吉林省2005年中考数学试卷
- 格式:doc
- 大小:688.07 KB
- 文档页数:21
2005年吉林省中考数学试卷(课标卷)一、填空题(共10小题,每小题2分,满分20分)1.(2分)某食品包装袋上标有“净含量385克±5克”,这包食品的合格净含量范围是克~390克.2.(2分)一汽大众股份有限公司某年共销售轿车298 000辆,用科学记数法记为辆.3.(2分)时钟在4点整时,时针与分针的夹角为度.4.(2分)实验证明,空气的成分按体积计算,各种气体所占比例如图.计算10升空气中含氧气升.5.(2分)杏花村现有手机188部,比2004年底的3倍还多17部,则该村2004年底有手机部.6.(2分)若矩形的面积为6,则矩形的长y关于宽x(x>0)的函数关系式为.7.(2分)小明的身高是1.7m,他的影长是2m,同一时刻学校旗杆的影长是10m,则旗杆的高是m.8.(2分)如图,若点E坐标为(﹣2,1),点F坐标为(1,﹣1),则点G的坐标为.9.(2分)如图,⊙O的半径为4cm,直线l⊥OA,垂足为O,则直线l沿射线OA方向平移cm时与⊙O相切.10.(2分)为了解某市初中生视力情况,有关部门进行抽样调查,数据如表所示.若该市共有初中生15万人,则全市视力不良的初中生约有万人.二、选择题(共6小题,每小题3分,满分18分)11.(3分)下列交通图形中不是轴对称图形的是()A.B.C.D.12.(3分)下列几项调查,适合作普查的是()A.调查全省食品市场上某种食品的色素含量是否符合国家标准B.调查某城市某天的空气质量C.调查你所在班级全体学生的身高D.调查全省初中生每人每周的零花钱数13.(3分)如图,在Rt△ADB中,∠D=90°,C为AD上一点,则x可能是()A.10°B.20°C.30°D.40°14.(3分)图中实线部分是半径为9m的两条等弧组成的游泳池.若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为()A.12πm B.18πm C.20πm D.24πm15.(3分)一块边长为a的正方形桌布,平辅在直径为b(a>b)的圆桌上,若桌布四角下垂的最大长度相等,则该最大长度为()A.B.C.D.16.(3分)下列图形中,不是正方体的展开图的是()A.B.C.D.三、解答题(共12小题,满分82分)17.(5分)袋子里装有红、黄、蓝三种小球,其形状、大小、质量、质地等完全相同,每种颜色的小球各5个,且分别标有数字1,2,3,4,5.现从中摸出一球:(1)摸出的球是蓝色球的概率为多少?(2)摸出的球是红色1号球的概率为多少?(3)摸出的球是5号球的概率为多少?18.(5分)如图,A点坐标为(3,3),将△ABC先向下平移4个单位得△A′B′C′,再将△A′B′C′绕点O逆时针旋转180°得△A″B″C″.请你画出△A′B′C′和△A″B″C″,并写出点A″的坐标.19.(5分)随着我国人口增长速度的减慢,小学入学儿童数量每年按逐渐减少的趋势发展.某区2003年和2004年小学入学儿童人数之比为8:7,且2003年入学人数的2倍比2004年入学人数的3倍少1 500人.某人估计2005年入学儿童数将超过2 300人.请你通过计算,判断他的估计是否符合当前的变化趋势.20.(5分)两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给出的数据信息,解答问题:(1)求整齐叠放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数关系式(不要求写出自变量x的取值范围);(2)若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度.21.(6分)如图1,一栋旧楼房由于防火设施较差,需要在侧面墙外修建简易外部楼梯,由地面到二楼,再由二楼到三楼,共两段(图2中AB、BC两段),其中BB′=3.2m,BC′=4.3m.结合图中所给的信息,求两段楼梯AB与BC的长度之和(结果保留到0.1m).(参考数据:sin30°=0.50,cos30°≈0.87,sin35°≈0.57,cos35°≈0.82)22.(6分)题中给出的条形图是截止到2002年44位费尔兹奖得主获奖时的年龄统计图.经计算费尔兹奖得主获奖时的平均年龄是35岁.根据条形图回答问题:(1)费尔兹奖得主获奖时的年龄超过中位数的有人;(2)费尔兹奖得主获奖时年龄的众数是岁.(3)费尔兹奖得主获奖时的年龄高于平均年龄的人数占获奖人数的百分比是.23.(6分)如图,四边形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,G 是CD与EF的交点.(1)求证:△BCF≌△DCE;(2)若BC=5,CF=3,∠BFC=90°,求DG:GC的值.24.(8分)如图,已知一抛物线形大门,其地面宽度AB=18m.一同学站在门内,在离门脚B点1m远的D处,垂直地面立起一根1.7m长的木杆,其顶端恰好顶在抛物线形门上C处.根据这些条件,请你求出该大门的高h.25.(8分)如图,矩形ABCD的长与宽分别是2cm和1cm,AB在直线L上.依次以B,C′,D″为中心将矩形ABCD按顺时针方向旋转90°,这样点A走过的曲线依次为′,′′′,′′′′′,其中′交CD于点P.(1)求矩形A′BC′D′的对角线A′C′的长;(2)求′的长;(3)求图中部分的面积.(4)求图中部分的面积.26.(8分)图中的虚线网格我们称之为正三角形网格,它的每一个小三角形都是边长为1个单位长度的正三角形,这样的三角形称为单位正三角形.(1)直接写出单位正三角形的高与面积;(2)图1中的平行四边形ABCD含有多少个单位正三角形?平行四边形ABCD的面积是多少?(3)求出图1中线段AC的长(可作辅助线);(4)求出图2中四边形EFGH的面积.27.(10分)如图1,四边形ABCD是边长为5的正方形,以BC的中点O为原点,BC所在直线为x轴建立平面直角坐标系.抛物线y=ax2经过A,O,D三点,图2和图3是把一些这样的小正方形及其内部的抛物线部分经过平移和对称变换得到的.(1)求a的值;(2)求图2中矩形EFGH的面积;(3)求图3中正方形PQRS的面积.28.(10分)如图1,在梯形ABCD中,AB=BC=10cm,CD=6cm,∠C=∠D=90°.(1)如图2,动点P、Q同时以每秒1cm的速度从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿BC运动到点C停止,设P、Q同时从点B出发t秒时,△PBQ 的面积为y1(cm2),求y1(cm2)关于t(秒)的函数关系式;(2)如图3,动点P以每秒1cm的速度从点B出发沿BA运动,点E在线段CD上随之运动,且PC=PE.设点P从点B出发t秒时,四边形P ADE的面积为y2(cm2),求y2(cm2)关于t(秒)的函数关系式,并写出自变量t的取值范围.2005年吉林省中考数学试卷(课标卷)参考答案与试题解析一、填空题(共10小题,每小题2分,满分20分)1.(2分)某食品包装袋上标有“净含量385克±5克”,这包食品的合格净含量范围是380克~390克.【解答】解:根据题意食品净含量的合格标准为385克±5克,所以食品的合格净含量范围为380g~390g.故答案为:380.2.(2分)一汽大众股份有限公司某年共销售轿车298 000辆,用科学记数法记为 2.98×105辆.【解答】解:298 000辆=2.98×105辆.3.(2分)时钟在4点整时,时针与分针的夹角为120度.【解答】解:∵4点整时,时针指向4,分针指向12,钟表12个数字,每相邻两个数字之间的夹角为30°,∴4点整分针与时针的夹角正好是4×30°=120度.4.(2分)实验证明,空气的成分按体积计算,各种气体所占比例如图.计算10升空气中含氧气 2.1升.【解答】解:10×21%=2.1(升).5.(2分)杏花村现有手机188部,比2004年底的3倍还多17部,则该村2004年底有手机57部.【解答】解:设该村2004年年底有手机x部,那么根据题意得:3x+17=188解得:x=57因此该村2004年底有手机57部.故填57.6.(2分)若矩形的面积为6,则矩形的长y关于宽x(x>0)的函数关系式为.【解答】解:由题意得:矩形的长y关于宽x(x>0)的函数关系式为:y.故答案为:y.7.(2分)小明的身高是1.7m,他的影长是2m,同一时刻学校旗杆的影长是10m,则旗杆的高是8.5m.【解答】解:据相同时刻的物高与影长成比例,设旗杆的高度为xm,则可列比例为,解得x=8.5米.8.(2分)如图,若点E坐标为(﹣2,1),点F坐标为(1,﹣1),则点G的坐标为(1,2).【解答】解:由点E坐标为(﹣2,1),点F坐标为(1,﹣1)可知左数第四条竖线是y 轴,从下数第三条横线上是x轴,其交点是原点,则点G的坐标为(1,2).故填(1,2).9.(2分)如图,⊙O的半径为4cm,直线l⊥OA,垂足为O,则直线l沿射线OA方向平移4cm时与⊙O相切.【解答】解:∵直线到圆心的距离等于圆的半径,直线l与⊙相切,∴直线l沿射线OA方向平移4cm时与⊙O相切.10.(2分)为了解某市初中生视力情况,有关部门进行抽样调查,数据如表所示.若该市共有初中生15万人,则全市视力不良的初中生约有7.2万人.【解答】解:在这次抽样调查中,样本是4500人,而视力不良学生人数是2160人,占了样本数的48%.所以若该市共有初中生15万人,则全市视力不良的初中生约有:15×48%=7.2万人.二、选择题(共6小题,每小题3分,满分18分)11.(3分)下列交通图形中不是轴对称图形的是()A.B.C.D.【解答】解:根据轴对称图形的概念,只有A不是轴对称图形,B、C、D都是轴对称图形.故选:A.12.(3分)下列几项调查,适合作普查的是()A.调查全省食品市场上某种食品的色素含量是否符合国家标准B.调查某城市某天的空气质量C.调查你所在班级全体学生的身高D.调查全省初中生每人每周的零花钱数【解答】解:A、调查全省食品市场上某种食品的色素含量是否符合国家标准是具有破坏性的调查,量太大,所以不宜进行普查;B、D进行普查个体数量多,范围广,工作量大,不宜采用普查,只能采用抽样调查;C、调查你所在班级全体学生的身高,量小且易操作,适合普查.故选:C.13.(3分)如图,在Rt△ADB中,∠D=90°,C为AD上一点,则x可能是()A.10°B.20°C.30°D.40°【解答】解:∵∠ACB是△BCD的一个外角,∴90°<6x<180°,∴15°<x<30°.故选:B.14.(3分)图中实线部分是半径为9m的两条等弧组成的游泳池.若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为()A.12πm B.18πm C.20πm D.24πm【解答】解:.故选:D.15.(3分)一块边长为a的正方形桌布,平辅在直径为b(a>b)的圆桌上,若桌布四角下垂的最大长度相等,则该最大长度为()A.B.C.D.【解答】解:∵正方形的对角线为a,圆桌的直径为b∴桌布下垂的最大长度为(a﹣b).故选:C.16.(3分)下列图形中,不是正方体的展开图的是()A.B.C.D.【解答】解:A、B、C经过折叠均能围成正方体,D折叠后下边没有面,不能折成正方体,故选D.三、解答题(共12小题,满分82分)17.(5分)袋子里装有红、黄、蓝三种小球,其形状、大小、质量、质地等完全相同,每种颜色的小球各5个,且分别标有数字1,2,3,4,5.现从中摸出一球:(1)摸出的球是蓝色球的概率为多少?(2)摸出的球是红色1号球的概率为多少?(3)摸出的球是5号球的概率为多少?【解答】解:根据题意分析可得:袋子里装有红、黄、蓝三种小球共15个,其中蓝色球5个,红色1号球1个,5号球3个;那么有(1)摸出的球是蓝色球的概率为;(2)摸出的球是红色1号球的概率为;(3)摸出的球是5号球的概率为.18.(5分)如图,A点坐标为(3,3),将△ABC先向下平移4个单位得△A′B′C′,再将△A′B′C′绕点O逆时针旋转180°得△A″B″C″.请你画出△A′B′C′和△A″B″C″,并写出点A″的坐标.【解答】解:正确画出△A′B′C′.(2分)正确画出△A″B″C″.(4分)点A″的坐标为(﹣3,1).(5分)(图处虚线不画不扣分)19.(5分)随着我国人口增长速度的减慢,小学入学儿童数量每年按逐渐减少的趋势发展.某区2003年和2004年小学入学儿童人数之比为8:7,且2003年入学人数的2倍比2004年入学人数的3倍少1 500人.某人估计2005年入学儿童数将超过2 300人.请你通过计算,判断他的估计是否符合当前的变化趋势.【解答】解:设2003年入学儿童人数为x人,2004年入学儿童人数为y人.根据题意得,解得,∵2300>2100.∴他的估计不符合当前入学儿童逐渐增加的变化趋势.20.(5分)两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给出的数据信息,解答问题:(1)求整齐叠放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数关系式(不要求写出自变量x的取值范围);(2)若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度.【解答】解:(1)设函数关系式为y=kx+b,根据题意得(1分)解得(2分)∴y与x之间的函数关系式为y=1.5x+4.5.(3分)(2)当x=12时,y=1.5×12+4.5=22.5.∴桌面上12个整齐叠放的饭碗的高度是22.5cm.(5分)说明:本题也可设函数关系式为y=k(x﹣1)+b求解.21.(6分)如图1,一栋旧楼房由于防火设施较差,需要在侧面墙外修建简易外部楼梯,由地面到二楼,再由二楼到三楼,共两段(图2中AB、BC两段),其中BB′=3.2m,BC′=4.3m.结合图中所给的信息,求两段楼梯AB与BC的长度之和(结果保留到0.1m).(参考数据:sin30°=0.50,cos30°≈0.87,sin35°≈0.57,cos35°≈0.82)【解答】解:在Rt△ABB′中,BB′=3.2,∠BAB′=30度.∵sin∠BAB'∴AB 6.40在Rt△CBC′中,BC′=4.3,∠CBC′=35度.∵cos∠CBC'∴BC 5.24∴AB+BC≈6.40+5.24≈11.6(m).答:两段楼梯长度之和为11.6m.22.(6分)题中给出的条形图是截止到2002年44位费尔兹奖得主获奖时的年龄统计图.经计算费尔兹奖得主获奖时的平均年龄是35岁.根据条形图回答问题:(1)费尔兹奖得主获奖时的年龄超过中位数的有22人;(2)费尔兹奖得主获奖时年龄的众数是38岁.(3)费尔兹奖得主获奖时的年龄高于平均年龄的人数占获奖人数的百分比是50%.【解答】解:(1)中位数为35.5,年龄超过中位数的有22人(不求中位数直接写出22人的不扣分);(2)众数是38岁;(3)高于平均年龄的人数为22人,所占获奖人数的百分比为22÷44×100%=50%.23.(6分)如图,四边形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,G 是CD与EF的交点.(1)求证:△BCF≌△DCE;(2)若BC=5,CF=3,∠BFC=90°,求DG:GC的值.【解答】(1)证明:∵四边形ABCD是正方形,∴∠BCF+∠FCD=90°,BC=CD.