船舶阻力小结
- 格式:doc
- 大小:196.00 KB
- 文档页数:7
船舶工作总结船舶工作总结船舶工作是一项具有挑战性和复杂性的工作,需要良好的技术和管理能力。
在过去的一年里,我在一家船舶公司工作,并且收获了一些宝贵的经验和教训。
以下是我对过去一年船舶工作的总结和反思。
首先,作为一名船舶工程师,我必须具备全面的技术知识和技能。
我需要熟悉船舶的结构和系统,包括机械设备、电气设备和船舶控制系统等。
在过去的一年里,我参与了许多船舶的维修工作和故障排除,这让我更加熟悉和了解了船舶的各种设备。
同时,我还学习了新的技术,如船舶自动化系统和节能设备等,以提高船舶的性能和节约能源。
通过这些经验,我提高了我解决问题和应对突发状况的能力。
其次,船舶工作需要良好的管理和沟通能力。
在船舶上,工作人员来自不同的国家和文化,他们有不同的语言和习惯。
因此,我必须学会有效地沟通和协调工作,以确保船舶的运营顺利进行。
在过去的一年里,我学会了倾听和理解来自不同背景和经验的人的观点,同时也学会了解释和传达自己的想法。
这些技能对于船舶工作的成功至关重要。
此外,船舶工作对于安全和环境问题的重视也非常重要。
船舶是一个复杂的系统,涉及到各种各样的危险和风险。
因此,我必须始终关注船舶的安全和环境保护。
在过去的一年里,我参与了船舶的安全培训和紧急情况演练,提高了我应对突发情况和保护船舶的能力。
同时,我还学习了船舶的环境管理体系,如废水处理和废气排放控制等,以确保船舶的运营符合环境保护的要求。
最后,船舶工作的关键是团队合作和互助精神。
在船舶上,工作人员必须相互配合和支持,以确保船舶的正常运营。
在过去的一年里,我和我的团队一起面对了许多挑战和困难,但是我们通过相互合作和互帮互助的精神,成功地解决了许多问题和挑战。
这个经验让我认识到,团队合作和互助精神是实现船舶工作的成功的关键。
总的来说,过去一年的船舶工作给了我很多宝贵的经验和教训。
我通过参与船舶的维修和故障排除工作,提高了我的技术能力和解决问题的能力。
同时,我也学会了有效管理和沟通,并关注船舶的安全和环境保护。
船舶阻力定义船舶运动过程中,流体作用于船体上,阻止其运动的力。
种类当船舶在水面上航行时,船体处于空气和水两种流体介质中运动,必然通受空气和水对船体的阻力。
为研究方便起见,船体总阻力按流体种类分成空气阻力和水阻力。
空气阻力是指空气对船体水上部分的反作川力。
水阻力是水对船体水下部分的反作用力。
进一步把水阻力分成船体在静水中航行时的静水阻力和波限中的阻力增加值(亦称为汹涛阻力)两部分。
静水阻力通常分成裸船体阻力和附体阻力两部分。
所谓附体阻力是指突出于裸船体之外的附属体如舵、舭龙骨、轴支架等所增加的阻力值。
根据这种处理力法,船舶在水中航行时所受到的阻力通常分为两大部分:一是裸船体在静水中所受到的裸船体阻力,另一部分是附加阻力,包括空气阻力、汹涛阻力和附体阳力。
对于常规船型,附体阻力通常仅占船舶阻力的很小部分,故常常通过船模阻力试验确定总阻力后,按经验公式乘以某个适当系数以获得附体阻力的值。
对于特殊船型,如有较大附体的非常规船型(特殊作业船、潜水器、救生船、探测船、水下采矿船等),附加阻力可能较大,需对带有附体的船模进行试验予以确定。
试验中需注意因缩尺船模的附体较小所产生的尺度效应,要求船模尽可能大。
工程中初步估算时常用经验统计数据,结合具体情况作适当修正。
目前尚无有效的理论算法。
在船舶设计中,常用附体阻力系数估计附体阻力。
为减小附体阻力,附体形状应尽可能采用流线型。
