、迟滞比较器图10-3(a)为具有迟滞特性的过零比较器,其电压传输特性如图10-3(b)所示。
(a)电路图(b)传输特性图10-3 迟滞比较器3、窗口(双限)比较器如图10-4(a)所示为窗口比较器,其电压传输特性如图10-4(b)所示。
(a)电路图(b)传输特性图10-4 由两个简单比较器组成的窗口比较器四、实验内容及实验步骤1、过零比较器实验电路如图10-2所示(1)接通±12V电源。
(2)测量v i悬空时的V o值。
(3)v i输入500Hz、幅值为2V的正弦信号,观察v i→v o波形并记录。
(4)改变v i幅值,测量传输特性曲线。
图10-5反相迟滞比较器2、反相迟滞比较器实验电路如图10-5所示(1)按图接线,v i接+5V可调直流电源,测出v o由+V omcx →-V omcx时v i的临界值。
(2)同上,测出v o由-V omcx →+V omcx时v i的临界值。
(3)v i接500Hz、幅值为2V的正弦信号,观察并记录v i→v o波形。
(4)将分压支路100K电阻改为200K,重复上述实验,测定传输特性。
电压比较器工作原理及应用电压比较器(以下简称比较器)是一种常用的集成电路。
它可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A/D 变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。
本文主要介绍其基本概念、工作原理及典型工作电路,并介绍一些常用的电压比较器。
什么是电压比较器简单地说,电压比较器是对两个模拟电压比较其大小(也有两个数字电压比较的,这里不介绍),并判断出其中哪一个电压高,如图1所示。
图1(a)是比较器,它有两个输入端:同相输入端(“+” 端) 及反相输入端(“-”端),有一个输出端Vout(输出电平信号)。
另外有电源V+及地(这是个单电源比较器),同相端输入电压VA,反相端输入VB。
VA和VB的变化如图1(b)所示。
在时间0~t1时,VA>VB;在t1~t2时,VB>VA;在t2~t3时,VA>VB。
在这种情况下,Vout的输出如图1(c)所示:VA>VB时,Vout输出高电平(饱和输出);VB>VA时,Vout输出低电平。
根据输出电平的高低便可知道哪个电压大。
如果把VA输入到反相端,VB输入到同相端,VA及VB的电压变化仍然如图1(b)所示,则Vout输出如图1(d)所示。
与图1(c)比较,其输出电平倒了一下。
输出电平变化与VA、VB的输入端有关。
图2(a)是双电源(正负电源)供电的比较器。
如果它的VA、VB输入电压如图1(b)那样,它的输出特性如图2(b)所示。
VB>VA时,Vout 输出饱和负电压。
如果输入电压VA与某一个固定不变的电压VB相比较,如图3(a)所示。
此VB称为参考电压、基准电压或阈值电压。
如果这参考电压是0V(地电平),如图3(b)所示,它一般用作过零检测。
比较器的工作原理比较器是由运算放大器发展而来的,比较器电路可以看作是运算放大器的一种应用电路。
由于比较器电路应用较为广泛,所以开发出了专门的比较器集成电路。
电压比较器内部电路原理电压比较器是电子电路中常见的一种组件,它能够将两个输入电压进行比较,并输出一个二进制信号。
电压比较器的内部电路原理主要包括差分放大器、参考电压源、输出级、反馈网络、电源供电、温度补偿、保护电路和频率响应优化等方面。
1.差分放大器差分放大器是电压比较器的重要组成部分,它能够将两个输入信号进行差分放大,使得输出的电压能够达到所需的幅度。
差分放大器通常采用运算放大器(Op-Amp)来实现,其特点是具有很高的增益和很低的误差。
