导数题的解题技巧
- 格式:doc
- 大小:1.15 MB
- 文档页数:13
导数大题解题技巧
1. 嘿,知道吗?导数大题有个超重要的解题技巧,那就是要先搞清楚题目到底要咱干啥!就像你找东西,得先明白要找啥不是?比如求函数的极值点,咱就得麻溜地找出导数为零的点呀!这不是很简单的道理嘛!
2. 哇塞,还有哦!要学会从复杂的式子中找到关键信息呀!这就好比在一堆乱七八糟的东西里找出你最想要的宝贝一样。
比如看到一个复合函数,咱就得机智地把它拆开,分别求解,这样问题不就迎刃而解啦!
3. 嘿呀!你可别小瞧了画图这个步骤,这简直太有用啦!它就像给你个导航,让你清楚地看到函数的走向。
比如说一个函数的单调性,一画出来,那不是一目了然嘛!
4. 哎呀呀,千万别忘了特殊值法呀!有时候用这个简直绝了!就跟走捷径一样。
比如给你个函数,先试试几个特殊值,说不定一下子就能找到突破口呢!
5. 喂喂喂,注意细节呀!很多同学就输在不注意细节上。
就好比盖房子,一丁点儿差错都可能让房子不稳当。
比如求导的时候可别粗心大意算错咯!
6. 哈哈,记得多总结呀!把做过的题都好好想想,总结出规律来。
这就像收集宝藏,收集得越多,你就越厉害!下次碰到类似的题目,你就能轻松搞定啦!
我觉得呀,只要掌握了这些导数大题解题技巧,那面对难题咱也不怕啦!。
导数题的解题技巧小结【命题趋向】导数命题趋势:综观2007年全国各套高考数学试题,我们发现对导数的考查有以下一些知识类型与特点:(1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题.(2)求极值, 函数单调性,应用题,与三角函数或向量结合.分值在12---17分之间,一般为1个选择题或1个填空题,1个解答题.【考点透视】1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念.2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数.3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值.【例题解析】考点1 导数的概念对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念.例1.(2007年北京卷)()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力.[解答过程] ()22()2,(1)12 3.f x x f ''=+∴-=-+=故填3.例2. ( 2006年湖南卷)设函数()1x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实数a 的取值范围是 ( )A.(-∞,1)B.(0,1)C.(1,+∞)D. [1,+∞)[考查目的]本题主要考查函数的导数和集合等基础知识的应用能力. [解答过程]由0,,1;, 1.1x a x a a x x -<∴<<<<-当a>1时当a<1时()()()//11,0.11111.x x a x a x a a y y x x x x a ------⎛⎫=∴===> ⎪--⎝⎭--∴> 综上可得M P 时, 1.a ∴>考点2 曲线的切线(1)关于曲线在某一点的切线求曲线y=f(x)在某一点P (x,y )的切线,即求出函数y=f(x)在P 点的导数就是曲线在该点的切线的斜率.(2)关于两曲线的公切线若一直线同时与两曲线相切,则称该直线为两曲线的公切线. 典型例题例3.(2007年湖南文)已知函数3211()32f x x ax bx =++在区间[11)-,,(13],内各有一个极值点.(I )求24a b -的最大值;(II )当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点A 时,从l 的一侧进入另一侧),求函数()f x 的表达式. 思路启迪:用求导来求得切线斜率. 解答过程:(I )因为函数3211()32f x x ax bx =++在区间[11)-,,(13],内分别有一个极值点,所以2()f x x ax b '=++0=在[11)-,,(13],内分别有一个实根,设两实根为12x x ,(12x x <),则21x x -=2104x x <-≤.于是04,20416a b <-≤,且当11x =-,23x =,即2a =-,3b =-时等号成立.故24a b -的最大值是16.(II )解法一:由(1)1f a b '=++知()f x 在点(1(1))f ,处的切线l 的方程是(1)(1)(1)y f f x '-=-,即21(1)32y a b x a =++--, 因为切线l 在点(1())A f x ,处空过()y f x =的图象, 所以21()()[(1)]32g x f x a b x a =-++--在1x =两边附近的函数值异号,则 1x =不是()g x 的极值点.