船长对阻力的影响船长对阻力的影响在保持排水量不变时,改变船长必然引起L/B及L/▽1/3的变化,当排水量一定时,选用较大的船长L,则B,d,C b必然要作适当的减小及L/B,L/▽1/3随之增加。
随着L/B或L/▽1/3乃的增加,船体变得瘦长,船体型线的纵向曲率变小,船体兴波区域的型线变得平直,兴波作用趋于和缓,波高变低,兴波作用所消耗的能量减少,所以兴波阻力随着变小。
同时由于船长增加以后,尾部型线变平顺减少了旋涡的产生,从而降低了旋涡阻力。
船舶阻⼒与船舶推进1知识讲解船舶阻⼒与船舶推进1⼀、船舶阻⼒总论第⼀部分:主要知识点⼀、船舶快速性的含义1、概念:船舶尽可能消耗较⼩的主机功率以维持⼀定航⾏速度的能⼒。
或者说,船舶快速性是在给定主机功率时,表征船舶航⾏速度⾼低的⼀种性能。
对⼀定的船舶在给定主机功率时,能达到的航速较⾼者,谓之快速性好,反之为差;或者,对⼀定的船舶要求达到⼀定航速时,所需主机功率⼩者,谓之快速性好,反之则否。
2、船舶能达到航速的⾼低取决于:它所受阻⼒的⼤⼩、主机功率⼤⼩和推进效率⾼低这三个因素。
3、主要内容:船舶阻⼒和船舶推进两个⽅⾯。
4、推进器是指把发动机发出的功率转换为推船前进的动⼒的专门装置和机构。
⼆、船舶阻⼒的分类裸船体阻⼒静⽔阻⼒船舶阻⼒⽔阻⼒附体阻⼒船舶阻⼒汹涛阻⼒附加阻⼒空⽓阻⼒*汹涛阻⼒:波浪中的⽔阻⼒增加值。
三、船体阻⼒的成因和分类1、成因船体在静⽔中运动时所受到的阻⼒与船体周围的流动现象密切有关。
1)兴波⼀般⾸柱后缘为波峰,尾柱前缘为波⾕,改变了船体周围的⽔压⼒分布,船⾸的波峰使⾸部压⼒增加,⽽船尾的波⾕使尾部压⼒降低,于是产⽣⾸尾流体动压⼒差(与船航⾏⽅向相反)。
这种由兴波引起的压⼒分布改变所产⽣的阻⼒称为兴波阻⼒,⼀般⽤R w 表⽰。
从能量观点看,船体兴起的波浪具有⼀定的能量,这些能量必然由船体供2)边界层当船体运动时,由于⽔的粘性,在船体周围形成“边界层”,从⽽使船体运动过程中受到粘性切应⼒作⽤,亦即船体表⾯产⽣了摩擦⼒,它在运动⽅向的合⼒便是船体摩擦阻⼒,⽤R f 表⽰。
从能量观点看,船体携带边界层⽔流⼀起前进,边界层⽔流质点不断消耗能量体现为摩擦阻⼒。
补充:⽜顿内摩擦定律dv dy τµ=。
µ:流体的动⼒粘性系数,2/N s m ?;/νµρ=:流体的运动粘性系数,2/m s 。
ν和ρ均为⽔温的函数。
3)边界层分离在船体曲度骤变处,特别是较丰满船的尾部由于⽔具有粘性常会产⽣旋涡,旋涡处的⽔压⼒下降,从⽽改变了沿船体表⾯的压⼒分布情况,使⾸压⼒⾸部⽔压⼒尾部⽔压⼒⼤于尾压⼒。
船舶原理备考知识点总结一、船舶的基本概念1. 船舶的定义:船舶是用于在水上进行运输和航行的交通工具,通常由船体、动力装置、船舱以及导航和控制设备组成。
2. 船舶的分类:根据用途和船体特征,船舶可分为货船、客船、油船、拖船、渔船等各种类型。
3. 船舶的结构:船体是船舶的基本结构,通常由船首、船艏、船中、船艉等部分组成。
船体的外形和结构对船舶的性能有着重要的影响。
二、船舶的稳性1. 船舶的稳性定义:船舶的稳性是指船舶在浮力和重力的作用下保持平衡的能力。
船舶的稳性对航行安全具有重要意义。
2. 船舶的稳性要素:船舶的稳定性要素包括浮力、重力、形心、重点、载重线等。
这些要素相互作用,决定了船舶的稳定性水平。
3. 船舶的稳性计算:船舶的稳性计算是通过考虑船体的形状、载重线位置、重心位置等因素,确定船舶在不同工况下的稳性状况。
稳性计算通常使用形心高度曲线和倾覆曲线等参数来表示。
三、船舶的阻力1. 船舶的阻力概念:船舶在航行中受到水流的阻碍,产生阻力。
阻力包括水动力阻力、摩擦阻力、波浪阻力等。