∵△ECF是等腰直角三角形,CF=CE,∴∠ECD+∠FCD=90°.∴∠BCF=∠ECD.∴△BCF≌△DCE.(3分)(2)解:在△BFC中,BC=5,CF=3,∠BFC=90°,∴BF∵△BCF≌△DCE,∴DE=BF=4,∠BFC=∠DEC=∠FCE=90°.(4分)∴DE∥FC.∴△DGE∽△CGF.(5分)∴DG:GC=DE:CF=4:3.(6分)24.(8分)如图,已知一抛物线形大门,其地面宽度AB=18m.一同学站在门内,在离门脚B点1m远的D处,垂直地面立起一根1.7m长的木杆,其顶端恰好顶在抛物线形门上C处.根据这些条件,请你求出该大门的高h.【解答】解:解法一:如图1,建立平面直角坐标系.设抛物线解析式为y=ax2+bx.由题意知B、C两点坐标分别为B(18,0),C(17,1.7),把B、C两点坐标代入抛物线解析式得解得∴抛物线的解析式为y=﹣0.1x2+1.8x=﹣0.1(x2﹣18x+81﹣81)=﹣0.1(x﹣9)2+8.1.∴该大门的高h为8.1m.解法二:如图2,建立平面直角坐标系.设抛物线解析式为y=ax2.由题意得B、C两点坐标分别为B(9,﹣h),C(8,﹣h+1.7).把B、C两点坐标代入y=ax2得ℎ解得∴y=﹣0.1x2.∴该大门的高h为8.1m.说明:此题还可以以AB所在直线为x轴,AB中点为原点,建立直角坐标系,可得抛物线解析式为y=﹣0.1x2+8.1.25.(8分)如图,矩形ABCD的长与宽分别是2cm和1cm,AB在直线L上.依次以B,C′,D″为中心将矩形ABCD按顺时针方向旋转90°,这样点A走过的曲线依次为′,′′′,′′′′′,其中′交CD于点P.(1)求矩形A′BC′D′的对角线A′C′的长;(2)求′的长;(3)求图中部分的面积.(4)求图中部分的面积.【解答】解:(1)由旋转得A′C′=AC(cm).(2)′的长为 π(cm).(3)连接A″C′,由旋转的性质,△A′D′C′≌△A″D″C′,故所求的面积S=S扇形C′A′A′′π×()2π(cm2).(4)连接BP,在Rt△BCP中,BC=1,BP=BA=2.∴∠BPC=30°,CP,∴∠ABP=30°,∴T=S扇形ABP+S△PBC1(cm2).26.(8分)图中的虚线网格我们称之为正三角形网格,它的每一个小三角形都是边长为1个单位长度的正三角形,这样的三角形称为单位正三角形.(1)直接写出单位正三角形的高与面积;(2)图1中的平行四边形ABCD含有多少个单位正三角形?平行四边形ABCD的面积是多少?(3)求出图1中线段AC的长(可作辅助线);(4)求出图2中四边形EFGH的面积.【解答】解:(1)单位正三角形的高为,面积为.(1分)(2)平行四边形ABCD含有24个单位正三角形.(2分)其面积为(3分)(3)过点A作AK⊥BC于K(如图1).在Rt△ACK中,AK,.∴(4分)(4)解法一:如图2所示,将四边形EFGH分割成五部分.以FG为对角线构造平行四边形FPGM,∵平行四边形FPGM中含有6个单位正三角形,∴S△FGM=3S单位正三角形.同理可得到其他四部分面积.∴S四边形EFGH=(3+4+8+9+8)(8分)解法二:如图3所示,构造平行四边形EQSR.过点F作FT⊥QG于T,则S△FQG FT•QG同理可求S△GSH,S△EHR,S平行四边形EQSR=18∴S四边形EFGH=S平行四边形EQSR﹣S△FQG﹣S△GSH﹣S△EHR.(8分)27.(10分)如图1,四边形ABCD是边长为5的正方形,以BC的中点O为原点,BC所在直线为x轴建立平面直角坐标系.抛物线y=ax2经过A,O,D三点,图2和图3是把一些这样的小正方形及其内部的抛物线部分经过平移和对称变换得到的.(1)求a的值;(2)求图2中矩形EFGH的面积;(3)求图3中正方形PQRS的面积.【解答】解:(1)根据题意得点D的坐标为(,5).把点D(,5)代入y=ax2,得.(3分)(2)如图1,根据题意得正方形IJKL沿射线JU方向平行移动15个单位长度与正方形MNUT重合,由平行移动的性质可知EH=15.同理可得EF=10.∴S矩形EFGH=15×10=150.(6分)(本问只要写出正确结果便可得3分)(3)如图2,建立平面直角坐标系,设Q点坐标为(m,m2),其中m<0.由抛物线、正方形的对称性可得ZQ=VQ.∴.解得,(舍去).∴点Q坐标为(,).(8分)∴(9分)∴S正方形PQRS=RQ2.(10分)28.(10分)如图1,在梯形ABCD中,AB=BC=10cm,CD=6cm,∠C=∠D=90°.(1)如图2,动点P、Q同时以每秒1cm的速度从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿BC运动到点C停止,设P、Q同时从点B出发t秒时,△PBQ 的面积为y1(cm2),求y1(cm2)关于t(秒)的函数关系式;(2)如图3,动点P以每秒1cm的速度从点B出发沿BA运动,点E在线段CD上随之运动,且PC=PE.设点P从点B出发t秒时,四边形P ADE的面积为y2(cm2),求y2(cm2)关于t(秒)的函数关系式,并写出自变量t的取值范围.【解答】解:(1)过点A作AM⊥BC于M,如图1,则AM=6,BM=8,∴AD=MC=2.过点P作PN⊥BC于N,则△PNB∽△AMB,∴.∴.∴.①当点P在BA上运动时,y1BQ•NP t•t t2;②当点P在AD上运动时,BQ=BC=10,PN=DC=6,y1BQ•NP10×6=30;③当点P在DC上运动时,y1BQ•CP10(10+2+6﹣t)=﹣5t+90.(2)过点P作PF⊥CD于F,PH⊥BC于H,如图2,∵∠BCD=90°,∴四边形PHCF是矩形,∴FC=EF=PH t,在Rt△BHP中,BH t,∴PF=BC﹣HB=10.∴y2=S梯形ABCD﹣S△BPC﹣S△PEC(2+10)×610t t(10t)t2﹣9t+36当CE=CD时,t=6,∴t=5.∴自变量t的取值范围是0≤t≤5.。
2024年吉林省中考数学真题试卷一、单项选择题(每小题2分,共12分)1. 若()3-⨯的运算结果为正数,则内的数字可以为( ) A. 2 B. 1 C. 0 D. 1-2. 长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为( )A. 102.0410⨯B. 92.0410⨯C. 820.410⨯D. 100.20410⨯3. 葫芦在我国古代被看作吉祥之物.下图是—个工艺葫芦的示意图,关于它的三视图说法正确的是( )A. 主视图与左视图相同B. 主视图与俯视图相同C. 左视图与俯视图相同D. 主视图、左视图与俯视图都相同 4. 下列方程中,有两个相等实数根的是( )A. ()221x -=-B. ()220x -= C. ()221x -= D. ()222x -= 5. 如图,在平面直角坐标系中,点A 的坐标为()4,0-,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为( )A. ()4,2--B. ()4,2-C. ()2,4D. ()4,26. 如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是( )A. 50︒B. 100︒C. 130︒D. 150︒二、填空题:本题共4小题,每小题5分,共20分.7. 当分式11x +的值为正数时,写出一个满足条件的x 的值为______. 8. 因式分解:23a a -=_______.9. 不等式组2030x x ->⎧⎨-<⎩的解集为______. 10. 如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是______.11. 正六边形的每个内角等于______________°.12. 如图,正方形ABCD 的对角线AC BD ,相交于点O,点E 是OA 的中点,点F 是OD 上一点.连接EF .若45FEO ∠=︒,则EF BC的值为______.13. 图①中有一首古算诗,根据诗中的描述可以计算出红莲所在位置的湖水深度,其示意图如图①,其中AB AB '=,AB B C '⊥于点C,0.5BC =尺,2B C '=尺.设AC 的长度为x 尺,可列方程为______.14. 某新建学校因场地限制,要合理规划体育场地,小明绘制的铅球场地设计图如图所示,该场地由O 和扇形OBC 组成,,OB OC 分别与O 交于点A,D .1m OA =,10m OB =,40AOD ∠=︒,则阴影部分的面积为______2m (结果保留π).三、解答题(每小题5分,共20分)15. 先化简,再求值:()()2111a a a +-++,其中a =16. 吉林省以“绿水青山就是金山银山,冰天雪地也是金山银山”为指引,不断加大冰雪旅游的宣传力度,推出各种优惠活动,“小土豆”“小砂糖橘”等成为一道靓丽的风景线,某滑雪场为吸引游客,每天抽取一定数量的幸运游客,每名幸运游客可以从“滑雪”“滑雪圈”“雪地摩托”三个项目中随机抽取一个免费游玩.若三个项目被抽中的可能性相等,用画树状图或列表的方法,求幸运游客小明与小亮恰好抽中同一个项目的概率.17. 如图,在ABCD中,点O是AB的中点,连接CO并延长,交DA的延长线于点E,求证:=.AE BC18. 钢琴素有“乐器之王”的美称,键盘上白色琴键和黑色琴键共有88个,白色琴键比黑色琴键多16个.求白色琴键和黑色琴键的个数.四、解答题(每小题7分,共28分)19. 图①,图①均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A,B,C,D,E,O均在格点上.图①中已画出四边形ABCD,图①中已画出以OE为半径的O,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD的一条对称轴.(2)在图①中,画出经过点E的O的切线.20. 已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R的取值范围).(2)当电阻R为3Ω时,求此时的电流I.-年全国居民人均可支配收入及其增长速度情况如图所示.21. 中华人民共和国20192023根据以上信息回答下列问题:-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多多少(1)20192023元?-年全国居民人均可支配收入的中位数.(2)直接写出20192023(3)下列判断合理的是______(填序号).-年全国居民人均可支配收入里逐年上升趋势.①20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.因此这5年①20192023中,2020年全国居民人均可支配收入最低.22. 图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图①,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin370.60︒=,cos370.80︒=,tan370.75︒=)五、解答题(每小题8分,共16分)23. 综合与实践某班同学分三个小组进行“板凳中的数学”的项目式学习研究,第一小组负责调查板凳的历史及结构特点;第二小组负责研究板凳中蕴含的数学知识:第三小组负责汇报和交流,下面是第三小组汇报的部分内容,请你阅读相关信息,并解答“建立模型”中的问题.【背景调查】图①中的板凳又叫“四脚八叉凳”,是中国传统家具,其榫卯结构体现了古人含蓄内敛的审美观.榫眼的设计很有讲究,木工一般用铅笔画出凳面的对称轴,以对称轴为基准向两边各取相同的长度,确定榫眼的位置,如图①所示.板凳的结构设计体现了数学的对称美.【收集数据】小组收集了一些板凳并进行了测量.设以对称轴为基准向两边各取相同的长度为x ,凳面的宽度为mm y ,记录如下:【分析数据】如图①,小组根据表中x,y的数值,在平面直角坐标系中描出了各点.【建立模型】请你帮助小组解决下列问题:(1)观察上述各点的分布规律,它们是否在同一条直线上?如果在同一条直线上,求出这条直线所对应的函数解析式;如果不在同一条直线上,说明理由.(2)当凳面宽度为213mm时,以对称轴为基准向两边各取相同的长度是多少?24. 小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程:【探究论证】(1)如图①,在ABC 中,AB BC =,BD AC ⊥,垂足为点D .若2CD =,1BD =,则ABC S =______.(2)如图①,在菱形A B C D ''''中,4''=A C ,2B D ''=,则A B C D S ''''=菱形______.(3)如图①,在四边形EFGH 中,EG FH ⊥,垂足为点O .若5EG =,3FH =,则EFGH S =四边形______;若EG a =,FH b =,猜想EFGH S 四边形与a,b 的关系,并证明你的猜想.【理解运用】(4)如图①,在MNK △中,3MN =,4KN =,5MK =,点P 为边MN 上一点.小明利用直尺和圆规分四步作图:(①)以点K 为圆心,适当长为半径画弧,分别交边KN ,KM 于点R,I.(①)以点P 为圆心,KR 长为半径画弧,交线段PM 于点I '.(①)以点I '为圆心,IR 长为半径画弧,交前一条弧于点R ',点R ',K 在MN 同侧.(①)过点P 画射线PR ',在射线PR '上截取PQ KN =,连接KP ,KQ ,MQ .请你直接写出MPKQ S 四边形的值.六、解答题(每小题10分,共20分)25. 如图,在ABC 中,90C ∠=︒,30B ∠=︒,3cm AC =,AD 是ABC 的角平分线.动点P 从点A 出发,/s 的速度沿折线AD DB -向终点B 运动.过点P 作PQ AB ∥,交AC 于点Q,以PQ 为边作等边三角形PQE ,且点C,E 在PQ 同侧,设点P 的运动时间为()()s 0t t >,PQE 与ABC 重合部分图形的面积为()2cm S .(1)当点P 在线段AD 上运动时,判断APQ △的形状(不必证明),并直接写出AQ 的长(用含t 的代数式表示).(2)当点E 与点C 重合时,求t 的值.(3)求S 关于t 的函数解析式,并写出自变量t 的取值范围.26. 小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x 的值为2-时,输出y 的值为1;输入x 的值为2时,输出y 的值为3;输入x 的值为3时,输出y 的值为6.(1)直接写出k ,a ,b 的值.(2)小明在平面直角坐标系中画出了关于x 的函数图像,如图(2).①.当y 随x 的增大而增大时,求x 的取值范围.①.若关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解,求t 的取值范围. ①.若在函数图像上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为1m -+.小明对P ,Q 之间(含P ,Q 两点)的图像进行研究,当图像对应函数的最大值与最小值均不随m 的变化而变化,直接写出m 的取值范围.2024年吉林省中考数学真题试卷答案一、单项选择题.1. 【答案】D2. 【答案】B3. 【答案】A4. 【答案】B5. 【答案】C6. 【答案】C二、填空题.7. 【答案】0(答案不唯一)8. 【答案】(3)a a -9. 