2021届高考数学一轮复习第二章函数导数及其应用第四节指数与指数函数课件文北师大版202102191
- 格式:ppt
- 大小:2.00 MB
- 文档页数:40
第四节二次函数与幂函数最新考纲考情分析1。
了解幂函数的概念.2.结合函数y=x,y=x2,y=x3,y=1x,y=的图象,了解它们的变化情况.3.理解并掌握二次函数的定义、图象及性质.4.能用二次函数、方程、不等式之间的关系解决简单问题。
1。
幂函数一般不单独命题,而常与指数函数,对数函数交汇命题,题型一般为选择题、填空题,主要考查幂函数的图象和性质.2.对二次函数相关性质的考查是命题热点,大多以选择题、填空题出现.3.试题难度以中、低档题为主,个别试题难度较大.知识点一二次函数的图象和性质1。
二次函数解析式的三种形式:(1)一般式:f(x)=ax2+bx+c(a≠0);(2)顶点式:f(x)=a(x-m)2+n(a≠0);(3)零点式:f(x)=a(x-x1)(x-x2)(a≠0).2.一元二次不等式恒成立的条件:(1)ax2+bx+c〉0(a≠0)恒成立的充要条件是“a〉0且Δ〈0”;(2)ax2+bx+c〈0(a≠0)恒成立的充要条件是“a<0且Δ<0”.知识点二幂函数1.定义:形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α是常数.2.常见的五种幂函数的图象和性质比较1.思考辨析判断下列结论正误(在括号内打“√”或“×")(1)函数y=是幂函数.(×)(2)当n>0时,幂函数y=x n在(0,+∞)上是增函数.(√)(3)二次函数y=ax2+bx+c(x∈R)不可能是偶函数.(×)(4)二次函数y=ax2+bx+c(x∈[a,b])的最值一定是错误!.(×)解析:(1)由于幂函数的解析式为f(x)=xα,故y=不是幂函数,(1)错.(3)由于当b=0时,y=ax2+bx+c=ax2+c为偶函数,故(3)错.(4)对称轴x=-错误!,当-错误!小于a或大于b时,最值不是4ac-b24a,故(4)错.2.小题热身(1)已知幂函数f(x)=k·xα的图象过点错误!,则k+α=(C)A。
2021高三统考北师大版数学一轮学案:第2章第5讲指数与指数函数含解析第5讲指数与指数函数基础知识整合一、指数及指数运算1.根式的概念根式的概念符号表示备注如果错误!x n=a,那么x叫做a的n次方根—n>1且n∈N*当n为奇数时,正数的n次方根是一个错误!正数,负数的n次方根是一个错误!负数错误!零的n次方根是零当n为偶数时,正数的n次方根有错误!两个,它们互为错误!相反数±n,a(a>0)负数没有偶次方根2.分数指数幂(1)a错误!=错误!错误!(a>0,m,n∈N*,n>1);(2)a-错误!=错误!错误!=错误!错误!(a>0,m,n∈N*,n>1);(3)0的正分数指数幂等于0,0的负分数指数幂没有意义.3.有理数指数幂的运算性质(1)a r·a s=a r+s(a〉0,r,s∈Q);(2)(a r)s=a rs(a〉0,r,s∈Q);(3)(ab)r=a r b r(a>0,b>0,r∈Q).二、指数函数及其性质1.指数函数的概念函数错误!y=a x(a>0且a≠1)叫做指数函数,其中指数x是自变量,函数的定义域是R,a是底数.说明:形如y=ka x,y=a x+k(k∈R且k≠0,a〉0且a≠1)的函数叫做指数型函数.2.指数函数的图象和性质底数a〉10〈a〈1图象性质函数的定义域为R,值域为(0,+∞)函数图象过定点(0,1),即x=0时,y=1当x>0时,恒有y〉1;当x〈0时,恒有0〈y〈1当x>0时,恒有0〈y<1;当x<0时,恒有y>1函数在定义域R上为增函数函数在定义域R上为减函数1.(n,a)n=a(n∈N*且n〉1).2.n,a n=错误!n为偶数且n>1.3.底数对函数y=a x(a〉0,且a≠1)的函数值的影响如图(a1〉a2〉a3〉a4),不论是a>1,还是0〈a〈1,在第一象限内底数越大,函数图象越高.4.当a〉0,且a≠1时,函数y=a x与函数y=错误!x的图象关于y 轴对称.1.化简[(-2)6]错误!-(-1)0的结果为()A.-9 B.7C.-10 D.9答案B解析[(-2)6]错误!-(-1)0=(26)错误!-1=7.2.函数f(x)=错误!x+1(x≥0)的值域为()A.(-∞,2]B.(2,+∞)C.(0,2]D.(1,2]答案D解析∵当x≥0时,错误!x∈(0,1],∴错误!x+1∈(1,2],即f(x)的值域为(1,2].3.(a2-a+2)-x-1<(a2-a+2)2x+5的解集为()A.(-∞,-4) B.(-4,+∞)C.(-∞,-2) D.(-2,+∞)答案D解析∵a2-a+2>1,∴-x-1〈2x+5,∴x>-2,选D.4.(2019·德州模拟)已知a=错误!错误!,b=错误!错误!,c=错误!错误!,则()A.a〈b<c B.c<b<aC.c<a〈b D.b〈c〈a答案D解析因为y=错误!x在R上为减函数,错误!>错误!,所以b<c.又y =x错误!在(0,+∞)上为增函数,错误!〉错误!,所以a〉c,所以b 〈c<a.故选D.5.(2020·蒙城月考)已知0<a〈1,b<-1,则函数y=a x+b的图象必定不经过()A.第一象限B.第二象限C.第三象限D.第四象限答案A解析y=a x+b的图象如图.由图象可知,y=a x+b的图象必定不经过第一象限.6.若x+x-1=3,则x错误!+x-错误!=________;x2+x-2=________.答案错误!7解析∵(x错误!+x-错误!)2=x+x-1+2=5,且x错误!+x-错误!>0,∴x错误!+x-错误!=错误!。