2. 船舶的阻力影响因素:船舶的阻力受到船体形状、航速、水流状况、载重线位置等多种因素的影响。
船舶的阻力与船舶的动力消耗和航行速度息息相关。
3. 船舶的阻力计算:船舶的阻力计算主要通过实验和模型试验进行。
船舶的阻力计算是船舶设计和航行性能评估的重要依据。
四、船舶的推进1. 船舶的推进基本原理:船舶的推进是利用动力装置产生推力,推动船舶在水中前进。
常见的推进方式包括螺旋桨推进、水射推进、水轮推进等。
2. 船舶的推进装置:螺旋桨是最常用的船舶推进装置,它通过叶片的旋转产生推力。
水射推进和水轮推进则是在特定船舶类型和工况下使用的推进方式。
3. 船舶的推进性能评估:船舶的推进性能评估包括推进效率、推进功率、航速、加速度等指标。
这些指标反映了船舶在不同工况下的推进性能表现。
五、船舶的操纵1. 船舶的操纵原理:船舶的操纵是通过操舵装置控制船舶航向,以实现转向、停泊、靠泊等操作。
第七章 船舶阻力船舶快速性:船舶消耗较小功率,维持一定航行速度的性能。
由船舶阻力和船舶推进两部分组成。
第一节 船舶阻力的分类及成因船舶阻力构成:空气阻力仅占其总阻力的2%~4%一、船体阻力的分类及成因1.按产生阻力的物理性质分类t w f pv R R R R =++船体总阻力=兴波阻力+摩擦阻力+粘压阻力(漩涡阻力)1)兴波阻力的成因:根据伯努利方程,当水流流经船体时,随着船长方向流速的变化,水面高度也会起变化。
在船舶首尾两端的速度最低处,产生水位上升,而在船体中部速度最高区域内,产生水位下降,这就是形成船波的原因。
伯努利方程:g u g p Z g u g p Z 2//2//22222111++=++ρρ首横波自首柱后一波峰开始,尾横波自尾柱前一波谷开始船首的波峰使首部压力增加,而船尾的波谷使尾部压力降低,于是产生首尾流体动压力差。
这种由兴波引起压力分布的改变所产生的阻力称为兴波阻力。
从能量观点来解释。
船行波必具有一定能量,这个能量只能由船舶克服流体阻力作功而转化出来,波浪的存在正说明了兴波阻力的存在。
2)摩擦阻力的成因:由于流体的粘性,水质点沿着船体表面运动,构成了阻碍船舶运动的力。
3)粘压阻力的成因:理想流体(无黏性)x 轴方向上来流的速度、压力变化水质点远处为V =V 0,接近A 点V 逐渐变小,到达A 点V =0,过A 点分流向后V 逐渐增大,到达C 点,V 达到最大值V 理,过C 点V 逐渐变小,到达B点V =0支流汇合,离开B 点V 逐渐增大恢复为V 0。
压力分布如曲线I.作用在前后体上的合力相等,阻力为零。
实际流体(有黏性)x 轴方向上来流的速度、压力变化由于黏性形成边界层(流速受到影响的水层)。
当水质点到达C 点,V 达到最大值V 实<V 理,由于动能较小,到达D 点V =0,过D 点在压力差的作用下水质点回流,形成许多不稳定的旋涡并与水流一起被冲向船后方。
旋涡的产生使船尾部压力降低,从而使船体沿船长方向的压力分布发生变化,即加大了船首尾压力差(压力分布如曲线Ⅲ)产生了阻力。
1.船舶受力:1地球引力2浮力3流体动力4推进器推力2.船舶阻力:船舶受到流体作用在船舶运动相反方向上的力3.船舶阻力+传播推进=快速性船舶快速性:尽可能消耗较少的主机功率以维持一定航速的能力4.船舶性能:稳性、浮性、抗沉性、快速性、操纵性、耐波性5.船舶阻力曲线:船舶阻力随航速变化的曲线6.1海里/时(节)=1.852公里/时=0.5144m/s1米/秒=3.6km/h=1.942节雷诺数:Re=u L/V 长度弗劳德数:体积弗劳德数:gL UFr =水深弗劳德数:31.∇=∇g U Fr hg U Fr h .