而()g x 321121(1)3232x ax bx a b x a =++-++++,且 22()(1)1(1)(1)g x x ax b a b x ax a x x a '=++-++=+--=-++.若11a ≠--,则1x =和1x a =--都是()g x 的极值点.所以11a =--,即2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--.解法二:同解法一得21()()[(1)]32g x f x a b x a =-++-- 2133(1)[(1)(2)]322a x x x a =-++-+. 因为切线l 在点(1(1))A f ,处穿过()y f x =的图象,所以()g x 在1x =两边附近的函数值异号,于是存在12m m ,(121m m <<).当11m x <<时,()0g x <,当21x m <<时,()0g x >; 或当11m x <<时,()0g x >,当21x m <<时,()0g x <. 设233()1222a a h x x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭,则 当11m x <<时,()0h x >,当21x m <<时,()0h x >; 或当11m x <<时,()0h x <,当21x m <<时,()0h x <. 由(1)0h =知1x =是()h x 的一个极值点,则3(1)21102ah =⨯++=, 所以2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--. 例4.(2006年安徽卷)若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++= [考查目的]本题主要考查函数的导数和直线方程等基础知识的应用能力. [解答过程]与直线480x y +-=垂直的直线l 为40x y m -+=,即4y x =在某一点的导数为4,而34y x '=,所以4y x =在(1,1)处导数为4,此点的切线为430x y --=. 故选A.例5. ( 2006年重庆卷)过坐标原点且与x 2+y 2 -4x +2y +25=0相切的直线的方程为 ( )A.y =-3x 或y =31x B. y =-3x 或y =-31x C.y =-3x 或y =-31x D. y =3x 或y =31x[考查目的]本题主要考查函数的导数和圆的方程、直线方程等基础知识的应用能力. [解答过程]解法1:设切线的方程为,0.y kx kx y =∴-= 又()()()22521,2,1.2x y -++=∴-圆心为213830., 3.3k k k k +-=∴==- 1,3.3y x y x ∴==-或故选A.解法2:由解法1知切点坐标为1331(,),,,2222⎛⎫- ⎪⎝⎭由()()//22////113231(,)(,)22225(2)1,22(2)210,2.113,.313,.3x xx x x x x y x y y x y y k y k y y x y x -⎛⎫⎡⎤-++= ⎪⎣⎦⎝⎭∴-++=-∴=-+∴==-==∴=-=故选A.例6.已知两抛物线a x y C x x y C +-=+=2221:,2:, a 取何值时1C ,2C 有且只有一条公切线,求出此时公切线的方程.思路启迪:先对a x y C x x y C +-=+=2221:,2:求导数.解答过程:函数x x y 22+=的导数为22'+=x y ,曲线1C 在点P(12112,x x x +)处的切线方程为))(2(2)2(11121x x x x x y -+=+-,即 211)1(2x x x y -+= ①曲线1C 在点Q ),(222a x x +-的切线方程是)(2)(222x x x a x y --=+--即a x x x y ++-=2222 ② 若直线l 是过点P 点和Q 点的公切线,则①式和②式都是l 的方程,故得1,1222121+=--=+x x x x ,消去2x 得方程,0122121=+++a x x若△=0)1(244=+⨯-a ,即21-=a 时,解得211-=x ,此时点P 、Q 重合.∴当时21-=a ,1C 和2C 有且只有一条公切线,由①式得公切线方程为14y x =- .考点3 导数的应用中学阶段所涉及的初等函数在其定义域内都是可导函数,导数是研究函数性质的重要而有力的工具,特别是对于函数的单调性,以“导数”为工具,能对其进行全面的分析,为我们解决求函数的极值、最值提供了一种简明易行的方法,进而与不等式的证明,讨论方程解的情况等问题结合起来,极大地丰富了中学数学思想方法.复习时,应高度重视以下问题: 1.. 求函数的解析式; 2. 求函数的值域; 3.解决单调性问题; 4.求函数的极值(最值); 5.构造函数证明不等式. 典型例题 例7.(2006年天津卷)函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( )A .1个B .2个C .3个D . 