【答案】23x <<10. 【答案】两点之间,线段最短.11. 【答案】12012. 【答案】12【解析】解:①正方形ABCD 的对角线AC BD ,相交于点O①45OAD ∠=︒,AD BC =①点E 是OA 的中点 ①12OE OA = ①45FEO ∠=︒①EF AD ∥①OEF OAD △∽△ ①12EF OE AD OA ==,即12EF BC = 故答案为:12.13. 【答案】()22220.5x x +=+【解析】解:设AC 的长度为x 尺,则0.5AB AB x '==+①AB B C '⊥由勾股定理得:222AC B C AB ''+=①()22220.5x x +=+故答案为:()22220.5x x +=+.14. 【答案】11π【解析】解:由题意得:()224010111360S ππ-==阴影故答案为:11π.三、解答题.15. 22a ,616. 【答案】13 17. 【答案】证明见解析证明:①四边形ABCD 是平行四边形①AD BC ∥①OAE OBC OCB E ==∠∠,∠∠①点O 是AB 的中点①OA OB =①()AAS AOE BOC △≌△①AE BC =.18. 【答案】白色琴键52个,黑色琴键36个【解析】解:设黑色琴键x 个,则白色琴键()16x +个由题意得:()1688x x ++=解得:36x =①黑色琴键由:361652+=(个)答:白色琴键52个,黑色琴键36个.四、解答题.19. 【答案】(1)见解析 (2)见解析【小问1详解】解:如图所示,取格点E,F,作直线EF ,则直线EF 即为所求.易证明四边形ABCD 是矩形,且E,F 分别为AB CD ,的中点.【小问2详解】解:如图所示,取格点G H 、,作直线GH ,则直线GH 即为所求.易证明四边形OGTH 是正方形,点E 为正方形OGTH 的中心,则OE GH ⊥.20. 【答案】(1)36I R=(2)12A【小问1详解】 解:设这个反比例函数的解析式为()0U I U R=≠ 把()94,代入()0U I U R=≠中得:()409U U =≠ 解得36U = ①这个反比例函数的解析式为36I R=. 【小问2详解】解:在36I R =中,当3R =Ω时,3612A 3I == ①此时的电流I 为12A .21. 【答案】(1)8485元(2)35128元(3)①【小问1详解】解:39218307338485-=元答:20192023-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多8485元.【小问2详解】解:20192023-年这五年的全国居民人均可支配收入分别为30733元,32189元,35128元,36883元,39218元①20192023-年全国居民人均可支配收入的中位数为35128元.【小问3详解】解:由统计图可知20192023-年全国居民人均可支配收入里逐年上升趋势,故①正确. 由统计图可知20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.但这5年中,2019年全国居民人均可支配收入最低,故①错误.故答案为:①.22. 【答案】218.3m【解析】解:延长DC 交AE 于点G,由题意得873m AB DG ==,90DGA ∠=︒在Rt GAD 中,45EAD ∠=︒ ①873tan DG AG DG EAD===∠ 在Rt GAC △中,37EAC ∠=︒①tan 8730.75654.75CG AG EAC =⋅∠=⨯=①873654.75218.3m CD DG CG =-=-≈答:吉塔的高度CD 约为218.3m .五、解答题.23. 【答案】(1)在同一条直线上,函数解析式为:533y x =+ (2)36mm【解析】【小问1详解】解:设函数解析式为:()0y kx b k =+≠①当16.5,115.5x y ==,23.1,148.5x y ==①16.5115.523.1148.5k b k b +=⎧⎨+=⎩解得:533k b =⎧⎨=⎩①函数解析式为:533y x =+经检验其余点均在直线533y x =+上①函数解析式为533y x =+,这些点在同一条直线上.【小问2详解】解:把213y =代入533y x =+得:533213x +=解得:36x =①当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度为36mm . 24. 【答案】(1)2,(2)4,(3)152,12EFGH ab S =四边形,证明见详解,(4)10 【详解】(1)①在ABC 中,AB BC =,BD AC ⊥,2CD =①2AD CD ==①4AC = ①122ABC S AC BD =⨯⨯= 故答案为:2.(2)①在菱形A B C D ''''中,4''=A C ,2B D ''=①142A B C D S B D A C ''''''''=⨯⨯=菱形 故答案为:4.(3)①EG FH ⊥ ①12EFG S EG FO =⨯⨯,12EHG S EG HO =⨯⨯ ①EFG EHG EFGH S S S =+四边形 ①()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形 ①()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯⨯四边形 ①5EG =,3FH = ①11522EFGH S EG FH =⨯⨯=四边形 故答案为:152猜想:12EFGH ab S =四边形 证明:①EG FH ⊥ ①12EFG S EG FO =⨯⨯,12EHG S EG HO =⨯⨯ ①EFG EHG EFGH S S S =+四边形 ①()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形 ①()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯⨯四边形 ①EG a =,FH b = ①12EFGH ab S =四边形. (4)根据尺规作图可知:QPM MKN ∠=∠ ①在MNK △中,3MN =,4KN =,5MK = ①222MK KN MN =+①MNK △是直角三角形,且90MNK ∠=︒ ①90NMK MKN ∠+∠=︒①QPM MKN ∠=∠①90NMK QPM ∠+∠=︒①MK PQ ⊥①4PQ KN ==,5MK =①根据(3)的结论有:1102MPKQ S MK PQ =⨯⨯=四边形. 六、解答题.25. 【答案】(1)等腰三角形,AQ t = (2)32t = (3))2223,0423221,24S t t S t S t t ⎧=<≤⎪⎪⎪⎪=+-<<⎨⎪⎪=-≤<⎪⎪⎩【小问1详解】解:过点Q 作QH AD ⊥于点H,由题意得:AP =①90C ∠=︒,30B ∠=︒①60BAC ∠=︒①AD 平分BAC ∠①30PAQ BAD ∠=∠=︒①PQ AB ∥①30APQ BAD ∠=∠=︒①PAQ APQ =∠∠①QA QP =①APQ △为等腰三角形①QH AP ⊥①122HA AP == ①在Rt AHQ △中,cos AH AQ t PAQ==∠. 【小问2详解】解:如图①PQE 为等边三角形①QE QP =由(1)得QA QP =①QE QA =即223AE AQ t === ①32t =.【小问3详解】解:当点P 在AD 上,点E 在AC 上,重合部分为PQE ,过点P 作PG QE ⊥于点G①30PAQ ∠=︒①122PG AP == ①PQE 是等边三角形①QE PQ AQ t ===①2124S QE PG =⋅= 由(2)知当点E 与点C 重合时,32t =①23042S t ⎛⎫=<≤ ⎪⎝⎭. 当点P 在AD 上,点E 在AC 延长线上时,记PE 与AC 交于点F,此时重合部分为四边形FPQC ,如图①PQE 是等边三角形①60E ∠=︒而23CE AE AC t =-=-①)tan 23CF CE E t =⋅∠=-①()))21123232322FCE S CE CF t t t =⋅=--=-①)2223234PQE FCES S S t =-=-=+当点P 与点D 重合时,在Rt ADC 中,cos AC AD AP DAC ====∠ ①2t =①2322S t ⎫=+<<⎪⎭. 当点P 在DB 上,重合部分为PQC △,如图①30DAC ∠=︒90DCA ∠=︒由上知DC =①AD =①此时PD =-①)1PC CD PD t =+==- ①PQE 是等边三角形①60PQE ∠=︒①1tan PC QC PC t PQC ===-∠①)2112S QC PC t =⋅=- ①30B BAD ∠=∠=︒①DA DB ==①当点P 与点B 重合时AD DB =+=解得:4t =①)()2124S t t =-≤< 综上所述:)2223,04232421,24S t t S t S t t ⎧=<≤⎪⎪⎪⎪=-+-<<⎨⎪⎪=-≤<⎪⎪⎩. 26. 【答案】(1)1,1,2k a b ===-(2)①:0x ≤或1x ≥;①:2t <或11t ≥;①:10m -≤≤或12m ≤≤【小问1详解】解:①20x =-<①将2x =-,1y =代入3y kx =+得:231k -+=解得:1k =①20,30x x =>=>①将2,3x y ==,3,6x y ==代入23y ax bx =++得:42339336a b a b ++=⎧⎨++=⎩解得:12a b =⎧⎨=-⎩. 【小问2详解】解:①,①1,1,2k a b ===-①一次函数解析式为:3y x ,二次函数解析式为:223y x x =-+ 当0x >时,223y x x =-+,对称为直线1x =,开口向上①1x ≥时,y 随着x 的增大而增大.当0x ≤时,3y x ,10k =>①0x ≤时,y 随着x 的增大而增大综上,x 的取值范围:0x ≤或1x ≥.①,①230ax bx t ++-=①23ax bx t ++=,在04x <<时无解①问题转化为抛物线223y x x =-+与直线y t =在04x <<时无交点 ①对于223y x x =-+,当1x =时,2y =①顶点为()1,2,如图:①当2t =时,抛物线223y x x =-+与直线y t =在04x <<时正好一个交点 ①当2t <时,抛物线223y x x =-+与直线y t =在04x <<时没有交点. 当4x =,168311y =-+=①当11t =时,抛物线223y x x =-+与直线y t =在04x <≤时正好一个交点 ①当11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点①当2t <或11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点 即:当2t <或11t ≥时,关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解. ①:①,1P Q x m x m ==-+①()1122m m +-+= ①点P,Q 关于直线12x =对称 当1x =,1232y =-+=最小值,当0x =时,3y =最大值①当图像对应函数的最大值与最小值均不随m 的变化而变化,而当2x =时,3y =,=1x -时,2y =①①当12m >,如图:由题意得:11012m m -≤-+≤⎧⎨≤≤⎩①12m ≤≤.①当12m <,如图:由题意得:10112m m -≤≤⎧⎨≤-+≤⎩①10m -≤≤综上:10m -≤≤或12m ≤≤.。
2017年吉林省中考数学试卷一、单项选择题(每小题2分,共12分)1.(2分)计算(﹣1)2的正确结果是()A.1 B.2 C.﹣1 D.﹣22.(2分)如图是一个正六棱柱的茶叶盒,其俯视图为()A.B.C.D.3.(2分)下列计算正确的是()A.a2+a3=a5 B.a2•a3=a6 C.(a2)3=a6D.(ab)2=ab24.(2分)不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D.5.(2分)如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70°B.44°C.34°D.24°6.(2分)如图,直线l是⊙O的切线,A为切点,B为直线l上一点,连接OB 交⊙O于点C.若AB=12,OA=5,则BC的长为()A.5 B.6 C.7 D.8二、填空题(每小题3分,共24分)7.(3分)2016年我国资助各类家庭困难学生超过84 000 000人次.将84 000 000这个数用科学记数法表示为.8.(3分)苹果原价是每千克x元,按8折优惠出售,该苹果现价是每千克元(用含x的代数式表示).9.(3分)分解因式:a2+4a+4=.10.(3分)我们学过用直尺和三角尺画平行线的方法,如图所示,直线a∥b的根据是.11.(3分)如图,在矩形ABCD中,AB=5,AD=3.矩形ABCD绕着点A逆时针旋转一定角度得到矩形AB'C'D'.若点B的对应点B'落在边CD上,则B'C的长为.12.(3分)如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m,BD=14m,则旗杆AB的高为m.13.(3分)如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画,.若AB=1,则阴影部分图形的周长为(结果保留π).14.(3分)我们规定:当k,b为常数,k≠0,b≠0,k≠b时,一次函数y=kx+b 与y=bx+k互为交换函数.例如:y=4x+3的交换函数为y=3x+4.一次函数y=kx+2与它的交换函数图象的交点横坐标为.三、解答题(每小题5分,共20分)15.(5分)某学生化简分式+出现了错误,解答过程如下:原式=+(第一步)=(第二步)=.(第三步)(1)该学生解答过程是从第步开始出错的,其错误原因是;(2)请写出此题正确的解答过程.16.(5分)被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km,隧道累计长度的2倍比桥梁累计长度多36km.求隧道累计长度与桥梁累计长度.17.(5分)在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率.18.(5分)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.四、解答题(每小题7分,共28分)19.(7分)某商场甲、乙、丙三名业务员5个月的销售额(单位:万元)如下表:(1)根据上表中的数据,将下表补充完整:(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.20.(7分)图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图2中,以AB为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图③中,以AB为边画一个平行四边形,且另外两个顶点在格点上.21.(7分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求A,B两点间的距离(结果精确到0.1km).