=7.船舶航态:1排水航行状态Fr<1.02过渡状态1.0<Fr <3.0(护卫、巡逻、高速双体、V 型快船)3滑行状态Fr>3.08.排水型船舶:低速船(Fr<0.2)中速(0.2<Fr<0.3)高速(Fr>0.3)9.随体坐标系:固接于船体上的坐标系10.航道:1深水航道2限制航道(a 浅水航道水深b 狭窄航道水深宽度)11.船舶阻力:1水阻力(a 静水阻力b 汹涛阻力)2空气阻力12.船体阻力R t :1摩擦阻力R f 2剩余阻力R r (a 粘压阻力F pv b 兴波阻力F w )13.湿表面积:船舶处于正浮状态时水线以下裸船体与水接触处表面积14.船体周围流场:主流区、边界层、边界层和由于边界层分离产生的漩涡区15.1摩擦阻力:船舶表面的剪切应力在船舶运动方向上的投影沿船体表面积分所得合力(能量观点):就某一封闭区,当船在静水中航行,由于粘性作用会带动一部分水运动(边界层),为携带它运动,船体不断提供能量给水,产生摩擦阻力。
2粘压阻力(形状阻力或漩涡阻力):由于粘性作用,船体前后压力不对称产生压力差即为粘压阻力(能量观点):船尾部形成漩涡要消耗能量,一部分能量被冲向船后方的同时,在船艉部又持续不断的产生漩涡,船体不断为流体提供能量,这部分能量消耗就是粘压阻力表现形式3兴波阻力:由于船体兴波导致船体压力前后分布不对称而产生的与船体运动方向相反的压力差,成为兴波阻力16.形状效应:船体表面弯曲影响使其摩擦阻力与相当平板计算所得结果的差别17.相当平板理论:假设具有相同长度,相同运动速度和湿表面积的船体和平板的摩擦力相同18.污底:海洋中的生物附着在船体表面,增加船体表面的粗糙度,使阻力增加很大19.船体表面粗糙度:1普通粗糙度:油漆面粗糙度,壳板平面2局部粗糙度:结构粗糙度20.减小摩擦阻力的方法:1减小湿表面积。
船舶设计原理期末总结船舶设计原理是船舶工程专业的核心课程之一,通过学习该课程,我对船舶设计的理论基础、运算方法以及实际应用有了更深入的了解。
在本学期的学习中,我逐步掌握了船舶设计原理的基本知识和方法,提高了船舶设计水平,为将来成为一名优秀的船舶设计师奠定了坚实的基础。
船舶设计原理课程主要涉及船舶的几何形状设计、稳性和浮力计算、阻力和推进性能计算、船舶结构设计等方面的内容。
这些内容相互关联,旨在使学生理解和掌握船舶设计的基本原理和方法。
本学期的学习过程中,我逐步学习了这些内容,并进行了实践训练,逐渐熟悉了船舶设计的整个流程。
在几何形状设计方面,我学习了船舶的线型设计原理和方式。
线型设计是船舶设计中最基础的环节,它决定了船舶的典型线型形态和外形。
通过学习线型设计的基本理论和方法,我了解了如何根据船舶的类型和用途确定合适的线型形态,并掌握了用CAD软件进行线型设计的基本技巧。
而在稳性与浮力计算方面,我学习了船舶的稳性原理和浮力计算方法。
稳性是船舶设计中一个非常重要的指标,它决定了船舶的平衡性和安全性。
通过学习稳性的基本原理和计算方法,我能够进行船舶的稳性计算,并根据计算结果对船舶的设计进行优化。
同时,我还学习了浮力计算的方法,了解了船舶的浮力原理,并掌握了浮力计算的基本步骤和技巧。
在阻力和推进性能计算方面,我学习了船舶的阻力和推进性能计算方法。
阻力和推进性能是衡量船舶性能的重要指标,对船舶的航行速度和燃油消耗有着重要影响。
通过学习阻力的计算原理和方法,我能够进行船舶阻力的计算,并根据计算结果对船舶的外形和排水量进行优化。
同时,我还学习了推进性能的计算方法,了解了船舶的推进原理,并掌握了推进性能计算的基本步骤和技巧。
在船舶结构设计方面,我学习了船舶的结构设计原理和计算方法。