4个[考查目的]本题主要考查函数的导数和函数图象性质等基础知识的应用能力. [解答过程]由图象可见,在区间(,0)a 内的图象上有一个极小值点. 故选A.例8 .(2007年全国一)设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围.思路启迪:利用函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值构造方程组求a 、b 的值.解答过程:(Ⅰ)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=⎧⎨++=⎩,.解得3a=-,4b =.(Ⅱ)由(Ⅰ)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--.当(01)x ∈,时,()0f x '>; 当(12)x ∈,时,()0f x '<; 当(23)x ∈,时,()0f x '>.所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+.则当[]03x ∈,时,()f x 的最大值为(3)98f c =+. 因为对于任意的[]03x ∈,,有2()f x c <恒成立, 所以 298c c +<,解得1c <-或9c >,因此c 的取值范围为(1)(9)-∞-+∞ ,,.例9.函数y x x =+-+243的值域是_____________.思路启迪:求函数的值域,是中学数学中的难点,一般可以通过图象观察或利用不等式性质求解,也可以利用函数的单调性求出最大、最小值。
(高手必备)高考导数大题中最常用的放缩大法相信不少读者在做高考导数解答题时都有这样的感悟,将复杂的函数求导,再对导函数求导,再求导,然后就没有然后了......如果懂得了最常见的放缩,如:人教版课本中常用的结论⑴sin ,(0,)x x x π<∈,变形即为sin 1x x<,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1.⑵1x e x >+⑶ln(1)x x >+⑷ln ,0x x x e x <<>.将这些不等式简单变形如下: exx ex e x e x x x x x 1ln ,,1,1ln 11-≥≥+≥-≤≤-那么很多问题将迎刃而解。
例析:(2018年广州一模)x e x x f x x ax x f 2)(,0,1ln )(⋅≤>++=若对任意的设恒成立,求a 的取值范围。
放缩法:由可得:1+≥x e x 2)1(ln 1ln 2)1(ln )1(ln 1ln ln 22=+-++≥+-=+-=+-+x x x x x x e x x xe x x e x x x x高考中最常见的放缩法可总结如下,供大家参考。
第一组:对数放缩(放缩成一次函数)ln 1x x ≤-,ln x x <,()ln 1x x +≤ (放缩成双撇函数)()11ln 12x x x x ⎛⎫<-> ⎪⎝⎭,()11ln 012x x x x ⎛⎫>-<< ⎪⎝⎭, )ln 1x x<>,)ln 01x x ><<, (放缩成二次函数)2ln x x x ≤-,()()21ln 1102x x x x +≤--<<,()()21ln 102x x x x +≥-> (放缩成类反比例函数)1ln 1x x≥-,()()21ln 11x x x x ->>+,()()21ln 011x x x x -<<<+, ()ln 11x x x +≥+,()()2ln 101x x x x +>>+,()()2ln 101x x x x +<<+第二组:指数放缩(放缩成一次函数)1x e x ≥+,x e x >,x e ex ≥, (放缩成类反比例函数)()101x e x x ≤≤-,()10x e x x<-<, (放缩成二次函数)()21102x e x x x ≥++>,2311126x e x x x ≥+++, 第三组:指对放缩()()ln 112x e x x x -≥+--=第四组:三角函数放缩()sin tan 0x x x x <<>,21sin 2x x x ≥-,22111cos 1sin 22x x x -≤≤-. 第五组:以直线1y x =-为切线的函数ln y x =,11x y e -=-,2y x x =-,11y x=-,ln y x x =. 拓展阅读:为何高考中总是考这些超越函数呢?和x e xln 因为高考命题专家是大学老师,他们站在高观点下看高中数学,一览无遗。
高中数学导数定义解题技巧导数是高中数学中的一个重要概念,它是微积分的基础,也是解决各种数学问题的关键。
在解题过程中,正确理解和应用导数的定义是至关重要的。
本文将介绍一些高中数学中常见的导数定义解题技巧,并通过具体例子进行说明,帮助高中学生和他们的父母更好地掌握这些技巧。
1. 导数的定义首先,我们来回顾一下导数的定义。