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67.)22.(7分)如图,在平面直角坐标系中,直线AB与函数y=(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=OC,且△ACD的面积是6,连接BC.(1)求m,k,n的值;(2)求△ABC的面积.五、解答题(每小题8分,共16分)23.(8分)如图①,BD是矩形ABCD的对角线,∠ABD=30°,AD=1.将△BCD 沿射线BD方向平移到△B'C'D'的位置,使B'为BD中点,连接AB',C'D,AD',BC',如图②.(1)求证:四边形AB'C'D是菱形;(2)四边形ABC'D′的周长为;(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.24.(8分)如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.(1)正方体的棱长为cm;(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.六、解答题(每小题10分,共20分)25.(10分)如图,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.点P从点A 出发,以2cm/s的速度沿边AB向终点B运动.过点P作PQ⊥AB交折线ACB于点Q,D为PQ中点,以DQ为边向右侧作正方形DEFQ.设正方形DEFQ与△ABC 重叠部分图形的面积是y(cm2),点P的运动时间为x(s).(1)当点Q在边AC上时,正方形DEFQ的边长为cm(用含x的代数式表示);(2)当点P不与点B重合时,求点F落在边BC上时x的值;(3)当0<x<2时,求y关于x的函数解析式;(4)直接写出边BC的中点落在正方形DEFQ内部时x的取值范围.26.(10分)《函数的图象与性质》拓展学习片段展示:【问题】如图①,在平面直角坐标系中,抛物线y=a(x﹣2)2﹣经过原点O,与x轴的另一个交点为A,则a=.【操作】将图①中抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,如图②.直接写出图象G对应的函数解析式.【探究】在图②中,过点B(0,1)作直线l平行于x轴,与图象G的交点从左至右依次为点C,D,E,F,如图③.求图象G在直线l上方的部分对应的函数y 随x增大而增大时x的取值范围.【应用】P是图③中图象G上一点,其横坐标为m,连接PD,PE.直接写出△PDE的面积不小于1时m的取值范围.2017年吉林省中考数学试卷参考答案与试题解析一、单项选择题(每小题2分,共12分)1.(2分)(2017•吉林)计算(﹣1)2的正确结果是()A.1 B.2 C.﹣1 D.﹣2【分析】根据有理数乘方的定义计算即可.【解答】解:原式=1.故选A.【点评】本题考查有理数的乘方,记住乘方法则是解题的关键.2.(2分)(2017•吉林)如图是一个正六棱柱的茶叶盒,其俯视图为()A.B.C.D.【分析】根据正六棱柱的俯视图为正六边形,即可得出结论.【解答】解:正六棱柱的俯视图为正六边形.故选B.【点评】本题考查了简单几何体的三视图,熟记正六棱柱的三视图是解题的关键.3.(2分)(2017•吉林)下列计算正确的是()A.a2+a3=a5 B.a2•a3=a6 C.(a2)3=a6D.(ab)2=ab2【分析】根据整式的运算法则即可求出答案.【解答】解:(A)a2与a3不是同类项,故A错误;(B)原式=a5,故B错误;(D)原式=a2b2,故D错误;故选(C)【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.4.(2分)(2017•吉林)不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出原不等式的解集,再根据解集即可求出结论.【解答】解:∵x+1≥2,∴x≥1.故选A.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.5.(2分)(2017•吉林)如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70°B.44°C.34°D.24°【分析】由AB=BD,∠B=40°得到∠ADB=70°,再根据三角形的外角的性质即可得到结论.【解答】解:∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故选C.【点评】本题考查了等腰三角形的性质,三角形内角和定理,掌握等边对等角是解题的关键,注意三角形外角性质的应用.6.(2分)(2017•吉林)如图,直线l是⊙O的切线,A为切点,B为直线l上一点,连接OB交⊙O于点C.若AB=12,OA=5,则BC的长为()A.5 B.6 C.7 D.8【分析】根据勾股定理,可得OB的长,根据线段的和差,可得答案.【解答】解:由勾股定理,得OB==13,CB=OB﹣OC=13﹣5=8,故选:D.【点评】本题考查了切线的性质,利用勾股定理得出OB的长是解题关键.二、填空题(每小题3分,共24分)7.(3分)(2017•吉林)2016年我国资助各类家庭困难学生超过84 000 000人次.将84 000 000这个数用科学记数法表示为8.4×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:84 000 000=8.4×107,故答案为:8.4×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)(2017•吉林)苹果原价是每千克x元,按8折优惠出售,该苹果现价是每千克0.8x元(用含x的代数式表示).【分析】按8折优惠出售,就是按照原价的80%进行销售.【解答】解:依题意得:该苹果现价是每千克80%x=0.8x.故答案是:0.8x.【点评】本题考查了列代数式.解题的关键是理解“按8折优惠出售”的含义.9.(3分)(2017•吉林)分解因式:a2+4a+4=(a+2)2.【分析】利用完全平方公式直接分解即可求得答案.【解答】解:a2+4a+4=(a+2)2.故答案为:(a+2)2.【点评】此题考查了完全平方公式法分解因式.题目比较简单,注意要细心.10.(3分)(2017•吉林)我们学过用直尺和三角尺画平行线的方法,如图所示,直线a∥b的根据是同位角相等,两直线平行.【分析】关键题意得出∠1=∠2;∠1和∠2是同位角;由平行线的判定定理即可得出结论.【解答】解:如图所示:根据题意得出:∠1=∠2;∠1和∠2是同位角;∵∠1=∠2,∴a∥b(同位角相等,两直线平行);故答案为:同位角相等,两直线平行.【点评】本题考查了复杂作图以及平行线的判定方法;熟练掌握平行线的判定方法,根据题意得出同位角相等是解决问题的关键.11.(3分)(2017•吉林)如图,在矩形ABCD中,AB=5,AD=3.矩形ABCD绕着点A逆时针旋转一定角度得到矩形AB'C'D'.若点B的对应点B'落在边CD上,则B'C的长为1.【分析】B′C=5﹣B′D.在直角△AB′D中,利用勾股定理求得B′D的长度即可.【解答】解:由旋转的性质得到AB=AB′=5,在直角△AB′D中,∠D=90°,AD=3,AB′=AB=5,所以B′D===4,所以B′C=5﹣B′D=1.故答案是:1.【点评】本题考查了旋转的性质,矩形的性质.解题时,根据旋转的性质得到AB=AB′=5是解题的关键.12.(3分)(2017•吉林)如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m,BD=14m,则旗杆AB的高为9m.【分析】由条件可证明△OCD∽△OAB,利用相似三角形的性质可求得答案.【解答】解:∵OD=4m,BD=14m,∴OB=OD+BD=18m,由题意可知∠ODC=∠OBA,且∠O为公共角,∴△OCD∽△OAB,∴=,即=,解得AB=9,即旗杆AB的高为9m.故答案为:9.【点评】本题主要考查相似三角形的应用,证得三角形相似得到关于AB的方程是解题的关键.13.(3分)(2017•吉林)如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画,.若AB=1,则阴影部分图形的周长为π+1(结果保留π).【分析】由五边形ABCDE可得出,AB=BC=CD=DE=EA=1、∠A=∠D=108°,利用弧长公式可求出、的长度,再根据周长的定义,即可求出阴影部分图形的周长.【解答】解:∵五边形ABCDE为正五边形,AB=1,∴AB=BC=CD=DE=EA=1,∠A=∠D=108°,∴==•πAB=π,=++BC=π+1.∴C阴影故答案为:π+1.【点评】本题考查了正多边形和圆、弧长公式以及周长的定义,利用弧长公式求出、的长度是解题的关键.14.(3分)(2017•吉林)我们规定:当k,b为常数,k≠0,b≠0,k≠b时,一次函数y=kx+b与y=bx+k互为交换函数.例如:y=4x+3的交换函数为y=3x+4.一次函数y=kx+2与它的交换函数图象的交点横坐标为1.【分析】根据题意可以得到相应的二元一次方程组,从而可以解答本题.【解答】解:由题意可得,,解得,,故答案为:1.【点评】本题考查两条直线相交或平行问题,解答本题的关键是明确题意,列出相应的方程组.三、解答题(每小题5分,共20分)15.(5分)(2017•吉林)某学生化简分式+出现了错误,解答过程如下:原式=+(第一步)=(第二步)=.(第三步)(1)该学生解答过程是从第一步开始出错的,其错误原因是分式的基本性质;(2)请写出此题正确的解答过程.【分析】根据分式的运算法则即可求出答案.【解答】解:(1)一、分式的基本性质用错;(2)原式=+==故答案为:(1)一、分式的基本性质用错;【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.16.(5分)(2017•吉林)被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km,隧道累计长度的2倍比桥梁累计长度多36km.求隧道累计长度与桥梁累计长度.【分析】设隧道累计长度为x km,桥梁累计长度为y km,根据“隧道累计长度与桥梁累计长度之和为342km,隧道累计长度的2倍比桥梁累计长度多36km”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设隧道累计长度为x km,桥梁累计长度为y km,根据题意得:,解得:.答:隧道累计长度为126km,桥梁累计长度为216km.【点评】本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.17.(5分)(2017•吉林)在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.18.(5分)(2017•吉林)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【分析】可通过证△ABF≌△DCE,来得出∠A=∠D的结论.【解答】证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE(SAS),∴∠A=∠D.【点评】此题考查简单的角相等,可以通过全等三角形来证明,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.四、解答题(每小题7分,共28分)19.(7分)(2017•吉林)某商场甲、乙、丙三名业务员5个月的销售额(单位:万元)如下表:(1)根据上表中的数据,将下表补充完整:(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.【分析】(1)根据算术平均数、众数、中位数的定义解答;(2)根据平均数意义进行解答.【解答】解:(1)=(7.2+9.6+9.6+7.8+9.3)=8.7(万元)把乙按照从小到大依次排列,可得5.8,5.8,9.7,9.8,9.9;中位数为9.7万元.丙中出现次数最多的数为9.9万元.故答案为:8.7,9.7,9.9;(2)我赞同甲的说法.甲的平均销售额比乙、丙都高.【点评】本题考查了众数、中位数、加权平均数的定义,学会分析图表是解题的关键.20.(7分)(2017•吉林)图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图2中,以AB为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图③中,以AB为边画一个平行四边形,且另外两个顶点在格点上.【分析】(1)根据等腰三角形的定义作图可得;(2)根据平行四边形的判定作图可得.【解答】解:(1)如图①、②所示,△ABC和△ABD即为所求;(2)如图③所示,▱ABCD即为所求.【点评】本题主要考查作图﹣应用与设计作图,熟练掌握等腰三角形的定义和平行四边形的判定是解题的关键.21.(7分)(2017•吉林)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求A,B两点间的距离(结果精确到0.1km).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67.)【分析】在Rt△AOC中,求出OA、OC,在Rt△BOC中求出OB,即可解决问题.【解答】解:由题意可得:∠AOC=90°,OC=5km.在Rt△AOC中,∵tan34°=,∴OA=OC•tan34°=5×0.67=3.35km,在Rt△BOC中,∠BCO=45°,∴OB=OC=5km,∴AB=5﹣3.35=1.65≈1.7km,答:求A,B两点间的距离约为1.7km.【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.22.(7分)(2017•吉林)如图,在平面直角坐标系中,直线AB与函数y=(x >0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=OC,且△ACD的面积是6,连接BC.(1)求m,k,n的值;(2)求△ABC的面积.【分析】(1)由点A的纵坐标为2知OC=2,由OD=OC知OD=1、CD=3,根据△ACD的面积为6求得m=4,将A的坐标代入函数解析式求得k,将点B坐标代入函数解析式求得n;(2)作BE⊥AC,得BE=2,根据三角形面积公式求解可得.【解答】解:(1)∵点A的坐标为(m,2),AC平行于x轴,∴OC=2,AC⊥y轴,∵OD=OC,∴OD=1,∴CD=3,∵△ACD的面积为6,∴CD•AC=6,∴AC=4,即m=4,则点A的坐标为(4,2),将其代入y=可得k=8,∵点B(2,n)在y=的图象上,∴n=4;(2)如图,过点B作BE⊥AC于点E,则BE=2,∴S=AC•BE=×4×2=4,△ABC即△ABC的面积为4.【点评】本题主要考查反比例函数与一次函数的交点问题,根据三角形的面积求得点A的坐标及待定系数法求函数解析式是解题的关键.五、解答题(每小题8分,共16分)23.(8分)(2017•吉林)如图①,BD是矩形ABCD的对角线,∠ABD=30°,AD=1.