2.参考电压源参考电压源是电压比较器的另一个关键部分,它能够产生一个稳定的参考电压,用于与输入信号进行比较。
参考电压源通常由一个稳压器(regulator)和一个大电阻(resistor)组成,通过调节电阻的阻值可以调整参考电压的大小。
3.输出级输出级是电压比较器的第三个重要部分,它能够将差分放大器输出的信号进行整形(shaping)和放大(amplifying),使得输出的信号能够满足所需的幅度和波形。
输出级通常采用功率放大器(power amplifier)或者电压跟随器(voltage follower)来实现。
4.反馈网络反馈网络是电压比较器的一个关键部分,它能够将输出信号的一部分反馈到差分放大器的输入端,以调节放大器的增益和输出信号的幅度。
反馈网络通常由电阻、电容等元件组成,可以改善电路的性能和稳定性。
5.电源供电电源供电是电压比较器的另一个基本部分,它能够为电路提供稳定的工作电压。
电源供电的设计需要考虑电源的稳定性、效率、噪声等方面,以确保电路的正常工作。
6.温度补偿温度补偿是电压比较器的一个重要部分,它能够通过调节电路元件的参数来抵消环境温度对电路性能的影响,以保持电路性能的稳定。
温度补偿的方法可以通过使用温度系数补偿器(TC补偿器)或者热敏电阻(thermistor)等元件来实现。
7.保护电路保护电路是电压比较器的一个辅助部分,它能够为电路提供保护措施,避免电路受到过压、过流等异常情况的影响。
电压比较器原理新解(之一)——听咸老师说电子电路系列之二电压比较器,三端元件(两输入端,一输出端),输入为模拟信号,输出为数字信号。
一、基本电路和相关定义1、电压(电平)比较器的身份定义电压比较器是一种用来比较两个或两个以上模拟电平,并给出比较结果(可用数字量的1、0来表示)的功能部件。
可作为模拟电路和数字电路之间接口的一种电路,即模拟-数字转换器。
所有运算放大器,均处于负反馈的闭环状态之下。
一旦处于开环,因其无穷大电压放大倍数之故,势必使其输出级处于“饱和”或“截止”的两个极端状态,而不再具备放大器的特征。
但在某些应用场合,恰恰需要利用放大器开环时输出级所表现出的这种极端状态,如将两个或两个以上模拟量输入量进行比较,将两者(或两者以上)的大小分别用高电平(逻辑1)和低电平(逻辑0)表示,以完成将电平差转换为数字表的转换。
其输入、输出已不存在线性关系。
如果有一种器件,是专业从事输入电压比较而输出开关量信号的,该器件就叫做电压比较器。
因而该类器件既不归属于线性(模拟)电路类别,也不归属于数字电路类别。
从输入看,尚具备线性电路特点;从输出看,已为典型的数字电路特点。
其身份尴尬:非线性模拟电路(又是一个矛盾性定义,既为模拟,又何来非线性?)。
比较器有模拟和数字电路的两重特性,是集成了二者之长吗?与二者相比,各有什么特点?它们能否相互替代呢?图1-1 比较器和数字电路、运放电路1)反相器以数字电路中的TTL产品中的反相器为例。
反相器是如何识别输入信号的高、低电平呢?肯定有一个潜在的比较基准。
器件典型供电Vcc为+5V,当输入电压低于1.5V(30%Vcc以下,比较基准之一)时,为输入低电平信号,此时输出端为高电平状态;当输入电压高于3.5V (60%Vcc以上,比较基准之二)时,为高电平信号输入,此时输出端为代电平状态;当输入信号在低于3.5V高于1.5V的范围之内,会引起识别混乱或无法识别,从而不能确定输出状态(因此这一输入电压范围也被称为非法信号)。
电压比较器的原理和应用概述电压比较器是一种常用的电子元件,用于比较两个不同电压的输入,并产生相应的输出信号。
本文将介绍电压比较器的原理及其应用。