对于函数f(x),在点x处的导数定义为:f'(x) = lim┬(h→0)〖(f(x+h)-f(x))/h〗其中,lim表示极限,h表示自变量x的增量。
这个定义可以理解为函数在某一点的瞬时变化率。
2. 利用导数的定义求导数在解题过程中,有时需要利用导数的定义来求函数的导数。
例如,对于函数f(x) = x^2,我们可以利用导数的定义来求它在任意点x处的导数。
根据导数的定义,我们有:f'(x) = lim┬(h→0)〖((x+h)^2-x^2)/h〗展开计算后,得到:f'(x) = lim┬(h→0)(2x+h)由于极限运算中h趋于0时,2x+h的变化可以忽略不计,所以最终结果为:f'(x) = 2x这说明函数f(x) = x^2的导数为2x。
3. 利用导数的定义解决极限问题导数的定义还可以用来解决一些极限问题。
例如,求函数f(x) = sinx在x = 0处的导数。
根据导数的定义,我们有:f'(0) = lim┬(h→0)〖(sin(0+h)-sin0)/h〗展开计算后,得到:f'(0) = lim┬(h→0)(sinh)/h利用极限的性质,我们可以得到:f'(0) = lim┬(h→0)(sinh)/h = lim┬(h→0)sinh = sin0 = 0这说明函数f(x) = sinx在x = 0处的导数为0。
4. 利用导数的定义解决最值问题导数的定义还可以用来解决一些最值问题。
例如,求函数f(x) = x^2在区间[0, 1]上的最大值。
高中数学导数题解题技巧导数是高中数学中的一个重要概念,它在数学和物理等领域中有着广泛的应用。
在解题过程中,熟练掌握导数的相关技巧是非常重要的。
本文将从常见的导数题型入手,介绍一些解题技巧,帮助高中学生更好地应对导数题。
1. 导数的定义首先,我们需要了解导数的定义。
导数表示函数在某一点处的变化率,可以用极限的概念表示。
对于函数y=f(x),在点x处的导数可以表示为:f'(x) = lim(h→0) [f(x+h) - f(x)] / h这个定义可以帮助我们计算函数在某一点处的导数。
2. 导数的基本性质在解题过程中,我们需要掌握导数的一些基本性质。
首先是导数的线性性质,即对于函数f(x)和g(x),以及常数a和b,有:[f(x) + g(x)]' = f'(x) + g'(x)[a*f(x)]' = a*f'(x)[f(x)*g(x)]' = f'(x)*g(x) + f(x)*g'(x)这些性质可以帮助我们简化导数的计算过程。
3. 常见的导数题型接下来,我们将介绍一些常见的导数题型,并给出相应的解题技巧。
3.1 多项式函数的导数对于多项式函数f(x) = a_n*x^n + a_(n-1)*x^(n-1) + ... + a_1*x + a_0,其中a_i为常数,n为正整数,导数可以通过对每一项求导得到。
例如,对于函数f(x) = 3x^2 + 2x + 1,求导后得到:f'(x) = 6x + 2在求导过程中,注意常数项的导数为0。
3.2 指数函数的导数指数函数f(x) = a^x,其中a为正实数且不等于1,导数可以通过对指数部分求导得到。
例如,对于函数f(x) = 2^x,求导后得到:f'(x) = ln(2) * 2^x其中ln表示自然对数。
3.3 对数函数的导数对数函数f(x) = log_a(x),其中a为正实数且不等于1,导数可以通过对函数取导数得到。
导数隐零点问题处理的8大技巧(附30道经典题目)导数隐零点问题处理的8大技巧如下:1.分类讨论:对于含参数的零点问题,常常需要根据参数的不同取值范围进行分类讨论。
2.构造函数:利用导数研究函数的单调性,进而研究不等式恒成立问题。
3.分离参数:通过分离参数将参数与变量分开,转化为求最值问题。
4.数形结合:利用数形结合思想,将函数图像与x轴的交点问题转化为求函数的最值问题。
5.转化与化归:将复杂问题转化为简单问题,将陌生问题转化为熟悉问题。
6.构造法:通过构造新的函数或方程,将问题转化为已知的问题进行求解。
7.放缩法:通过对不等式进行放缩,将问题转化为易于处理的形式。
8.判别式法:通过引入判别式,将方程问题转化为二次方程的判别式问题。
以下是30道经典题目,以供练习:1.已知函数f(x)=x3−3x2+5,则f(x)的单调递增区间为( )A.(−∞,1)和(2,+∞)B.(−∞,−1)和(1,+∞)C.(−∞,−1)和(2,+∞)D.(−∞,2)和(1,+∞)2.已知函数f(x)=x3−3x2+5,则f(x)在区间[−2,3]上的最大值是____.3.已知函数f(x)=x3+ax2+bx+c在x=1和x=−21时取极值.(1)求a,b的值;(2)求函数极值.4. 已知函数f(x)=x3−3ax2+4,若x∈[0,2]时,f(x)的最大值为417,求实数a的取值范围.5. 已知函数f(x)=ln x−mx+m有唯一的零点,则实数m的取值范围是____.6. 已知函数 f(x) = x^3 - 3ax^2 + 3x + 1,若 x ∈ [0,1] 时,f(x) ≤ f(0) 恒成立,则 m 的取值范围是 _______.7. 