生理学 第二章生物电现象及肌肉收缩
- 格式:ppt
- 大小:10.39 MB
- 文档页数:93
生理学基础总结绪论I.人体生理学是研究机体正常生命活动规律的科学.2。
生命的基本特征有新陈代谢、兴奋性及生殖。
3.兴奋性是指活的组织或细胞对刺激发生反应的能力或特征。
刺激是指机体所处环垄因素的变化刺激条件包括强度、作用时间和强度一时问变化率三个要素反应是指接受刺激后机体活动状态的改变。
有两种表现形式,即兴奋和抑制阈强度(阈值)是指在作用时间和强度一时间变化率不变的情况下,引起组织发生反应的最小刺激强度。
等于阈强度的刺激为阈刺激,大于阈强度的刺激为阈上刺激,小于阈强度的刺激为阈下刺激4.体液是机体内液体的总称。
内环境是细胞直接接触和赖以生存的环境,即细胞外液.内环境稳态是指内环境的化学成分和理化特性保持相对稳定的状态。
5。
人体功能调节的方式有三种,即神经调节体液调节,自身调节.最重要的是神经调节,其基本方式是反射,结构基础是反射弧,包括感受器、传入神经、神经中枢、传出神经和效应器五部分。
三种调节各具特点:神经调节迅速、精确而短暂;体液调节作用缓慢、面积广泛、时间持久;自身调节幅度小,灵敏度低.回馈是由受控部分的回馈信息调整控制部分活动的作用,有正、负反馈两种。
正回馈调节是指受控部分的活动通过发出回馈信息,使反债调节与控制部分的原发作用一致,意义在于使生理过程不断加强,直至最终完成.负反馈调节是指受控部分的活动通过发出回馈信息,使回馈调节与控制部分的原发作用相反.意义在于维持机体内环境的稳态。
细胞的基本功能1。
细胞膜对物质的转运方式主要有:单纯扩散、易化扩散、主动转运、单纯扩散是只取决于膜两例物质浓度差进行转运的一种方式出胞和入胞作用易化扩散是物质借助细胞膜上特珠蛋白质的帮助,顺浓度梯度或电一化学梯度的转运过程。
分为载体转运和通道转运两种。
载体转运具有特异性、饱和性和争议抑制性;通道转运具有离子选择性和门控特性,又可分为化学门控信道、电压门控信道和机械门拉信道。
主动转运是物质逆电一化学梯度进行的转运,需要细胞提供能量包括原发性主动转运和发性主动转运.最重要的为钠一钾泵转运.出胞是指胞质内的大分子物质以分泌变泡的形式排出细胞的过程.入胞指细胞外某些物质团块借助于细胞形式吞噬泡或吞饮泡的方式。
第二章细胞的基本功能第一节细胞膜的跨膜物质转运功能一、膜的化学组成和分子结构<一>磷脂的分子组成以液态的脂质双分子层为基架,具有流动性<二>细胞膜蛋白质镶嵌或贯穿于脂质双分子层分类:表面蛋白、整合蛋白<三>细胞膜糖类多为短糖链,以共价键的形式与膜脂质或蛋白质结合,形成糖脂或糖蛋白.二、细胞膜的跨膜物质转运功能被动转运〔passive transport〕:指物质顺浓度或电位梯度的转运过程.不消耗细胞提供的能量.主动转运〔active transport〕:指物质逆浓度或电位梯度的转运过程.需消耗细胞提供的能量.1.单纯扩散simple diffusion脂溶性物质由膜的高浓度一侧向低浓度一侧移动的过程.影响因素:浓度差通透性特点:①不依靠特殊膜蛋白质的"帮助"②不需另外消耗能量、顺浓度差转运物质:O2、CO2、N2、<NH3>2CO、乙醇、类固醇类激素等少数几种.2.易化扩散facilitated diffusion〔1〕概念:一些非脂溶性或脂溶性非常小的物质,在膜蛋白质的"帮助"下,顺电化学梯度进行跨膜转运的过程分类:原发性主动转运〔简称:泵转运〕、继发性主动转运〔简称:联合转运〕〔1〕原发性主动转运primary active transport概念:指物质在细胞膜"生物泵"的帮助下逆浓度梯度或电位梯度的转运过程.Na+-K+泵又称Na+-K+-ATP酶,简称钠泵.机制:当膜内[Na+]↑/胞外[K+]↑,钠泵激活↓ATP酶〔钠泵〕ATP------------------→ADP + 能量↓2K+泵至细胞内;3Na+泵至细胞外↓维持[Na+]膜外高、[K+]膜内高的不均匀分布状态生理意义•胞内低Na,维持细胞体积•胞内高K,酶活性----新陈代谢正常进行•势能储备钠、钾的易化扩散继发性主动转运,联合转运•生电效能〔2〕继发性主动转运secondary active transport概念:间接利用ATP能量的主动转运过程.