将△BCD沿射线BD方向平移到△B'C'D'的位置,使B'为BD中点,连接AB',C'D,AD',BC',如图②.(1)求证:四边形AB'C'D是菱形;(2)四边形ABC'D′的周长为4;(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.【分析】(1)有一组邻边相等的平行四边形是菱形,据此进行证明即可;(2)先判定四边形ABC'D'是菱形,再根据边长AB=AD=,即可得到四边形ABC'D′的周长为4;(3)根据两种不同的拼法,分别求得可能拼成的矩形周长.【解答】解:(1)∵BD是矩形ABCD的对角线,∠ABD=30°,∴∠ADB=60°,由平移可得,B'C'=BC=AD,∠D'B'C'=∠DBC=∠ADB=60°,∴AD∥B'C'∴四边形AB'C'D是平行四边形,∵B'为BD中点,∴Rt△ABD中,AB'=BD=DB',又∵∠ADB=60°,∴△ADB'是等边三角形,∴AD=AB',∴四边形AB'C'D是菱形;(2)由平移可得,AB=C'D',∠ABD'=∠C'D'B=30°,∴AB∥C'D',∴四边形ABC'D'是平行四边形,由(1)可得,AC'⊥B'D,∴四边形ABC'D'是菱形,∵AB=AD=,∴四边形ABC'D′的周长为4,故答案为:4;(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形如下:∴矩形周长为6+或2+3.【点评】本题主要考查了菱形的判定与性质,矩形的性质以及勾股定理的运用,解题时注意:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形.24.(8分)(2017•吉林)如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.(1)正方体的棱长为10cm;(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.【分析】(1)直接利用一次函数图象结合水面高度的变化得出正方体的棱长;(2)直接利用待定系数法求出一次函数解析式,再利用函数图象得出自变量x 的取值范围;(3)利用一次函数图象结合水面高度的变化得出t的值.【解答】解:(1)由题意可得:12秒时,水槽内水面的高度为10cm,12秒后水槽内高度变化趋势改变,故正方体的棱长为10cm;故答案为:10;(2)设线段AB对应的函数解析式为:y=kx+b,∵图象过A(12,10),B(28,20),∴,解得:,∴线段AB对应的解析式为:y=x+(12≤x≤28);(3)∵28﹣12=16(s),∴没有立方体时,水面上升10cm,所用时间为:16秒,∵前12秒由立方体的存在,导致水面上升速度加快了4秒,∴将正方体铁块取出,经过4秒恰好将此水槽注满.【点评】此题主要考查了一次函数的应用,正确利用函数图象获取正确信息是解题关键.六、解答题(每小题10分,共20分)25.(10分)(2017•吉林)如图,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.点P从点A出发,以2cm/s的速度沿边AB向终点B运动.过点P作PQ⊥AB交折线ACB于点Q,D为PQ中点,以DQ为边向右侧作正方形DEFQ.设正方形DEFQ 与△ABC重叠部分图形的面积是y(cm2),点P的运动时间为x(s).(1)当点Q在边AC上时,正方形DEFQ的边长为x cm(用含x的代数式表示);(2)当点P不与点B重合时,求点F落在边BC上时x的值;(3)当0<x<2时,求y关于x的函数解析式;(4)直接写出边BC的中点落在正方形DEFQ内部时x的取值范围.【分析】(1)国际已知条件得到∠AQP=45°,求得PQ=AP=2x,由于D为PQ中点,于是得到DQ=x;(2)如图①,延长FE交AB于G,由题意得AP=2x,由于D为PQ中点,得到DQ=x,求得GP=2x,列方程于是得到结论;(3)如图②,当0<x≤时,根据正方形的面积公式得到y=x2;如图③,当<x≤1时,过C作CH⊥AB于H,交FQ于K,则CH=AB=2,根据正方形和三角形面积公式得到y=﹣x2+20x﹣8;如图④,当1<x<2时,PQ=4﹣2x,根据三角形的面积公式得到结论;(4)当Q与C重合时,E为BC的中点,得到x=1,当Q为BC的中点时,BQ=,得到x=,于是得到结论.【解答】解:(1)∵∠ACB=90°,∠A=45°,PQ⊥AB,∴∠AQP=45°,∴PQ=AP=2x ,∵D 为PQ 中点,∴DQ=x ,故答案为:x ;(2)如图①,延长FE 交AB 于G ,由题意得AP=2x ,∵D 为PQ 中点,∴DQ=x ,∴GP=2x ,∴2x +x +2x=4,∴x=;(3)如图②,当0<x ≤时,y=S 正方形DEFQ =DQ 2=x 2,∴y=x 2;如图③,当<x ≤1时,过C 作CH ⊥AB 于H ,交FQ 于K ,则CH=AB=2,∵PQ=AP=2x ,CK=2﹣2x ,∴MQ=2CK=4﹣4x ,FM=x ﹣(4﹣4x )=5x ﹣4,∴y=S 正方形DEFQ ﹣S △MNF =DQ 2﹣FM 2,∴y=x 2﹣(5x ﹣4)2=﹣x 2+20x ﹣8,∴y=﹣x 2+20x ﹣8;如图④,当1<x <2时,PQ=4﹣2x ,∴DQ=2﹣x ,∴y=S △DEQ =DQ 2,∴y=(2﹣x )2,∴y=x 2﹣2x +2;(4)当Q 与C 重合时,E 为BC 的中点,即2x=2,∴x=1,当Q为BC的中点时,BQ=,PB=1,∴AP=3,∴2x=3,∴x=,∴边BC的中点落在正方形DEFQ内部时x的取值范围为:1<x<.【点评】本题考查了等腰直角三角形的性质,正方形的性质,图形面积的计算,正确的作出图形是解题的关键.26.(10分)(2017•吉林)《函数的图象与性质》拓展学习片段展示:【问题】如图①,在平面直角坐标系中,抛物线y=a(x﹣2)2﹣经过原点O,与x轴的另一个交点为A,则a=.【操作】将图①中抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,如图②.直接写出图象G对应的函数解析式.【探究】在图②中,过点B(0,1)作直线l平行于x轴,与图象G的交点从左至右依次为点C,D,E,F,如图③.求图象G在直线l上方的部分对应的函数y 随x增大而增大时x的取值范围.【应用】P是图③中图象G上一点,其横坐标为m,连接PD,PE.直接写出△PDE的面积不小于1时m的取值范围.【分析】【问题】:把(0,0)代入可求得a的值;【操作】:先写出沿x轴折叠后所得抛物线的解析式,根据图象可得对应取值的解析式;【探究】:令y=0,分别代入两个抛物线的解析式,分别求出四个点CDEF的坐标,根据图象呈上升趋势的部分,即y随x增大而增大,写出x的取值;【应用】:先求DE的长,根据三角形面积求高的取值h≥1;分三部分进行讨论:①当P在C的左侧或F的右侧部分时,设P[m,],根据h≥1,列不等式解出即可;②如图③,作对称轴由最大面积小于1可知:点P不可能在DE的上方;③P与O或A重合时,符合条件,m=0或m=4.【解答】解:【问题】∵抛物线y=a(x﹣2)2﹣经过原点O,∴0=a(0﹣2)2﹣,a=,故答案为:;【操作】:如图①,抛物线:y=(x﹣2)2﹣,对称轴是:直线x=2,由对称性得:A(4,0),沿x轴折叠后所得抛物线为:y=﹣(x﹣2)2+如图②,图象G对应的函数解析式为:y=;【探究】:如图③,由题意得:当y=1时,(x﹣2)2﹣=0,解得:x1=2+,x2=2﹣,∴C(2﹣,1),F(2+,1),当y=1时,﹣(x﹣2)2+=0,解得:x1=3,x2=1,∴D(1,1),E(3,1),由图象得:图象G在直线l上方的部分,当1<x<2或x>2+时,函数y随x 增大而增大;【应用】:∵D(1,1),E(3,1),∴DE=3﹣1=2,=DE•h≥1,∵S△PDE∴h≥1;①当P在C的左侧或F的右侧部分时,设P[m,],∴h=(m﹣2)2﹣﹣1≥1,(m﹣2)2≥10,m﹣2≥或m﹣2≤﹣,m≥2+或m≤2﹣,②如图③,作对称轴交抛物线G于H,交直线CD于M,交x轴于N,∵H(2,),∴HM=﹣1=<1,∴点P不可能在DE的上方;③∵MN=1,且O(0,0),a(4,0),∴P不可能在CO(除O点)、OD、EA(除A点)、AF上,∴P与O或A重合时,符合条件,∴m=0或m=4;综上所述,△PDE的面积不小于1时,m的取值范围是:m=0或m=4或m≤2﹣或m≥2+.【点评】本题是二次函数的综合题,考查了利用待定系数法求二次函数的解析式、对称性、二次函数的性质、图形和坐标特点、折叠的性质;运用了数形结合的思想和分类讨论的思想,应用部分有难度,根据面积的条件,先求出底边的长和确定高的取值是关键.。
吉林省2005年 高级中等学校招生考试初中毕业生学业考试 数学试卷(课改实验区)一、填空题(每小题2分,共20分) 1.某食品包装袋上标有“净含量385克±5克”,这包食品的合格净含量范围是 克~390克. 2.一汽大众股份有限公司某年共销售轿车298 000辆,用科学记数法记为 辆. 3.时钟在4点整时,时针与分针的夹角为 度.4.实验证明,空气的成分按体积计算,各种气体所占比例如图所示,计算10升空气中含氧气 升.5.杏花村现有手机188部,比2004年底的3倍还多17部,则该村2004年底有手机 部. 6.若矩形的面积为6,则矩形的长y关于宽x (x >0)的函数关系式为 . 7.小明的身高是1.7m ,他的影长是2m,同一时刻学校旗杆的影长是10m ,则旗杆的高是 m .8.如图,若点E 坐标为(-2,1),点F 坐标为(1,-1),则点G 的坐标为 . 9.如图,⊙O 的半径OD 为5cm ,直线l ⊥OD ,垂足为O ,则直线l 沿射线OD 方向平移 cm 时与⊙O 相切.10.为了解菜市初中生视力情况,有关部门进行抽样调查,数据如下表,若该市共有初中生15万人,则全市视力不良的初中生约有 万人.(第8题) (第3题)(第9题)O Dl21% 1%(第4题)11.下列图形中不是轴对称图形的是----------------------------------------------------- ( )12.下列几项调查,适合作普查的是-----------------------------------------------------( ) A.调查全省食品市场上某种食品的色素含量是否符合国家标准B.调查某城市某天的空气质量C.调查你所在班级全体学生的身高D.调查全省初中生每人每周的零花钱数l3.如图,在Rt△ADB中,∠D=90°,C为AD上一点,则x可能是------------( ) A.10°B.20°C.30°D.40°14.如图,实线部分是半径为9m的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为-----------------------------------------------------( ) A.12πm B.18πm C.20πm D.24πm15.一块边长为a的正方形桌布,平铺在直径为b(a>b)的圆桌上,若桌布四角下垂的最大长度相等,则该最大长度为-----------------------------------------------------------( ) A.2a- b B.2a-b2C.22a -b2D.2a2- b16.下列图形中不是正方体展开图的是--------------------------------------------------( ) 6xD CBA(第13题)(第14题)BA C D17.袋子里装有红、黄、蓝三种小球,其形状、大小、质量、质地等完全相同.每种颜色的小球各5个,且分别标有数字1、2、3、4、5.现从中摸出一球: (1)摸出的球是蓝色球的概率为多少? 答: (2)摸出的球是红色1号球的概率为多少? 答: (3)摸出的球是5号球的概率为多少? 答: .18.如图,A 点坐标为(3,3),将△ABC 先向下平移4个单位得△A ′B ′C ′,再将△A ′B ′C ′绕点O 逆时针旋转180°得A ″B ″C ″.请你画出△A ′B ′C ′和△A ″B ″C ″,并写出点 A ″的坐标.19.随着我国人口增长速度的减慢,小学入学儿童数量每年按逐渐减少的趋势发展。
历年吉林省中考数学试卷(持续更新中)2012年吉林省中考数学试卷(试卷答案及解析下期见)一、选择题(每小题2分,共12分)1.(2分)在四个数0,﹣2,﹣1,2中,最小的数是()A.0 B.﹣2 C.﹣1 D.22.(2分)如图,有5个完全相同的小正方体组合成一个立方体图形,它的俯视图是()3.(2分)下列计算正确的是()A.3a﹣a=2 B.a2+2a2=3a2C.a2·a3=a6 D.(a+b)2=a2+b24.(2分)如图,在△ABC中,∠A=80°,∠B=40°.D、E分别是AB,AC上的点,且DE∥BC,则∠AED的度数是()A.40° B.60° C.80° D.120°5.(2分)如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣3,2),若反比例函数y=(x>0)的图象经过点A,则k的值为()A.﹣6 B.﹣3 C.3 D.66.(2分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需的时间与原计划生产450台机器所需时间相同.设原计划每天生产x台机器,则可列方程为()二、填空题(每小题3分,共24分)7.(3分)计算:﹣= .8.(3分)不等式2x﹣1>x的解集为.9.(3分)若方程x2﹣x=0的两根为x1,x2(x1<x2),则x2﹣x1= .10.(3分)若甲,乙两个芭蕾舞团参加演出的女演员人数相同,平均身高相同,身高的方差分别为=1.5,=2.5,则芭蕾舞团参加演出的女演员身高更整齐(填:“甲”或“乙”).11.(3分)如图,A,B,C是⊙O上的三点,∠CAO=25°,∠BCO=35°,则∠AOB=度.12.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB于点D,则BD= .13.(3分)如图,AB是⊙O的直径,BC为⊙O的切线,∠ACB=40°,点P在边BC上,则∠PAB的度数可能为(写出一个符合条件的度数即可)14.(3分)如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=10,BD=9,则△AED的周长是.三、解答题(每小题5分,共20分)16.(5分)如图,在东北大秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合部分的长度为28cm,演员踩在高跷上时,头顶距离地面的高度为224cm.设演员的身高为xcm,高跷的长度为ycm,求x,y的值.17.(5分)如图,有一游戏棋盘和一个质地均匀的正四面体骰子(各面依次标有1,2,3,4四个数字).游戏规则是游戏者每掷一次骰子,棋子按着地一面所示的数字前进相应的格数.例如:若棋子位于A处,游戏者所掷骰子着地一面所示数字为3,则棋子由A处前进3个方格到达B处.请用画树形图法(或列表法)求掷骰子两次后,棋子恰好由A处前进6个方格到达C处的概率.18.(5分)在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的函数图象分别是、(填写序号);(2)请你为剩下的函数图象写出一个适合的情境.