原理电压比较器的工作原理基于比较输入电压与参考电压的大小关系,并根据比较结果产生相应的输出信号。
常见的电压比较器采用了运放(运算放大器)来实现。
电压比较器的基本电路结构电压比较器的基本电路结构包括运放、输入电阻、反馈电阻和输出负载电阻。
其中,运放起到放大电压的作用,输入电阻用于接收输入信号,反馈电阻用于提供反馈,输出负载电阻用于将输出信号传输到负载上。
电压比较器的工作方式1.当输入电压大于参考电压时,输出信号为高电平。
2.当输入电压小于参考电压时,输出信号为低电平。
3.当输入电压等于参考电压时,输出信号可能为高电平或低电平,通常取决于具体的电压比较器设计。
电压比较器的应用场景电压比较器在电子电路中有广泛的应用,以下列举了几个常见的应用场景:电压比较电压比较器可以用于比较两个不同电压的大小,从而实现电压比较的功能。
例如,在电压采样和自动控制系统中,可以通过电压比较器来实现电压的监测和判断。
模拟信号转换电压比较器可以将模拟信号转换为数字信号,从而实现模拟信号的处理和分析。
例如,将音频信号转换为数字信号,以便于计算机的处理和存储。
开关控制电压比较器可以用于开关的控制。
当输入电压满足一定条件时,电压比较器产生输出信号,使开关的状态发生改变,从而实现开关的控制。
温度测量电压比较器可以用于温度传感器的测量。
例如,通过比较传感器输出电压与参考电压的大小,可以确定温度的高低,并产生相应的输出信号。
电压比较器的优势与局限性电压比较器具有以下优势: - 快速响应速度,适用于高频率的应用。
- 高精度的电压比较,有助于提高系统的精确性。
- 可靠性高,稳定性好。
电压比较器的局限性包括: - 对供电电压的要求较高,需要稳定的直流电源。
- 对输入电压的要求较高,需要满足特定的输入范围。
放大电路电压比较器在电子电路中,放大电路是一个非常重要且常见的组成部分,它可以将输入信号放大到所需的电压水平。
而电压比较器则是一种特殊的放大电路,它用于比较两个输入电压的大小,并输出相应的电平信号。
一、电压比较器的原理电压比较器的基本原理是将两个输入电压进行比较,并根据比较结果输出相应的电平。
一般来说,电压比较器具有一个正输入端(+)和一个负输入端(-),以及一个输出端。
当正输入电压大于负输入电压时,输出端会输出高电平信号;当正输入电压小于负输入电压时,输出端会输出低电平信号。
因此,电压比较器可以判断两个输入电压的相对大小。
二、常见的电压比较器类型1. 开环比较器:开环比较器是最简单的一种电压比较器,它通常由一个操作放大器构成。
开环比较器的输出是一个开关信号,即当正输入电压大于负输入电压时,输出为高电平,否则输出为低电平。
2. 有限增益比较器:有限增益比较器是将一个反馈电阻与开环比较器相连,以实现电压放大的效果。
它的输出电平会随着输入电压的变化而变化,且输出端的电平信号更加稳定。
3. 高速比较器:高速比较器通常采用特殊的设计和技术,以实现更高的响应速度和更低的功耗。
它常用于高速信号处理和通信系统中。
三、应用领域电压比较器在各种电子设备和系统中都有广泛应用,以下列举几个常见的应用领域:1. 模拟电路:在模拟电路中,电压比较器常用于信号检测、电平转换和电压比较等功能。
例如,在模拟积分器电路中,电压比较器用于检测信号的积分结果是否达到设定阈值。
2. 数字电路:在数字电路中,电压比较器常用于比较两个二进制数的大小。
它可以将两个输入信号进行比较,并输出相应的高电平或低电平,以表示两个二进制数的大小关系。
3. 自动控制系统:在自动控制系统中,电压比较器可以用于比较传感器反馈的信号与设定值信号的大小,以实现控制系统的稳定和精确性。
四、总结电压比较器是一种重要的放大电路,它可以比较两个输入电压的大小,并输出相应的电平信号。