分类:①同向转运:Na+-葡萄糖同向转运体,Na+-氨基酸同向转运体〔小肠粘膜上皮细胞,肾小管上皮细胞〕②逆向转运:钠钙交换体〔心肌细胞〕4. 入胞和胞吐①离子通道耦联受体介导的跨膜信号转导②G-蛋白耦联受体介导的跨膜信号转导③酶耦联受体介导的跨膜信号转导第三节细胞的生物电现象细胞的生物电现象〔跨膜电位〕:静息电位、动作电位一、静息电位resting potential、RP1.概念:静息时,细胞膜两侧存在的稳定的、外正内负的电位差.2.与RP相关的概念:••➢极化:RP存在时,细胞膜内负外正的状态称为极化.➢去极化:膜内外电位差向小于RP值的方向变化的过程.➢超极化:膜内外电位差向大于RP值的方向变化的过程.➢复极化:去极化后再向极化状态恢复的过程.➢反极化:细胞膜由内负外正的极化状态变为内正外负的极性反转过程.3.机制原理:带电离子跨膜转运条件:①静息状态下细胞膜内、外离子分布不均匀②静息状态下细胞膜对离子的通透性具有选择性,安静时,细胞膜主要对K+通透机制:K+顺浓度差向膜外扩散;A-不能向膜外扩散↓[K+]内↓、[A-]内↑→膜内电位↓<负电场>• [K+]外↑→膜外电位↑<正电场>↓膜外为正、膜内为负的极化状态↓当扩散动力与阻力达到动态平衡时=RP结论: RP是K+的平衡电位影响因素:•细胞膜两侧离子的浓度差•细胞膜对离子的通透性•钠泵的活动二、动作电位action potential、AP1.概念:细胞膜受到有效刺激时,在RP的基础上发生的一个快速的、可逆的、可远距离传播的电位变化.2.动作电位变化过程3.特征:①具有"全或无"的现象:即同一细胞上的AP大小不随刺激强度和传导距离而改变的现象.②是非衰减式传导的电位.③动作电位之间不融和4.动作电位的意义:AP的产生是细胞兴奋的标志,即AP=兴奋5.与AP有关的概念➢兴奋性:活组织或细胞对刺激发生反应的能力.➢刺激:能引起细胞或组织发生反应的所有内、外环境的变化.➢反应:细胞或组织对刺激产生的应答表现.有两种形式:兴奋:组织受刺激后由静息→活动或由活动弱→强的过程.抑制:组织受刺激后由活动→静息或由活动强→弱的过程.●可兴奋组织:神经、肌肉和腺体●兴奋性的指标————阈值〔threshold>阈强度〔阈值〕:刚能引起细胞或组织产生反应的最小刺激强度.阈值与兴奋性的高低呈反变关系.●刺激强度的表示方法1、阈刺激:刚好引起组织产生反应的最小刺激.〔此刺激的强度即称为阈强度〕2、阈上刺激:3、阈下刺激:6.形成机制原理:带电离子跨膜转运条件:⑴. 细胞膜两侧离子的浓度差——电化学驱动力•等于膜电位和该离子平衡电位之差•对Na+的驱动力:E m -E Na =-70-60 = -130mv•对K+的驱动力:E m -E k = -70+90 = 20mv⑵.细胞膜通透性的变化——膜在受到阈刺激而兴奋时,对Na+的通透性增加,继而对K+通透性增加.结论:①AP的上升支由Na+内流形成,下降支是K+外流形成的,后电位是Na+-K+泵活动引起的.②AP去极相末=Na+的平衡电位.7.相关实验和实验结论实验1:细胞膜通透性的变化——电压钳〔voltage clamp〕技术实验结论1•内向电流,形成AP上升支〔去极化〕;外向电流,形成AP下降支〔复极化〕.内向电流是Na+电流;外向电流是K+电流•时间依赖性——先产生内向电流〔Na+通透性↑〕,继而产生外向电流〔Na+通透性↓,K+通透性↑〕.实验结论2⑴细胞膜离子通透性的电压依赖性:如果刺激强度达到阈值,可使细胞膜去极化达到阈电位,则会产生膜去极化和钠电导之间存在正反馈〔图1〕,即再生性循环<regenerative cycle>,进一步去极化产生AP〔图2绿线示〕;〔如果刺激强度小于阈值,细胞膜去极化幅度低,没有达到阈电位,则不会产生这种再生性循环,无法产生AP〔图2黑和红线示〕图1 图2阈电位<threshold potential>:能触发动作电位的膜电位临界值因此动作电位的引起过程:阈刺激↓Na+内流,细胞膜去极化↓达阈电位↓Na+通道大量开放,Na+大量内流↓AP⑵.