四、解答题(每小题7分,共28分)19.(7分)在平面直角坐标系中,点A关于y轴的对称点为点B,点A关于原点O的对称点为点C.(1)若A点的坐标为(1,2),请你在给出的坐标系中画出△ABC.设AB与y轴的交点为D,则= ;(2)若点A的坐标为(a,b)(ab≠0),则△ABC的形状为.20.(7分)如图,沿AC方向开山修一条公路,为了加快施工速度,要在小山的另一边寻找点E同时施工.从AC上的一点B取∠ABD=127°,沿BD的方向前进,取∠BDE=37°,测得BD=520m,并且AC,BD和DE在同一平面内.(1)施工点E离D多远正好能使成A,C,E一条直线(结果保留整数);(2)在(1)的条件下,若BC=80m,求公路段CE的长(结果保留整数).(参考数据:sin37°=0.60,cos37°=0.80,tan37°=0.75)21.(7分)为宣传节约用水,小明随机调查了某小区部分家庭5月份的用水情况,并将收集的数据整理成如下统计图.(1)小明一共调查了多少户家庭?(2)求所调查家庭5月份用水量的众数、平均数;(3)若该小区有400户居民,请你估计这个小区5月份的用水量.22.(7分)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.五、解答题(每小题8分,共16分)23.(8分)如图,在扇形OAB中,∠AOB=90°,半径OA=6.将扇形OAB沿过点B的直线折叠,点O恰好落在上点D处,折痕交OA于点C,求整个阴影部分的周长和面积.24.(8分)如图1,A,B,C为三个超市,在A通往C的道路(粗实线部分)上有一D点,D与B有道路(细实线部分)相通.A 与D,D与C,D与B之间的路程分别为25km,10km,5km.现计划在A通往C的道路上建一个配货中心H,每天有一辆货车只为这三个超市送货.该货车每天从H出发,单独为A送货1次,为B送货1次,为C送货2次.货车每次仅能给一家超市送货,每次送货后均返回配货中心H,设H到A的路程为xkm,这辆货车每天行驶的路程为ykm.(1)用含的代数式填空:当0≤x≤25时,货车从H到A往返1次的路程为2xkm,货车从H到B往返1次的路程为km,货车从H到C往返2次的路程为km,这辆货车每天行驶的路程y= .当25<x≤35时,这辆货车每天行驶的路程y= ;(2)请在图2中画出y与x(0≤x≤35)的函数图象;(3)配货中心H建在哪段,这辆货车每天行驶的路程最短?六、解答题(每小题10分,共20分)25.(10分)如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm.动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P,Q两点同时停止运动,以AP为一边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设点P的运动时间为ts,正方形和梯形重合部分的面积为Scm2.(1)当t= s时,点P与点Q重合;(2)当t= s时,点D在QF上;(3)当点P在Q,B两点之间(不包括Q,B两点)时,求S与t之间的函数关系式.26.(10分)问题情境如图,在x轴上有两点A(m,0),B(n,0)(n>m>0).分别过点A,点B作x轴的垂线,交抛物线y=x2于点C、点D.直线OC交直线BD于点E,直线OD交直线AC于点F,点E、点F的纵坐标分别记为yE,yF.特例探究填空:当m=1,n=2时,yE= ,yF= ;当m=3,n=5时,yE= ,yF= .归纳证明对任意m,n(n>m>0),猜想yE与yF的大小关系,并证明你的猜想.拓展应用(1)若将“抛物线y=x2”改为“抛物线y=ax2(a>0)”,其他条件不变,请直接写出yE与yF的大小关系;(2)连接EF,AE.当S四边形OFEB=3S△OFE时,直接写m与n的大小关系及四边形OFEA的形状.。
吉林省2024年初中学业水平考试数学试题数学试卷共7页,包括六道大题,共26道小题,全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、单项选择题(每小题2分,共12分)1.若()3-⨯ 的运算结果为正数,则W 内的数字可以为()A.2 B.1 C.0 D.1-2.长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为()A.102.0410⨯ B.92.0410⨯ C.820.410⨯ D.100.20410⨯3.葫芦在我国古代被看作吉祥之物.下图是—个工艺葫芦的示意图,关于它的三视图说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.主视图、左视图与俯视图都相同4.下列方程中,有两个相等实数根的是()A.()221x -=- B.()220x -=C.()221x -= D.()222x -=5.如图,在平面直角坐标系中,点A 的坐标为()4,0-,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为()A.()4,2--B.()4,2-C.()2,4D.()4,26.如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是()A.50︒B.100︒C.130︒D.150︒二、填空题:本题共4小题,每小题5分,共20分.7.当分式11x +的值为正数时,写出一个满足条件的x 的值为______.8.因式分解:a 2﹣3a=_______.9.不等式组2030x x ->⎧⎨-<⎩的解集为______.10.如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是______.11.正六边形的每个内角等于______________°.12.如图,正方形ABCD 的对角线AC BD ,相交于点O ,点E 是OA 的中点,点F 是OD 上一点.连接EF .若45FEO ∠=︒,则EF BC的值为______.13.图①中有一首古算诗,根据诗中的描述可以计算出红莲所在位置的湖水深度,其示意图如图②,其中AB AB '=,AB B C '⊥于点C ,0.5BC =尺,2B C '=尺.设AC 的长度为x 尺,可列方程为______.14.某新建学校因场地限制,要合理规划体育场地,小明绘制的铅球场地设计图如图所示,该场地由O 和扇形OBC 组成,,OB OC 分别与O 交于点A ,D .1m OA =,10m OB =,40AOD ∠=︒,则阴影部分的面积为______2m (结果保留π).三、解答题(每小题5分,共20分)15.先化简,再求值:()()2111a a a +-++,其中3a =16.吉林省以“绿水青山就是金山银山,冰天雪地也是金山银山”为指引,不断加大冰雪旅游的宣传力度,推出各种优惠活动,“小土豆”“小砂糖橘”等成为一道靓丽的风景线,某滑雪场为吸引游客,每天抽取一定数量的幸运游客,每名幸运游客可以从“滑雪”“滑雪圈”“雪地摩托”三个项目中随机抽取一个免费游玩.若三个项目被抽中的可能性相等,用画树状图或列表的方法,求幸运游客小明与小亮恰好抽中同一个项目的概率.17.如图,在ABCD Y 中,点O 是AB 的中点,连接CO 并延长,交DA 的延长线于点E ,求证:AE BC =.18.钢琴素有“乐器之王”的美称,键盘上白色琴键和黑色琴键共有88个,白色琴键比黑色琴键多16个.求白色琴键和黑色琴键的个数.四、解答题(每小题7分,共28分)19.图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A ,B ,C ,D ,E ,O 均在格点上.图①中已画出四边形ABCD ,图②中已画出以OE 为半径的O ,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD的一条对称轴.的切线.(2)在图②中,画出经过点E的O20.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R的取值范围).(2)当电阻R为3Ω时,求此时的电流I.-年全国居民人均可支配收入及其增长速度情况如图所示.21.中华人民共和国20192023根据以上信息回答下列问题:-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多多(1)20192023少元?-年全国居民人均可支配收入的中位数.(2)直接写出20192023(3)下列判断合理的是______(填序号).-年全国居民人均可支配收入里逐年上升趋势.①20192023②20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.因此这5年中,2020年全国居民人均可支配收入最低.22.图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin 370.60︒=,cos370.80︒=,tan 370.75︒=)五、解答题(每小题8分,共16分)23.综合与实践某班同学分三个小组进行“板凳中的数学”的项目式学习研究,第一小组负责调查板凳的历史及结构特点;第二小组负责研究板凳中蕴含的数学知识:第三小组负责汇报和交流,下面是第三小组汇报的部分内容,请你阅读相关信息,并解答“建立模型”中的问题.【背景调查】图①中的板凳又叫“四脚八叉凳”,是中国传统家具,其榫卯结构体现了古人含蓄内敛的审美观.榫眼的设计很有讲究,木工一般用铅笔画出凳面的对称轴,以对称轴为基准向两边各取相同的长度,确定榫眼的位置,如图②所示.板凳的结构设计体现了数学的对称美.【收集数据】小组收集了一些板凳并进行了测量.设以对称轴为基准向两边各取相同的长度为x ,凳面的宽度为mm y ,记录如下:x16.519.823.126.429.7以对称轴为基准向两边各取相同的长度/mmy115.5132148.5165181.5凳面的宽度/mm【分析数据】如图③,小组根据表中x,y的数值,在平面直角坐标系中描出了各点.【建立模型】请你帮助小组解决下列问题:(1)观察上述各点的分布规律,它们是否在同一条直线上?如果在同一条直线上,求出这条直线所对应的函数解析式;如果不在同一条直线上,说明理由.(2)当凳面宽度为213mm时,以对称轴为基准向两边各取相同的长度是多少?24.小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程:【探究论证】(1)如图①,在ABC 中,AB BC =,BD AC ⊥,垂足为点D .若2CD =,1BD =,则ABC S = ______.(2)如图②,在菱形A B C D ''''中,4''=A C ,2B D ''=,则A B C D S ''''=菱形______.(3)如图③,在四边形EFGH 中,EG FH ⊥,垂足为点O .若5EG =,3FH =,则EFGH S =四边形______;若EG a =,FH b =,猜想EFGH S 四边形与a ,b 的关系,并证明你的猜想.【理解运用】(4)如图④,在MNK △中,3MN =,4KN =,5MK =,点P 为边MN 上一点.小明利用直尺和圆规分四步作图:(ⅰ)以点K 为圆心,适当长为半径画弧,分别交边KN ,KM 于点R ,I ;(ⅱ)以点P 为圆心,KR 长为半径画弧,交线段PM 于点I ';(ⅲ)以点I '为圆心,IR 长为半径画弧,交前一条弧于点R ',点R ',K 在MN 同侧;(ⅳ)过点P 画射线PR ',在射线PR '上截取PQ KN =,连接KP ,KQ ,MQ .请你直接写出MPKQ S 四边形的值.六、解答题(每小题10分,共20分)25.如图,在ABC 中,90C ∠=︒,30B ∠=︒,3cm AC =,AD 是ABC 的角平分线.动点P 从点A 出发,/s 的速度沿折线AD DB -向终点B 运动.过点P 作PQ AB ∥,交AC 于点Q ,以PQ 为边作等边三角形PQE ,且点C ,E 在PQ 同侧,设点P 的运动时间为()()s 0t t >,PQE V 与ABC 重合部分图形的面积为()2cm S .(1)当点P 在线段AD 上运动时,判断APQ △的形状(不必证明),并直接写出AQ 的长(用含t 的代数式表示).(2)当点E 与点C 重合时,求t 的值.(3)求S 关于t 的函数解析式,并写出自变量t 的取值范围.26.小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x 的值为2-时,输出y 的值为1;输入x 的值为2时,输出y 的值为3;输入x 的值为3时,输出y 的值为6.(1)直接写出k ,a ,b 的值.(2)小明在平面直角坐标系中画出了关于x 的函数图像,如图(2).Ⅰ.当y 随x 的增大而增大时,求x 的取值范围.Ⅱ.若关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解,求t 的取值范围.Ⅲ.若在函数图像上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为1m -+.小明对P ,Q 之间(含P ,Q 两点)的图像进行研究,当图像对应函数的最大值与最小值均不随m 的变化而变化,直接写出m 的取值范围.参考答案一、单项选择题(每小题2分,共12分)1.【答案】D【解析】解:()326-⨯=-,()313-⨯=-,()300-⨯=,()()313-⨯-=,四个算式的运算结果中,只有3是正数,故选:D .2.【答案】B【解析】解:92040000000 2.0410⨯=故选B .3.【答案】A【解析】解:葫芦的俯视图是两个同心圆,且带有圆心,主视图和俯视图都是下面一个较大的圆,中间一个较小的圆,上面是一条线段,故选:A .4.【答案】B【解析】解:A 、()2210x -=-<,故该方程无实数解,故本选项不符合题意;B 、()220x -=,解得:122x x ==,故本选项符合题意;C 、()221x -=,21x -=±,解得123,1x x ==,故本选项不符合题意;D 、()222x -=,2x -=,解得1222x x ==-,故本选项不符合题意.故选:B .5.【答案】C【解析】解:∵点A 的坐标为()4,0-,点C 的坐标为()0,2,∴42OA OC ==,,∵四边形OABC 是矩形,∴290AB OC ABC ===︒,∠,∵将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',∴42OA OA A B AB '''====,,90OA B ''∠=︒,∴A B y ''⊥轴,∴点B '的坐标为()2,4,故选:C .6.【答案】C【解析】解:∵BE AD ∥,50BEC ∠=︒,∴50D BEC ∠=∠=︒,∵四边形ABCD 内接于O ,∴180ABC D ∠+∠=︒,∴18050130ABC ∠=︒-︒=︒,故选:C .二、填空题:本题共4小题,每小题5分,共20分.7.【答案】0(答案不唯一)【解析】解:∵分式11x +的值为正数,∴10x +>,∴1x >-,∴满足题意的x 的值可以为0,故答案为:0(答案不唯一).8.【答案】a (a ﹣3)【解析】解:a 2﹣3a=a (a ﹣3).故答案为a (a ﹣3).9.