已知函数 f(x) = ax^3 + bx^2 - 3x (a、b ∈ Z) 在 x = ±1 和x = ±2 时取极值.(1) 求 f(x) 的解析式;(2) 求 f(x) 的单调区间和极值;8. 已知函数 f(x) = x^3 + ax^2 + bx + c 在 x = ±1 和 x = ±3时取极值.(1) 求 a,b 的值;(2) 求 f(x) 的单调区间和极值.1.已知函数 f(x) = x^3 - 3x^2 + 4 在 [0,3] 上的最大值和最小值分别为 M, N,则 M + N = _______.2.设f(x)=x3−3x2+4,则f(−x)+f(x)的值等于____3.已知函数f(x)=x3−3x2+4,则f(x)在(−3,2)上的最大值是____.4.已知函数f(x)=x3−3x2+4,则f(x)在区间[−1,3]上的最大值是____.5.已知函数f(x)=x3−3ax2+bx+c在x=±1时取极值,且函数y=f(x)图象过原点.(1) 求函数y=f(x)的表达式;(2) 求函数的单调区间和极值;14. 已知函数 f(x) = x^3 - 3ax^2 + bx 在 x = -1 和 x = 3 时取极值.(1) 求 a,b 的值;(2) 求 f(x) 在区间 [-2,4] 上的最大值和最小值.15. 已知函数 f(x) = ax^3 + bx^2 + c 在 x = ±1 和 x = ±2 时取极值.(1) 求 a,b 的值;(2) 若 f(x) 的最大值为 8,求 c 的值.16. 已知函数 f(x) = ax^3 + bx^2 + c 在 x = ±1 和 x = ±√2 时取极值,且 f(-2) = -4.(1) 求 a,b,c 的值;(2) 求 f(x) 在区间 [-3,3] 上的最大值和最小值.17. 已知函数 f(x) = x^3 - 3ax^2 + b (a > 0),若 f(x) 在区间[-1,0] 上是减函数,则 a 的取值范围是 _______.18. 若关于 x 的方程 x^3 - 3ax + a^3 = 0 有实根,则实数 a 的取值范围是 _______.19. 若关于 x 的方程 x^3 - ax^2 + b = 0 有三个不同的实根,则 a,b 应满足的条件是 _______.20. 若关于 x 的方程 x^3 - ax^2 + b = 0 有三个不同的实根,则 b应满足的条件是 _______.1.函数 f(x) = x^3 - 3x^2 + 4 在区间 [-1,3] 上的最大值和最小值分别为 _______.2.已知函数 f(x) = x^3 - 3x^2 + 4,若实数 x,y 满足 f(x) +3x^2 ≤ f(y) + 3y^2,则 x + y 的取值范围是 _______.3.已知函数 f(x) = x^3 - 3x^2 + 4,若实数 x,y 满足 f(x) ≤f(y) + 3,则 x + y 的取值范围是 _______.4.若关于 x 的方程 x^3 - ax^2 + b = 0 有三个不同的实根,则a,b 应满足的条件是 _______.5.已知函数 f(x) = x^3 - 3ax^2 + b 在 x = -1 和 x = 3 时取极值.(1) 求 a,b 的值;(2) 求 f(x) 在区间 [-3,3] 上的最大值和最小值.26. 若关于 x 的方程 x^3 - ax^2 + b = 0 有三个不同的实根,则 b 应满足的条件是 _______.27. 若关于 x 的方程 x^3 - ax^2 + b = 0 有两个不同的实根,则 a,b 应满足的条件是 _______.28. 若关于 x 的方程 x^3 - ax^2 + b = 0 有两个不同的实根,则 a,b 应满足的条件是 _______.29. 若关于 x 的方程 x^3 - ax^2 + b = 0 有两个相等的实根,则 a,b 应满足的条件是 _______.30. 若关于 x 的方程 x^3 - ax^2 + b = 0 有三个相等的实根,则 a,b 应满足的条件是 _______.。
导数-大题导数在大题中一般作为压轴题出现,其复杂的原因就在于对函数的综合运用:1.求导,特别是复杂函数的求导2.二次函数(求根公式的运用)3.不等式:基本不等式、均值不等式等4.基本初等函数的性质:周期函数、对数函数、三角函数、指数函数5.常用不等式的巧妙技巧:1/2<ln2<1,5/2<e<3导数大题最基本的注意点:自变量的定义域1.存在性问题2.韦达定理的运用3.隐藏零点4.已有结论的运用5.分段讨论6.分类讨论7.常见不等式的应用8.导数与三次函数的利用1. 存在性问题第(1)问有两个未知数,一般来说,双未知数问题要想办法合并成一个未知数来处理合并成一个未知数后利用不等式1.存在性问题(2)问将有且仅有一个交点分成两部分证明,分别证至多存在一个交点与必然存在交点:证明必然存在交点是单纯的找“特殊点”问题高考导数大题中的存在性问题,最后几乎都会变成零点的存在性问题要点由于只关注零点的存在性,因此就没有必要对t(x)求导讨论其单调性,直接使用零点定即可。