细胞膜离子通透性的时间依赖性:先Na+通透性↑,继而Na+通透性↓,K+通透性↑实验2:细胞膜通透性〔膜电导〕变化的实质——膜片钳技术<patch clamp technique>概念:指已兴奋与邻近未兴奋的心肌细胞之间形成电位差,出现电荷移动,称为局部电流电流方向:作用:使未兴奋部细胞膜去极化达到阈电位,产生AP.这样的过程在膜表面连续进行下去,就表现为兴奋在整个细胞的传导.有髓鞘N纤维AP的传导——跳跃式三、局部电位:local potential概念:阈下刺激引起的低于阈电位的去极化称局部电位.特点:①不具有"全或无"现象.其幅值可随刺激强度的增加而增大;②衰减式传导;③具有总和效应:时间性和空间性总和第四节肌细胞的收缩功能<一>收缩形式1.单收缩和强直收缩<1>.单收缩:肌肉受到一次刺激,引起一次收缩和舒张的过程称为单收缩.<2>.复合收缩①不完全强直收缩:新刺激落在前一次收缩的舒张期内②完全强直收缩:新刺激落在前一次收缩的缩短期内2.等长收缩与等张收缩• 等长收缩:肌肉收缩时,只有张力增加而长度不变的收缩,称为等长收缩.当负荷等于或大于肌张力时,出现等长收缩等张收缩:肌肉收缩时,只有长度缩短而张力不变的收缩,称为等张收缩.当负荷小于肌张力时,出现等张收缩<二>影响收缩因素外在因素:前负荷和后负荷内在因素:肌肉的收缩能力1.前负荷或肌肉初长度:前负荷<preload>:肌肉在收缩之前所承载的负荷肌肉初长度<initial length>:前负荷使肌肉被拉长到某一长度可以用肌肉初长度表示前负荷的大小在一定范围内,随着前负荷↑,粗细肌丝重叠↑,肌缩速度、幅度和张力↑.反之亦然2.后负荷<after load>:肌肉收缩时遇到的负荷和阻力后负荷过大,虽肌缩张力↑,但肌缩速度、幅度↓,不利作功;后负荷过小,虽肌缩速度、幅度↑,但肌缩张力↓,也不利作功.3.肌肉收缩能力:指与负荷无关、决定肌肉收缩效应的内在特性.肌缩能力↑→肌缩速度、幅度和张力↑肌缩能力↓→肌缩速度、幅度和张力↓第二章小结练习• 1. Na+-K+-ATP酶每分解1分子A TP可将__个Na+移出胞外,同时将__个K+移入胞内.• 2. 在肌肉兴奋-收缩偶联过程中,起关键作用的物质是____.• 3. 细胞内外正常Na+、K+浓度的形成和维持是由于_______的作用• 4. 有机磷农药中毒时,可使〔〕A、乙酰胆碱释放增加B、乙酰胆碱释放减少C、胆碱酯酶活性增加D、胆碱酯酶活性降低E、骨骼肌终板处的乙酰胆碱受体功能障碍案例Case 1.A 43-year-old man presents to the physician’s clinic with plaints of epigastric pai n. After a thorough workup, the patient is diagnosed with peptic ulcer disease. He is started on a medication that inhibits the "proton pump" of the stomach.QUESTIONS:•What is the "proton pump" that is referred to above?•What type of cell membrane transport would this medication be blocking?•What are four other types of transport across a cell membrane?ANSWERS TO CASE 1: MEMBRANE PHYSIOLOGY•◆Proton pump: H+-K+-ATPase <adenosine triphosphatase> pump.•◆Type of cell membrane transport: Primary active transport.•◆Other types of transport: Simple diffusion, facilitated diffusion, secondary active transport <cotransport and countertransport [exchange]>, endocytosis and exocytosis.Case 2.某男性患者,16岁,近来运动后感到极度无力,尤其是在进食大量淀粉类食物后加重.门诊检查血清钾正常〔4.5 mmol/L〕,但运动后血清钾明显降低〔2.2 mmol/L〕,经补钾治疗后症状缓解.1.为什么低血钾会引起极度肌肉无力?2.为什么在进食大量淀粉后症状加重?3.血钾增高时对肌肉收缩有何影响?为什么?。