船舶的结构设计是船舶设计的重要环节,它决定了船舶的强度和刚度。
通过学习结构设计的基本原理和计算方法,我能够进行船舶结构的设计,并根据设计结果对船舶的结构进行优化。
《船舶阻力》小结第一章 总论1)《船舶阻力》学科的研究任务与研究方法。
答:本课程着重介绍船舶航行时所受到的阻力的产生原因,各种阻力的特性,决定阻力的方法,影响阻力的因素以及减少阻力的途径等问题。
2)船舶在水中航行时,流场中会产生那些重要物理现象?它们与阻力有何关系?3)影响船舶阻力的主要因素有那些?4)各阻力成分及其占总阻力的比例与航速有何关系?低速船 摩擦阻力70%~80%,粘压阻力10%以上兴波阻力很小高速船 兴波阻力40%~50%,摩擦阻力50%粘压阻力5%5)物体在理想流体无界域中运动时有无阻力?应该注意的是压阻力中包含有粘压阻力和兴波阻力两类不同性质的力。
兴波阻力既使在理想流体中仍然存在,而摩擦阻力和粘压阻力两者都是由于水的粘性而产生的,在理想流体中并不存在。
6)何谓二物理系统的动力相似?7)何谓傅汝德(Froude )相似律?8)何谓雷诺(Reynolds )相似律?9) 船模试验中能否实现“全相似”?为什么?10)何谓“相应速度”(又称“相当速度”)?相应速度(模型)11)某海船航速)(0.100m L =,)(0.14m B =,)(0.5m T =,)(0.42003m =∇,湿面积s=5.90(m2),V=17.0(kts),阻力试验中所用船模缩尺比25=α,在相当速度下测得兴波阻力w R =9.8(n),试验水温为12︒C ,试求:i )船模的相当速度及排水量;ii )20︒C 海水中实船的兴波阻力w R 。
注:1节(knot)=1.852(公里/小时)12)设825.1V R f ∝,2V R vp ∝,4V R w ∝,在某一航速下,t f R R %80=,t vp R R %10=,t w R R %10=,试计算当速度增加50%后,f R 、vp R 、w R 各占总阻力的百分比。
第二章 粘性阻力1)何谓“相当平板”?相当平板:同速度、同长度、同湿表面相当平板假定:实船或者船模的摩擦阻力分别等于与其同速度,同长度,同湿面积的光滑平板摩擦阻力。
2)摩擦阻力与流态的关系如何?雷诺数对摩擦阻力的影响如何?书P1623)船体表面纵、横向曲度对摩擦阻力影响如何?当船体水流的平均速度较平板大,因此边界层厚度大部分(船前70%)比平板要小,这导致速度梯度和摩擦阻力增加。
但当船尾附近,船体边界层变厚,常伴有分离、旋涡现象,这时水流速度较小,摩擦阻力也随之减小。
4)何谓“水力光滑”?5)何谓“粗糙度补偿系数”?为何将其称为“换算补贴”或“相关补贴”?总的摩擦阻力系数可取为光滑平板摩擦阻力系数Cf 在加上一个与雷诺数无关的粗糙度补贴系数△Cf.我们一般取0.4*10-36)何谓“普遍粗糙度”?何谓“结构粗糙度”?普通粗糙度:又称为漆面粗糙度,主要是油漆面的粗糙度和壳板表面的凹凸不平等。
局部粗糙度:又称为结构粗糙度。
主要为焊接,铆钉,开孔以及突出物等粗糙度。
7)你了解哪些关于减少摩擦阻力的近代研究,自己有何设想?1.边界层控制办法2.采用聚合物溶液降阻剂3.仿生学观点4.微小沟槽(微槽薄膜)5.将船体抬出水面,从而使船体表面与水接触改变为与空气接触8)试述粘压阻力的成因与特性从能量观点来看,在尾部形成漩涡,另一部分漩涡则被冲向船的后方,同船尾处又继续不断产生的漩涡,这样船体就要不断地提供能量。
这部分能量损耗就是以粘压阻力的形式表现的。