【答案】23x <<##32x >>【解析】解:2030x x ->⎧⎨-<⎩①②解不等式①得:2x >,解不等式②得:3x <,∴原不等式组的解集为23x <<,故答案为:23x <<.10.【答案】两点之间,线段最短【解析】从长春站去往胜利公园,走人民大街路程最近,其蕴含的数学道理是:两点之间,线段最短故答案为:两点之间,线段最短.11.【答案】120【解析】解:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:7201206︒=︒,故答案为:12012.【答案】12【解析】解:∵正方形ABCD 的对角线AC BD ,相交于点O ,∴45OAD ∠=︒,AD BC =,∵点E 是OA 的中点,∴12OE OA =,∵45FEO ∠=︒,∴EF AD ∥,∴OEF OAD △∽△,∴12EF OE AD OA ==,即12EF BC =,故答案为:12.13.【答案】()22220.5x x +=+【解析】解:设AC 的长度为x 尺,则0.5AB AB x '==+,∵AB B C '⊥,由勾股定理得:222AC B C AB ''+=,∴()22220.5x x +=+,故答案为:()22220.5x x +=+.14.【答案】11π【解析】解:由题意得:()224010111360S ππ-==阴影,故答案为:11π.三、解答题(每小题5分,共20分)15.【答案】22a ,6【解析】解:原式2211a a =-++22a =,当a =原式22=⨯6=.16.【答案】13【解析】解:将“滑雪”“滑雪圈”“雪地摩托”三个项目分别记为事件A 、B 、C ,可画树状图为:由树状图可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有3种,∴幸运游客小明与小亮恰好抽中同一个项目的概率3193P ==.17.【答案】证明见解析【解析】证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,∴OAE OBC OCB E ==∠∠,∠∠,∵点O 是AB 的中点,∴OA OB =,∴()AAS AOE BOC △≌△,∴AE BC =.18.【答案】白色琴键52个,黑色琴键36个【解析】解:设黑色琴键x 个,则白色琴键()16x +个,由题意得:()1688x x ++=,解得:36x =,∴黑色琴键由:361652+=(个),答:白色琴键52个,黑色琴键36个.四、解答题(每小题7分,共28分)19.【答案】(1)见解析(2)见解析【解析】【小问1详解】解:如图所示,取格点E 、F ,作直线EF ,则直线EF 即为所求;易证明四边形ABCD 是矩形,且E 、F 分别为AB CD ,的中点;【小问2详解】解:如图所示,取格点G H 、,作直线GH ,则直线GH 即为所求;易证明四边形OGTH 是正方形,点E 为正方形OGTH 的中心,则OE GH ⊥.20.【答案】(1)36I R =(2)12A【解析】【小问1详解】解:设这个反比例函数的解析式为()0U I U R=≠,把()94,代入()0U I U R=≠中得:()409U U =≠,解得36U =,∴这个反比例函数的解析式为36I R =;【小问2详解】解:在36I R =中,当3R =Ω时,3612A 3I ==,∴此时的电流I 为12A .21.【答案】(1)8485元(2)35128元(3)①【解析】【小问1详解】解:39218307338485-=元,答:20192023-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多8485元.【小问2详解】解:20192023-年这五年的全国居民人均可支配收入分别为30733元,32189元,35128元,36883元,39218元,∴20192023-年全国居民人均可支配收入的中位数为35128元;【小问3详解】解:由统计图可知20192023-年全国居民人均可支配收入里逐年上升趋势,故①正确;由统计图可知20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.但这5年中,2019年全国居民人均可支配收入最低,故②错误;故答案为:①.22.【答案】218.3m【解析】解:延长DC 交AE 于点G ,由题意得873m AB DG ==,90DGA ∠=︒在Rt GAD 中,45EAD ∠=︒,∴873tan DGAG DG EAD ===∠,在Rt GAC △中,37EAC ∠=︒,∴tan 8730.75654.75CG AG EAC =⋅∠=⨯=,∴873654.75218.3m CD DG CG =-=-≈,答:吉塔的高度CD 约为218.3m .五、解答题(每小题8分,共16分)23.【答案】(1)在同一条直线上,函数解析式为:533y x =+(2)36mm 【解析】【小问1详解】解:设函数解析式为:()0y kx b k =+≠,∵当16.5,115.5x y ==,23.1,148.5x y ==,∴16.5115.523.1148.5k b k b +=⎧⎨+=⎩,解得:533k b =⎧⎨=⎩,∴函数解析式为:533y x =+,经检验其余点均在直线533y x =+上,∴函数解析式为533y x =+,这些点在同一条直线上;【小问2详解】解:把213y =代入533y x =+得:533213x +=,解得:36x =,∴当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度为36mm .24.【答案】(1)2,(2)4,(3)152,12EFGH ab S =四边形,证明见详解,(4)10【解析】(1)∵在ABC 中,AB BC =,BD AC ⊥,2CD =,∴2AD CD ==,∴4AC =,∴122ABC S AC BD =⨯⨯=V ,故答案为:2;(2)∵在菱形A B C D ''''中,4''=A C ,2B D ''=,∴142A B C D S B D A C ''''''''=⨯⨯=菱形,故答案为:4;(3)∵EG FH ⊥,∴12EFG S EG FO =⨯⨯ ,12EHG S EG HO =⨯⨯ ,∵EFG EHG EFGH S S S =+ 四边形,∴()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形,∴()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯⨯四边形,∵5EG =,3FH =,∴11522EFGH S EG FH =⨯⨯=四边形,故答案为:152,猜想:12EFGH ab S =四边形,证明:∵EG FH ⊥,∴12EFG S EG FO =⨯⨯ ,12EHG S EG HO =⨯⨯ ,∵EFG EHG EFGH S S S =+ 四边形,∴()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形,∴()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯⨯四边形,∵EG a =,FH b =,∴12EFGH ab S =四边形;(4)根据尺规作图可知:QPM MKN ∠=∠,∵在MNK △中,3MN =,4KN =,5MK =,∴222MK KN MN =+,∴MNK △是直角三角形,且90MNK ∠=︒,∴90NMK MKN ∠+∠=︒,∵QPM MKN ∠=∠,∴90NMK QPM ∠+∠=︒,∴MK PQ ⊥,∵4PQ KN ==,5MK =,∴根据(3)的结论有:1102MPKQ S MK PQ =⨯⨯=四边形.六、解答题(每小题10分,共20分)25.【答案】(1)等腰三角形,AQ t =(2)32t =(3)()22233,04232421,242S t t S t S t t ⎧=<≤⎪⎪⎪⎪=-+-<<⎨⎪⎪=-≤<⎪⎪⎩【解析】【小问1详解】解:过点Q 作QH AD ⊥于点H,由题意得:AP =∵90C ∠=︒,30B ∠=︒,∴60BAC ∠=︒,∵AD 平分BAC ∠,∴30PAQ BAD ∠=∠=︒,∵PQ AB ∥,∴30APQ BAD ∠=∠=︒,∴PAQ APQ =∠∠,∴QA QP =,∴APQ △为等腰三角形,∵QH AP ⊥,∴1322HA AP t ==,∴在Rt AHQ △中,cos AH AQ t PAQ ==∠;【小问2详解】解:如图,∵PQE V 为等边三角形,∴QE QP =,由(1)得QA QP =,∴QE QA =,即223AE AQ t ===,∴32t =;【小问3详解】解:当点P 在AD 上,点E 在AC 上,重合部分为PQE V ,过点P 作PG QE ⊥于点G ,∵30PAQ ∠=︒,∴1322PG AP t ==,∵PQE V 是等边三角形,∴QE PQ AQ t ===,∴21324S QE PG t =⋅=,由(2)知当点E 与点C 重合时,32t =,∴233042S t t ⎛⎫=<≤ ⎪⎝⎭;当点P 在AD 上,点E 在AC 延长线上时,记PE 与AC 交于点F ,此时重合部分为四边形FPQC ,如图,∵PQE V 是等边三角形,∴60E ∠=︒,而23CE AE AC t =-=-,∴)tan 23CF CE E t =⋅∠=-,∴())()2113232323222FCE S CE CF t t t =⋅=--=- ,∴()22223424PQE FCE S S S t t t =-=--=-+- ,当点P 与点D 重合时,在Rt ADC 中,cos AC AD AP DAC ====∠,∴2t =,∴23242S t ⎫=-+-<<⎪⎭;当点P 在DB 上,重合部分为PQC △,如图,∵30DAC ∠=︒90DCA ∠=︒,由上知3DC =,∴23AD =∴此时33PD t =-,∴)3331PC CD PD t t =+=-=-,∵PQE V 是等边三角形,∴60PQE ∠=︒,∴31tan 3PC QC t PQC ===-∠,∴()213122S QC PC t =⋅=-,∵30B BAD ∠=∠=︒,∴3DA DB ==,∴当点P 与点B 33t AD DB =+=解得:4t =,∴()()231242S t t =-≤<,综上所述:()2223,0427*******,242S t S t t S t t ⎧=<≤⎪⎪⎪⎪=-+-<<⎨⎪⎪=-≤<⎪⎪⎩.26.【答案】(1)1,1,2k a b ===-(2)Ⅰ:0x ≤或1x ≥;Ⅱ:2t <或11t ≥;Ⅲ:10m -≤≤或12m ≤≤【解析】【小问1详解】解:∵20x =-<,∴将2x =-,1y =代入3y kx =+,得:231k -+=,解得:1k =,∵20,30x x =>=>,∴将2,3x y ==,3,6x y ==代入23y ax bx =++得:42339336a b a b ++=⎧⎨++=⎩,解得:12a b =⎧⎨=-⎩;【小问2详解】解:Ⅰ,∵1,1,2k a b ===-,∴一次函数解析式为:3y x =+,二次函数解析式为:223y x x =-+当0x >时,223y x x =-+,对称为直线1x =,开口向上,∴1x ≥时,y 随着x 的增大而增大;当0x ≤时,3y x =+,10k =>,∴0x ≤时,y 随着x 的增大而增大,综上,x 的取值范围:0x ≤或1x ≥;Ⅱ,∵230ax bx t ++-=,∴23ax bx t ++=,在04x <<时无解,∴问题转化为抛物线223y x x =-+与直线y t =在04x <<时无交点,∵对于223y x x =-+,当1x =时,2y =∴顶点为()1,2,如图:∴当2t =时,抛物线223y x x =-+与直线y t =在04x <<时正好一个交点,∴当2t <时,抛物线223y x x =-+与直线y t =在04x <<时没有交点;当4x =,168311y =-+=,∴当11t =时,抛物线223y x x =-+与直线y t =在04x <≤时正好一个交点,∴当11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,∴当2t <或11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,即:当2t <或11t ≥时,关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解;Ⅲ:∵,1P Q x m x m ==-+,∴()1122m m +-+=,∴点P 、Q 关于直线12x =对称,当1x =,1232y =-+=最小值,当0x =时,3y =最大值,∵当图像对应函数的最大值与最小值均不随m 的变化而变化,而当2x =时,3y =,=1x -时,2y =,∴①当12m >,如图:由题意得:11012m m -≤-+≤⎧⎨≤≤⎩,∴12m ≤≤;②当12m <,如图:由题意得:10112m m -≤≤⎧⎨≤-+≤⎩,∴10m -≤≤,综上:10m -≤≤或12m ≤≤.。
2005年长春市中考数学试题(1) 注意:本试卷满分为100分,考试时间为120分钟.一、填空题(每小题2分,共20分)1.-3的相反数是_________.2.分解因式:=_______.3.不等式2x-1>0的解集是_________.4.北京故宫的占地面积约为721000m2,用科学记数法表示其结果是_______m2.5.的整数部分是________.6.反比例函数的图像在______象限.7.如图,直线c与直线a、b相交,且a//b,若∠1=40°则∠2=_____度.8.如果等腰三角形的两边长分别为3和6,则周长为________.9.如图,AC为⊙O的直径,BC为⊙O切线,切点为C,写出图中一对相等的角________.10.两圆半径分别为2和5,若两圆相切,则圆心距为________.二、选择题(每小题3分,共18分)11.下列各式计算正确的是()A.B.C.D.12.点P(2,3)关于x轴的对称点为()A.(-2,3) B.(2,-3) C.(-2,-3) D.以上都不对13.设x1、x2是方程的两根,则的值是()A.2 B.-2 C.D.14.一次函数y=ax+b的图像如图所示,则下面结论中正确的是()A.a<0,b<0 B.a<0,b>0 C.a>0,b>0 D.a>0,b<015.下列图案是几种名车的标志,在这几个图案中,是轴对称图形的有()A.1个B.2个C.3个D.4个16.如图,P是△ABC的边AC上的一点,连接BP,以下条件中不能判定△ABP∽△ACB的是()A.B.C.∠ABP=∠C D.∠APB=∠ABC三、解答题(每小题4分,共16分)17.化简:.18.解方程组:19.如图,□ABCD中,AB=6,BC=10,∠B=60°,求□ABCD的面积.20.如图,Rt△ABC中,∠C=90°.(1)请以AC所在的直线为对称轴,画出与△ABC成轴对称的图形;(2)所得图形与原图形组成的图形是等腰三角形吗?请说明理由.四、解答题(每小题6分,共12分)21.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P,若AP:PB=1:4,CD=8,求直径AB的长. 22.已知正比例函数的图像与一次函数的图像交于点P(3,-6).(1)求k1、k2的值;(2)如果一次函数的图像与x轴交于点A,求点A的坐标.