(2)问先对要证明的结论进行简单变形:证毕韦达定理的使用(1)问是常规的分类讨论问题隐零点设而不求,代换整体证明对称轴已经在-1右侧,保证有零点且-1处二次函数值大于0两道例题都是比较简单的含参“隐零点”问题,总之就是用零点(极值点)反过来表示参数再进行计算一些比较难的题目,一般问题就会进行一定提示,如利用(2)问提示(3)问,其难点就在于知道要利用已有结论,但无从下手第(1)问分类讨论问题,分离变量做容易导致解题过于复杂(2)问将不等式两边取对数之后思路就很清晰了(1)(2)分别证明两个不等号即可化到已知的结论上()()()()()()()()()()()()''''1101,0,1,0;1,,00,11,110f x x xx f x x f x x f x f x x x x f x f =->=∈>∈+∞<∈∈+∞==为的零点于是在上单调递增,在上单调递减是的极大值点,(3)问需要利用(2)问结论才能比较顺利的证明利用(2)中结论第(1)问是一个比较简单的存在型问题分段)高考导数大题除求导外,隐藏零点、韦达定理、极值点偏移、二,三阶导等技巧,都是附加的技巧,导数的核心,是分类讨论的考察,高考题多数绕不开分类讨论。
二阶导数的题型及解题技巧
二阶导数是指一个函数的导函数的导数,也可以理解为对函数的自变量求导两次。
以下是一些常见的二阶导数的题型及解题技巧:
1. 求给定函数的二阶导数:
- 首先求一阶导数;
- 然后将一阶导数再次求导。
2. 求函数的二阶导数后的特定值:
- 先求出二阶导数;
- 再将特定值代入二阶导数中进行计算。
3. 求函数的二阶导数为零或不存在的点:
- 先求出二阶导数;
- 然后将二阶导数等于零或不存在的情况求解。
4. 求曲线的凹凸性:
- 首先求出二阶导数;
- 然后将二阶导数的正负性讨论出曲线的凹凸性。
5. 求函数的极值点:
- 首先求出一阶导数,并令其等于零求解得到极值点;
- 然后再求出二阶导数,并将极值点代入二阶导数,判断其正负性来确定极值点的类型。
解题技巧:
- 在求解二阶导数时,要注意使用链式法则或换元法;
- 注意一阶导数的自变量的取值范围,以避免产生不符合题意的解;
- 在讨论函数的凹凸性时,要注意判别函数的二阶导数的正负性;
- 在求极值点时,要使用二阶导数的信息来判别极值的类型(极大值或极小值);
- 注意二阶导数不存在的情况,例如函数可能在某些点上不可导。
总之,解决二阶导数的题型需要熟练掌握求导法则和函数的一阶导数的性质,以及能够灵活应用这些知识来解题。
高中导数题所有题型及解题方法在高中数学中,导数是一个非常重要的概念。
导数是描述曲线在某一点处的切线斜率的指标。
在高中数学中,学生需要掌握不同类型的导数题。
以下是高中导数题中的所有题型及解题方法:1.求函数的导数:这是最基本的导数问题。
对于一个函数,需要求出它的导数函数。
为此,需要使用导数的定义公式,即极限。
例如,对于函数f(x) = x^2 + 2x + 1,其导数是f’(x) = 2x + 2。
2.求函数的导数在某一点处的值:这个类型的问题需要计算函数在一定点处的导数值。
为此,需要使用导数的定义公式,并将x的值代入到函数中计算。
例如,对于函数f(x) = x^2 + 2x + 1,在x = 2处的导数值为f’(2) = 6。
3.求函数的极值:极值是函数在某一点处的最大值或最小值,即导数为0的点。
为了找到函数的极值,需要计算函数的导数,并找到导数为0的点。
例如,对于函数f(x) = x^3 - 3x^2 + 2x + 1,其导数为f’(x) =3x^2 - 6x + 2。
为了找到函数的极值,需要找到导数为0的点。
计算可得,x = 1或x = 2是导数为0的点。
因此,函数的极值为f(1) = 1和f(2) = 3。
4.求函数的拐点:拐点是函数曲线从凸向上到凹向上或从凸向下到凹向下的点。
为了找到函数的拐点,需要计算函数的二阶导数,即导数的导数。
例如,对于函数f(x) = x^3 - 3x^2 + 2x + 1,其一阶导数为f’(x) = 3x^2 - 6x + 2,二阶导数为f’’(x) = 6x - 6。
为了找到函数的拐点,需要找到二阶导数为0的点。
计算可得,x = 1是二阶导数为0的点。
因此,函数在x = 1处有一个拐点。
5.求函数与直线的交点:这个类型的问题需要找出函数和直线的交点。
为此,需要先将直线方程代入到函数中,然后解方程。
例如,对于函数f(x) = x^2 + 2x + 1和直线y = 3x - 1,将直线方程代入到函数中可得x^2 + 2x + 1 = 3x - 1。
高中数学导数经典题型解题技巧(运用方法)高中数学导数及其应用是高中数学考试的必考内容,而且是这几年考试的热点跟增长点,无论是期中·期末还是会考·高考,都是高中数学的必考内容之一。
因此,针对这两各部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们有更多·更好·更快的方法解决高中数学问题。
好了,下面就来讲解常用逻辑用语的经典解题技巧。