9)为降低粘压阻力,对船型有何要求?1注意后体形状(1)(2)控制船尾水流的变化平缓2船型变化不宜过急,特别注意横剖面曲线A(x)前肩勿过于隆起,后肩勿过于内凹。
3对低速肥大船型,可采用球鼻艏以减少舭涡。
10)试证在边界层未分离情况下,粘压阻力仍存在。
(考虑利用边界层方程与Lagrange 积分) 对于流线型物体,甚至某些优良船型可能并不发生界层分离现象,但粘压阻力仍然存在,仅数值大小不同而已。
这是因为边界层的形成使尾部流线被排挤外移,因为流速较理想流体情况时必然增大,压力将下降。
这样尾部的压力值不会达到理想流体中的最大值,首尾仍旧存在压力差,同样会产生粘压阻力,但是与由于边界层分离而引起的粘压阻力相比要小得多。
11)你所了解的粘性阻力理论计算的研究现状与水平。
第三章 兴波阻力1)试从压力与能量两方面说明兴波阻力的成因。
压力观点P191最下面能量观点:船舶在水面航行时候产生的波浪,船体必须提供兴波的波能,即要克服兴波阻力作功,这就是从能量观点解释兴波阻力的由来。
2)试述船行波的形成特点。
船行波:在航行时随着一起前进,波不断向外传播,波浪留在船后。
(不断向外向后传播的波)3)兴波阻力曲线在一定傅汝德数范围内为何峰、谷迭现?书P199 3-20式由于COS(2πmL/λ)的数值在1.0~-1.0之间变动,因此兴波阻力在曲线上总是出现凸起和凹陷的“峰”和“谷”4)何谓傅汝德圆圈P理论?如何利用该理论判断船舶处于何种干扰区?(感受不需要掌握)5)熟悉平面进行波的基本理论及基本参数。
恩。
6)船体接近自由面的部分对兴波的影响大还是底部对兴波的影响大?为什么?由波浪理论知。
兴波主要发生在自由表面附近,而随浸深增加,波幅将按指数规律衰减。
SO~ 7)试述减少船舶兴波阻力的措施。
P2098)你所了解的船舶兴波阻力理论与数值计算的研究现状与水平。
9)对于破波阻力的看法及阻力分类的再认识————P215①破波阻力:破波阻力随Fn增大而增大,而且服从Froude的比较定律,即Fn数相等时,破波阻力系数相等。
②丰满船破波阻力较大,压载情况下破波阻力要比满载时大,因为压载时B/T值增大。
◆破波阻力除了与船型有关外,主要与B/T和进流段长度有关。
减少B/T,增大进流段长度,将能明显减少破波阻力。
◆理论和实验都证明,采用球鼻型船首能减少破波阻力,主要原因是减少船首波的陡直程度,而且球鼻型的船首在轻载(压载)时效果较大。
10)某长江双桨客货船水线长L wl=108m,方形系数C b=0.594,中横剖面系数C m=0.97。
试用傅汝德圆圈P理论判别航速V=15节,17.7节,19.5节时兴波阻力是否处于峰值或谷值附近。
第四章附加阻力1)附体阻力、空气阻力主要是何种阻力成分?为什么?附体阻力成分:摩擦阻力和粘压阻力。
空气阻力:摩擦阻力和粘压阻力2)波浪中的阻力增值的主要影响因素有那些?1不论船型的肥瘦情况如何,同一船舶的波浪中阻力增值随所遭遇的波高而增加,遭遇的波浪越大,船体运动愈剧烈,阻力越大。
2.波浪中的阻力增值主要取决于船舶的纵摇和升沉运动的强烈程度以及与波浪的相位关系。
3.若所遇波浪的波长在船长3/4以下者产生的纵摇和升沉运动都比较小,但等于或大于船长时所产生的运动将大为加剧,波浪中的阻力增值亦将显著增大3)何谓试航速度、服务速度、贮备功率?服务航速:常以持久功率(约为额定功率的85%~90%)在平均海况下船舶所能达到的航速称为服务航速。
试航速度:服务航速另加0.5~1.0KN 作为试航速度储备功率:在波浪中阻力增值,如要维持静水中的相同航速,则必须较原静水功率有所增加,所增加的功率称为储备功率。