第二章神经细胞的生物电现象在生理学中,细胞膜的功能占有重要的地位。
细胞膜是细胞的屏障,它把细胞内外的物质分隔开,使细胞成为一个相对独立的单位。
它还是细胞与其生存环境间发生联系的部位,不但物质进出细胞必须经过细胞膜,而且一切刺激作为信号也是通过细胞膜进行传递的。
第一节细胞膜的物质转运功能进出细胞的物质种类很多,有脂溶性的、水溶性的和带电荷的离子。
由于细胞膜的基架是脂质双分子层,所以脂溶性的物质才有可能通过细胞膜。
而水溶性物质则不能直接通过细胞膜,它们必须借助某些物质的帮助才能通过,其中细胞膜结构中具有特殊功能的蛋白质起着关键性的作用。
细胞膜转运物质的形式是多种多样的,有不同的分类方法,现将常见的几种转运形式分别介绍如下。
(一)单纯扩散单纯扩散(simple diffusion)是指脂溶性小分子物质跨细胞膜由高浓度区向低浓度区移动的过程,它是一种物理现象。
在溶液中,溶质分子总是从高浓度区向低浓度区作顺浓度差移动,直到两个区的该物质浓度达到平衡时为止。
细胞膜两侧的物质移动,主要受到由脂质构成的细胞膜屏障作用的影响,所以理论上只有脂溶性物质才能以单纯扩散的形式通过细胞膜。
决定扩散通过量(简称通量)的主要因素有两个:①细胞膜两侧该物质的浓度差,这是物质扩散的动力,浓度差愈大,扩散通量也愈大;②该物质通过细胞膜的难易程度,即通透性(permeability)的大小,细胞膜对该物质的通透性减小时,扩散通量也减小。
在人体内,以单纯扩散方式进出细胞的物质种类很少,比较肯定的有氧和二氧化碳等气体分子,它们既能溶于水,也能溶于脂质。
它们顺浓度差扩散,好像水从高处流向低处那样,不需要外力帮助,细胞也不消耗能量。
(二)易化扩散不溶于脂质或脂溶性很小的物质,在特殊膜蛋白质的帮助下,由高浓度一侧通过细胞膜向低浓度一侧的扩散现象称为易化扩散(facilitated diffusion)。
易化扩散也是顺浓度差进行的,所以细胞也不直接消耗能量。
⼀、细胞膜的基本结构——液态镶嵌模型 该模型的基本内容:以液态脂质双分⼦层为基架,其中镶嵌着具有不同⽣理功能的蛋⽩质分⼦,并连有⼀些寡糖和多糖链。
特点: (1)脂质膜不是静⽌的,⽽是动态的、流动的。
(2)细胞膜两侧是不对称的,因为两侧膜蛋⽩存在差异,同时两侧的脂类分⼦也不完全相同。
(3)细胞膜上相连的糖链主要发挥细胞间"识别"的作⽤。
(4)膜蛋⽩有多种不同的功能,如发挥转动物质作⽤的载体蛋⽩、通道蛋⽩、离⼦泵等,这些膜蛋⽩主要以螺旋或球形蛋⽩质的形式存在,并且以多种不同形式镶嵌在脂质双分⼦层中,如靠近膜的内侧⾯、外侧⾯、贯穿整个脂质双层三种形式均有。
(5)细胞膜糖类多数*露在膜的外侧,可以作为它们所在细胞或它们所结合的蛋⽩质的特异性标志。
⼆、细胞膜物质转运功能 物质进出细胞必须通过细胞膜,细胞膜的特殊结构决定了不同物质通过细胞的难易。
例如,细胞膜的基架是双层脂质分⼦,其间不存在⼤的空隙,因此,仅有能溶于脂类的⼩分⼦物质可以⾃由通过细胞膜,⽽细胞膜对物质团块的吞吐作⽤则是细胞膜具有流动性决定的。
不溶于脂类的物质,进出细胞必须依赖细胞膜上特殊膜蛋⽩的帮助。
物质通过细胞膜的转运有以下⼏种形式: (⼀)被动转运:包括单纯扩散和易化扩散两种形式。
1.是指⼩分⼦脂溶性物质由⾼浓度的⼀侧通过细胞膜向低浓度的⼀侧转运的过程。
跨膜扩散的最取决于膜两侧的物质浓度梯度和膜对该物质的通透性。
单纯扩散在物质转运的当时是不耗能的,其能量来⾃⾼浓度本⾝包含的势能。
2.易化扩散:指⾮脂溶性⼩分⼦物质在特殊膜蛋⽩的协助下,由⾼浓度的⼀侧通过细胞膜向低浓度的⼀侧移动的过程。
参与易化扩散的膜蛋⽩有载体蛋⽩质和通道蛋⽩质。
以载体为中介的易化扩散特点如下:(1)竞争性抑制;(2)饱和现象;(3)结构特异性。
以通道为中介的易化扩散特点如下:(1)相对特异性;(2)⽆饱和现象;(3)通道有"开放"和"关闭"两种不同的机能状态。