第一·认识导数概念和几何意义1.导数概念及其几何意义(1)了解导数概念的实际背景。
(2)理解导数的几何意义。
2.导数的运算(1)能根据导数定义求函数231(),,,,,y C C y x y x y x y y x======为常数的导数。
(2)能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。
(3)能求简单的复合函数(仅限于形如()f ax b +的复合函数)的导数。
3.导数在研究函数中的应用(1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)。
(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间了函数的最大值、最小值(其中多项式函数一般不超过三次)。
4.生活中的优化问题会利用导数解决某些实际问题5.定积分与微积分基本定理(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念。
(2)了解微积分基本定理的含义。
总结:先搞清楚导数概念以及几何意义,才能更好地运用其解题技巧!第二·导数运用和解题方法一、利用导数研究曲线的切线考情聚焦:1.利用导数研究曲线()的切线是导数的重要应y f x用,为近几年各省市高考命题的热点。
2.常与函数的图象、性质及解析几何知识交汇命题,多以选择、填空题或以解答题中关键一步的形式出现,属容易题。
解题技巧:1.导数的几何意义函数()y f x =在0x 处的导数()f x '的几何意义是:曲线()y f x =在点00(,())P x f x 处的切线的斜率(瞬时速度就是位移函数()s t 对时间t 的导数)。
1 / 13 导数题的解题技巧 【命题趋向】导数命题趋势: 导数应用:导数-函数单调性-函数极值-函数最值-导数的实际应用. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念.
例1.(辽宁卷)与方程221(0)xxyeex的曲线关于直线yx对称的曲线的方程为 A.ln(1)yx B.ln(1)yx C. ln(1)yx D. ln(1)yx [考查目的]本题考查了方程和函数的关系以及反函数的求解.同时还考查了转化能力 [解答过程]2221(0)(1)xxxyeexey,0,1xxe,
即:1ln(1)xeyxy,所以1()ln(1)fxx. 故选A. 例2. (湖南卷)设函数()1xafxx,集合M={|()0}xfx,P='{|()0}xfx,若MP,则实数a的取值范围是 ( )
A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力.
[解答过程]由0,,1;,1.1xaxaaxx当a>1时当a<1时
/
/22
11,0.11111.xxaxaxaayyxxxxa
综上可得MP时, 1.a
考点2 曲线的切线 (1)关于曲线在某一点的切线 求曲线y=f(x)在某一点P(x,y)的切线,即求出函数y=f(x)在P点的导数就是曲线在该点的切线的斜率. (2)关于两曲线的公切线 若一直线同时与两曲线相切,则称该直线为两曲线的公切线. 典型例题
例3.(2004年重庆卷)已知曲线y=31x3+34,则过点P(2,4)的切线方程是_____________.
思路启迪:求导来求得切线斜率. 解答过程:y′=x2,当x=2时,y′=4.∴切线的斜率为4. ∴切线的方程为y-4=4(x-2),即y=4x-4. 答案:4x-y-4=0. 例4.(2006年安徽卷)若曲线4yx的一条切线l与直线480xy垂直,则l的方程为( ) A.430xy B.450xy C.430xy D.430xy 2 / 13
[考查目的]本题主要考查函数的导数和直线方程等基础知识的应用能力. [解答过程]与直线480xy垂直的直线l为40xym,即4yx在某一点的导数为4,而34yx,所以4yx
在(1,1)处导数为4,此点的切线为430xy. 故选A.
例5. ( 重庆卷)过坐标原点且与x2+y2 -4x+2y+25=0相切的直线的方程为 ( )
A.y=-3x或y=31x B. y=-3x或y=-31x C.y=-3x或y=-31x D. y=3x或y=31x [考查目的]本题主要考查函数的导数和圆的方程、直线方程等基础知识的应用能力. [解答过程]解法1:设切线的方程为,0.ykxkxy
又22
5
21,2,1.2xy圆心为
22
2151,3830.,3.231kkkkkk
1,3.3yxyx或
故选A. 解法2:由解法1知切点坐标为1331(,),,,2222由
//22
//
//113231(,)(,)22225(2)1,22(2)210,2.113,.313,.3xxxxxx
xyxyyxyykykyyxyx
故选A. 例6.已知两抛物线axyCxxyC2221:,2:, a取何值时1C,2C有且只有一条公切线,求出此时公切线的方程. 思路启迪:先对axyCxxyC2221:,2:求导数.