第五章 船模阻力试验1)船池尺度如何确定?由船模的大小和速度而定2)船模阻力试验如何满足相似条件?Fr 满足相似3)何谓“激流”?由于试验是在部分相似的条件下所得的船模阻力值,因此必需借助于某些假定。
这里需要特别注意的是:船模阻力试验虽然无法满足于实船的雷诺数相等,但并不等于对船模试验的雷诺数Rem 没有任何要求。
实船船体周围边界层中的水流都是处于紊流状态,因而要求船模试验时边界层中的水流也要处于紊流状态,因此船模试验的雷诺数必须在2000000以上,并且安装激流装置,才能满足船模边界层中的水流处于紊流状态4)试述傅汝德(Froude )换算方法的本质及基本换算步骤。
5)何谓“尺度效应”?6)试比较傅汝德(Froude )换算方法及三因次换算方法。
应用弗如德的2因次换算时,由船模阻力试验测量的总阻力Rtm ,在扣除相当于平板摩擦阻力Rfm 得到剩余阻力Rrm,其中Rfm 由平板公式计算所得,模型试验所要求解决的只是Rrm.但在三因次换算中,需要靠船模试验解决的是兴波阻力Rwm 及形状因子(1+K )。
7)何谓“形状因子”?如何确定它?粘压阻力系数Cpv 与摩擦阻力系数Cf 之比是一常熟K 称之为形状因子。
8)某船长L=100(m), V=7.83(m/s),F r =0.25,相应船模的缩尺比25=α。
设流态转换的临界雷诺数R ncr =5×105,水的粘性系数ν=1.14×10-6(m 2/s),试以相当平板计算实船、船模层流段的长度范围。
9)某海船模型速度V m =1.75(m/s),)(1.6m L =,)(82.03m =∇,湿面积s=5.90(m 2),缩尺比20=α,测得总阻力R t =34.1(n),试验水温为20︒C ,试用傅汝德换算法求15︒C 海水中实船的总阻力。
10)某海船模型速度V m =1.54m/s ,F r =0.22,测得R t =43.1(n),模型湿面积s=9.0(m 2),缩尺比30=α,试验水温为20︒C ,试求实船在15︒C 下的有效功率。
11)不同船型比较时阻力数据应如何正确表达?第六章 船型对阻力的影响1)研究船型时应首先明确的基本观点是什么?要综合考虑各种因素,顾及总体布置。
工艺结构,快速性,耐波性,稳性,航区和经济性2)影响阻力的船型参数有那些?① 横剖面面积曲线(主要看:浮心位置Xc ,平行体长度Lp 和位置,以及前尾形状)② 满载水线面的形状(主要看:满载水线面积,满载水线平行中段,满载水线首尾形状,以及首端进流段)③ 首尾形状(包括:首尾横剖面形状,纵剖面形状)3)横剖面面积曲线包含那些特征参数?浮心纵向位置Xc ,平行中体长度Lp 和位置,以及曲线两端的形状4)为何在研究船型参数对阻力的影响时要按速度参数将船舶分为高、中、低速船型分别讨论?各类船舶的速度范围不同,因为他们的主要阻力成分亦不一样,所以船型设计所考虑的侧重面各不相同。
5)何谓仿射变化?仿射变化后船型特征变化如何?将船体表面上各对应坐标分别按一定比例放大或缩小,从而得到不同系列的船模。
6)试述船长对阻力的影响。
7)试述棱形系数对阻力的影响。
8)试述排水量长度系数对阻力的影响。
9)简述浮心纵向位置、平行中体长度、去流段及进流段长度对阻力的影响。
书上全是。
10)试述船舶加装球首的作用。
1减小兴波阻力2减小舭涡阻力3减小破波阻力11)简述方尾流动特征与减阻机理。
它的尾部纵剖线坡度缓和近于直线。
这样可使水流大致沿纵剖线方向流动,减少高速水流的扭转和弯曲程度,从而减少能量损失,改善阻力性能。
12)试证影响船舶阻力的六个船型参数B L 、T B 、P C 、B C 、M C 、3L ∇中独立参数不超过四个。