解答过程:函数xxy22的导数为22'xy,曲线1C在点P(12112,xxx)处的切线方程为))(2(2)2(11121xxxxxy,即 211)1(2xxxy ① 曲线1C在点Q),(222axx的切线方程是)(2)(222xxxaxy即 axxxy2222 ② 若直线l是过点P点和Q点的公切线,则①式和②式都是l的方程,故得 1,1222121xxxx,消去2x得方程,0122121axx
若△=0)1(244a,即21a时,解得211x,此时点P、Q重合. 3 / 13
∴当时21a,1C和2C有且只有一条公切线,由①式得公切线方程为14yx . 考点3 导数的应用 中学阶段所涉及的初等函数在其定义域内都是可导函数,导数是研究函数性质的重要而有力的工具,特别是对于函数的单调性,以“导数”为工具,能对其进行全面的分析,为我们解决求函数的极值、最值提供了一种简明易行的方法,进而与不等式的证明,讨论方程解的情况等问题结合起来,极大地丰富了中学数学思想方法.复习时,应高度重视以下问题: 1.. 求函数的解析式; 2. 求函数的值域; 3.解决单调性问题; 4.求函数的极值(最值); 5.构造函数证明不等式. 典型例题 例7.(2006年天津卷)函数)(xf的定义域为开区间),(ba,导函数)(xf在),(ba内的图象如图所示,则函数)(xf在开区间),(ba内有极小值点( ) A.1个 B.2个 C.3个 D. 4个 [考查目的]本题主要考查函数的导数和函数图象性质等基础知识的应用能力. [解答过程]由图象可见,在区间(,0)a内的图象上有一个极小值点. 故选A.
例8. 设yfx()为三次函数,且图象关于原点对称,当x12时,fx()的极小
值为1,求出函数fx()的解析式. 思路启迪:先设fxaxbxcxda()()320,再利用图象关于原点对称确定系数. 解答过程:设fxaxbxcxda()()320,因为其图象关于原点对称,即fx() fx(),得
axbxcxdaxbxcxdbdfxaxcx3232300,,,即()
由fxaxc'()32, 依题意,fac'()12340, fac()121821,
解之,得ac43,. 故所求函数的解析式为fxxx()433. 例9.函数yxx243的值域是_____________. 思路启迪:求函数的值域,是中学数学中的难点,一般可以通过图象观察或利用不等式性质求解,也可以利用函数的单调性求出最大、最小值。此例的形式结构较为复杂,采用导数法求解较为容易。
解答过程:由24030xx得,x2,即函数的定义域为[,)2.
yxxxxxx'12412323242243,
又2324282324xxxxx, 当x2时,y'0,
函数yxx243在(,)2上是增函数,而f()21,yxx243的值域是[,)1.
例10.(2006年天津卷)已知函数cos163cos3423xxxf,其中,Rx为参数,且20.
abx
y)(xfy
O 4 / 13
(1)当时0cos,判断函数xf是否有极值; (2)要使函数()fx的极小值大于零,求参数的取值范围; (3)若对(2)中所求的取值范围内的任意参数,函数xf在区间aa,12内都是增函数,求实数a的取值范围. [考查目的]本小题主要考查运用导数研究三角函数和函数的单调性及极值、解不等式等基础知识,考查综合分析和解决问题的能力,以及分类讨论的数学思想方法. [解答过程](Ⅰ)当cos0时,3()4fxx,则()fx在(,)内是增函数,故无极值.
(Ⅱ)2'()126cosfxxx,令'()0fx,得12cos0,2xx.
由(Ⅰ),只需分下面两种情况讨论. ①当cos0时,随x的变化'()fx的符号及()fx的变化情况如下表: x (,0) 0 cos(0,)2 cos2 cos
(,)2
'()fx + 0 - 0 +
()fx ↗ 极大值 ↘ 极小值 ↗
因此,函数()fx在cos2x处取得极小值cosf()2,且3cos13()cos2416f. 要使cos()02f,必有213cos(cos)044,可得30cos2. 由于30cos2,故3116226或. ②当时cos0,随x的变化,'()fx的符号及()fx的变化情况如下表: x cos(,)2 cos2 cos
(,0)
2
0 (0,)
'()fx + 0 - 0 +
()fx 极大值 极小值
因此,函数()0fxx在处取得极小值(0)f,且3(0)cos.16f 若(0)0f,则cos0.矛盾.所以当cos0时,()fx的极小值不会大于零. 综上,要使函数()fx在(,)内的极小值大于零,参数的取值范围为311(,)(,)6226.
(III)解:由(II)知,函数()fx在区间(,)与cos(,)2内都是增函数。 由题设,函数()(21,)fxaa在内是增函数,则a须满足不等式组 210aaa 或 21121cos2aaa
由(II),参数时311(,)(,)6226时,30cos2.要使不等式121cos2a关于参数恒成立,必有3214a,即438a.
综上,解得0a或4318a.