五、解答题(每小题8分,共24分)23.小刚在商场发现他喜欢的随身听和书包单价之和是452元,并且随身听的单价比书包单价的4倍少8元.求小刚喜欢的随身听和书包的单价.24.如图,AM//DN,直线l与AM、DN分别交于点B、C. 在线段BC上以一点P,直线l绕点P旋转.请你写出变化过程中直线l与AD、AM、DN围成的图形的名称.(至少写出三个)25.在对某地区一次人口抽样统计中,各年龄段的人数如下表所示(年龄为整数).请根据此表回答下列问题:(1)这次抽样的样本容量是________;(2)在这个样本中,年龄的中位数位于哪个年龄段内_______;(3)在这个样本中,年龄在60岁以上(含60岁)的频率是_______;(4)如果该地区有人口80000,为关注人口老龄化问题,请估算该地区60岁以上(含60岁)的人口数.六、解答题(10分)26.已知二次函数的图像交x轴于A、B两点,交y轴于点C.请结合这个函数的图像解决下列问题:(1)求△ABC的面积;(2)点P在这个二次函数的图像上运动,能使△PAB的面积等于1个平方单位的P点共有多少个?请直接写出满足条件的P点坐标;(3)在(2)中,使△PAB的面积等于2个平方单位的P点是否存在?如果存在,写出P点的个数;如果不存在,请说明理由.2004年长春市中考数学试题参考答案一、填空题(每小题2分,共20分)1.3 2.(x+1)(x-1) 3.4.5.36.二、四7.40 8.15 9.如∠ACP=∠B10.3或7二、选择题(每小题3分,共18分)11.A 12.B 13.A 14.A 15.C 16.B三、解答题(每小题4分,共16分)17.解:原式=3a-2b+a+b(2分)=4a-b. (4分)18.解:①②①+②,得8x=8,x=1. (2分)把x=1代入①,得,∴(4分)19.解:作AE⊥BC于E,∵∠B=60°,AB=6,(1分)∴,(3分)∴S□ABCD=(平方单位).(取近似值同样赋分)(4分)20.(1)△为所求. (2分)(2)答:是.由轴对称的性质,可知AC垂直平分线段.∴,故△为等腰三角形. (4分)四、解答题(每小题6分,共12分)21.解:∵AB为直径,CD⊥AB,∴PC=PD,∵CD=8,设AP=x,则PB=4x,由相交弦定理,得,∴x=2,∴AB的长为10. (6分)22.解:(1)把P(3,-6)分别代入两个解析式,得;(4分)(2)A(9,0). (6分)五、解答题(每小题8分,共24分)23.解:设随身听单价为x元,则书包的单价为(452-x)元,列方程,得x=4(452-x)-8. (4分)解之,得x=360. (6分)当x=360时,452-x=92. (8分)答:随身听单价为360元,书包单价为92元.24.答:三角形、一般梯形、等腰梯形、直角梯形、平行四边形等.(写对1个,赋2分;写对2个,赋5分;写对3个,赋8分)25.解:(1)100;(2分)(2)30~39;(4分)(3)0.16;(6分)六、解答题(10分)26.解:(1)(平方单位);(2分)(2)3个,、、;(8分)(3)存在,有2个. (10分)声明:本资料由考试吧()收集整理,转载请注明出自服务:面向较高学历人群,提供计算机类,外语类,学历类,资格类,会计类,工程类,医学类等七大类考试的全套考试信息服务及考前培训.。
吉林省中考数学试题含答案2024年吉林省中考数学试题及答案一、选择题1、在下列四个数中,数值最大的是()。
A. π B. 2π C. 3π D. 4π2、若方程 x² + mx + 2 = 0 的两个实数根分别为 x1 和 x2 ,且 x1³ + x2³ = 7,则 m 的值为()。
A. -1 B. 1 C. -2 D. 23、等边三角形 ABC 的边长为 4,点 D 在边 AB 上,且∠ADC = 120°,则 AD 的长为()。
A. 2 B. 3 C. 4 D. 54、若点 P 在直线 y = x 上,且到原点的距离为√5,则 P 点的坐标为()。
A. (2,2) B. (-2,-2) C. (2,2)或(-2,-2) D. (1,1)或(-1,-1)二、填空题5、已知实数 a,b,c 满足 a² + b² = c²,且 a > b > c,则 |a|+|b|-|c| 的值为________。
51、在 Rt△ABC 中,∠C = 90°,斜边 AB = 5,一条直角边的长为2,则另一条直角边的长为________。
511、若 x + y = 5,则 (x² + y²) / 5 的值为________。
三、解答题8、已知二次函数 y = ax² + bx + c 的图象经过点 A(0,3),且对称轴为 x = -2,点 B 在抛物线上。
若 AB = 4√5,求点 B 的坐标。
81、在四边形 ABCD 中,∠A = 90°,∠B = 60°,AD = AB = 4,CD = 3。
求四边形 ABCD 的面积。
811、求根号下 (4 - sin²80°) 的值。
四、附加题11、在平面直角坐标系中,O 为原点,A(-3,0),B(0,4),C(3,0),D 为第一象限内一点,且∠DAO + ∠DCO = α,求 tanα的值。
梅州市2005年中考数学模拟试题(二)班级: 姓名: 座号: 评分:一、填空题(每小题3分,共30分)1.—(—5)= ;|—3|= ;0)2(= 。
2.在函数21+=x y 中,自变量x 的取值范围是 。
3.若∠α的余角是30°,则∠α= °,sinα= 。
4.太空探测器“先驱者10号”从发射到2003年2月人们收到它最后一次发回的信号时,它已飞离地球12200000000km ,用科学记数法表示这个距离为 km 。
5.点A (﹣1,2)关于y 轴的对称点坐标是 ;点A 关于原点的对称点的坐标是 。
6.已知一元二次方程0122=--x x 的两个根是1x 、2x ,则21x x += ,21x x = ,2221x x += 。
7.如图,在⊙O 中,直径AB 为10cm ,弦AC 为6cm ,∠ACB 的平分线交⊙O 于D ,则BC= cm, ∠ABD= °。
8.有两块同样大小且含角60°的三角板,把它们相等的边拼在一起(两块三角板不重叠),可以拼出 个四边形。
9.如图,点D 是Rt △ABC 的斜边AB 上的一点,DE ⊥BC 于E ,DF ⊥AC 于F ,若AF=15,BE=10,则四边形DECF 的面积是 。
10.如图,一扇形纸扇完全打开后,两竹条外侧OA 和OB 的夹角为120°,OC 长为8cm ,贴纸部分的CA 长为15cm ,则贴纸部分的面积为 cm 2(结果保留π) 二、选择题(每小题3分,共15分)11.下列命题中错误的命题是 ( )(A )2)3(-的平方根是3± (B )平行四边形是中心对称图形 (C )单项式y x 25与25xy -是同类项(D )近似数31014.3⨯有三个有效数字 12.下列图形中既是轴对称图形又是中心对称图形的是A B C D13.如果圆柱的底面半径为4cm ,母线长为5cm ,那么它的侧面积等于( ) (A )220cm (B )240cm (C )220cm π (D )240cm π 14.关于x 的一元二次方程01)12(2=-+++k x k x 根的情况是 ( ) (A )有两个不相等实数根 (B )有两个相等实数根(C )没有实数根 (D )根的情况无法判定15. 关于函数12+-=x y ,下列结论正确的是 ( ) (A )图象必经过点(﹣2,1) (B )图象经过第一、二、三象限 (C )当21>x 时,0<y (D )y 随x 的增大而增大 三、解答题(每小题6分,共24分)16. 不用计算器计算:12÷(—2)2 —2 -1+131-17.已知x=3+1,求代数式1x 11x 12x x 22---++ 的值18.解方程:212312=---x xx x 。
2005年吉林省中考数学试卷一、填空题(共10小题,每小题2分,满分20分)1、某食品包装袋上标有“净含量385克±5克”,这包食品的合格净含量范围是_________克~390克.2、计算:(π﹣3)0+sin30°=_________.3、一汽大众股份有限公司某年共销售轿车298 000辆,用科学记数法记为_________辆.4、图中给出的是国旗上的一颗五角星,其中∠ABC为_________度.5、已知两圆的半径分别为3cm和5cm,圆心距为9cm,则两圆的公切线有_________条.6、不等式组错误!未找到引用源。
的解集是_________.7、若关于x的方程x2+mx+1=0有两个相等的实数根,则m=_________.8、小明的身高是1.7m,他的影长是2m,同一时刻学校旗杆的影长是10m,则旗杆的高是_________m.9、若|a﹣2|+错误!未找到引用源。
=0,则a2﹣2b=_________.10、如图,AB为⊙O的直径,∠BOC=60°,则∠A=_________度.二、选择题(共6小题,每小题3分,满分18分)11、下列交通图形中不是轴对称图形的是()A 、B 、C 、D 、12、某林场原计划在一定期限内固沙造林240公顷,实际每天固沙造林的面积比原计划多4公顷,结果提前5天完成任务.设原计划每天固沙造林x公顷,根据题意下列方程正确的是()A、错误!未找到引用源。
+5=错误!未找到引用源。
B、错误!未找到引用源。
﹣5=错误!未找到引用源。
C、错误!未找到引用源。
+5=错误!未找到引用源。
D、错误!未找到引用源。
﹣5=错误!未找到引用源。
13、若方程x2+8x﹣4=0的两个根分别为x1、x2,则错误!未找到引用源。
+错误!未找到引用源。
的值为()A、2B、﹣2C、1D、﹣114、如图,在Rt△ADB中,∠D=90°,C为AD上一点,则x可能是()A、10°B、20°C、30°D、40°15、如图,点A是反比例函数错误!未找到引用源。
是图象上一点,AB⊥y轴于点B,则△AOB 的面积是()A、1B、2C、3D、416、图中实线部分是半径为9m的两条等弧组成的游泳池.若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为()A、12πmB、18πmC、20πmD、24πm三、解答题(共12小题,满分82分)17、题中给出的条形图是截止到2002年44位费尔兹奖得主获奖时的年龄统计图.经计算费尔兹奖得主获奖时的平均年龄是35岁.根据条形图回答问题:(1)费尔兹奖得主获奖时的年龄超过中位数的有_________人;(2)费尔兹奖得主获奖时年龄的众数是_________岁.(3)费尔兹奖得主获奖时的年龄高于平均年龄的人数占获奖人数的百分比是_________.18、随着我国人口增长速度的减慢,小学入学儿童数量每年按逐渐减少的趋势发展.某区2003年和2004年小学入学儿童人数之比为8:7,且2003年入学人数的2倍比2004年入学人数的3倍少1 500人.某人估计2005年入学儿童数将超过2 300人.请你通过计算,判断他的估计是否符合当前的变化趋势.19、两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给出的数据信息,解答问题:(1)求整齐叠放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数关系式(不要求写出自变量x的取值范围);(2)若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度.20、)一条长64cm的铁丝被剪成两段,每段均折成正方形.若两个正方形的面积和等于160cm2,求两个正方形的边长分别为_________cm,_________cm.21、如图1,一栋旧楼房由于防火设施较差,需要在侧面墙外修建简易外部楼梯,由地面到二楼,再由二楼到三楼,共两段(图2中AB、BC两段),其中BB′=3.2m,BC′=4.3m.结合图中所给的信息,求两段楼梯AB与BC的长度之和(结果保留到0.1m).(参考数据:sin30°=0.50,cos30°≈0.87,sin35°≈0.57,cos35°≈0.82)22、如图,四边形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,G是CD与EF 的交点.(1)求证:△BCF≌△DCE;(2)若BC=5,CF=3,∠BFC=90°,求DG:GC的值.23、如图,PA是⊙O的切线,切点为A,割线PCB交⊙O于C、B两点,半径OD⊥BC,垂足为E,AD交PB于点F.(1)PA与PF是否相等_________(填“是”或“否”);(2)若F是PB的中点,CF=1.5,则切线PA的长为_________.24、如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0).点C(0,5),D(1,8)在抛物线上,M为抛物线的顶点.(1)抛物线的解析式为_________;(2)△MCB的面积为_________.25、在矩形纸片ABCD中,AB=3错误!未找到引用源。
,BC=6,沿EF折叠后,点C落在AB 边上的点P处,点D落在点Q处,AD与PQ相交于点H,∠BPE=30°.(1)BE的长为_________,QF的长为_________;(2)四边形PEFH的面积为_________.26、图中的虚线网格我们称之为正三角形网格,它的每一个小三角形都是边长为1个单位长度的正三角形,这样的三角形称为单位正三角形.(1)直接写出单位正三角形的高为_________,面积为_________;(2)图①中的▱ABCD含有_________个单位正三角形,▱ABCD的面积是_________;(3)图①中线段AC的长为_________;(4)图②中四边形EFGH的面积为_________.27、如图①,四边形ABCD是边长为5的正方形,以BC的中点O为原点,BC所在直线为x轴建立平面直角坐标系.抛物线y=ax2经过A、O、D三点,图②和图③是把一些这样的小正方形及其内部抛物线部分经过拼组得到的.(1)a的值为_________;(2)图②中矩形EFGH的面积为_________;(3)图③中正方形PQRS的面积为_________.28、如图,过原点的直线l1:y=3x,l2:y=错误!未找到引用源。
x.点P从原点O出发沿x 轴正方向以每秒1个单位长度的速度运动.直线PQ交y轴正半轴于点Q,且分别交l1、l2于点A、B.设点P的运动时间为t秒时,直线PQ的解析式为y=﹣x+t.△AOB的面积为S l (如图①).以AB为对角线作正方形ACBD,其面积为S2(如图②).连接PD并延长,交l1于点E,交l2于点F.设△PEA的面积为S3;(如图③)(1)S l关于t的函数解析式为_________;(2)直线OC的函数解析式为_________;(3)S2关于t的函数解析式为_________;(4)S3关于t的函数解析式为_________.答案与评分标准一、填空题(共10小题,每小题2分,满分20分)1、某食品包装袋上标有“净含量385克±5克”,这包食品的合格净含量范围是380克~390克.考点:正数和负数。
专题:应用题。
分析:根据题意,净含量385克±5克,意思是净含量不低于385克﹣5克,且不高于385克+5克.解答:解:根据题意食品净含量的合格标准为385克±5克,所以食品的合格净含量范围为380g﹣390g.故答案为380g.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2、计算:(π﹣3)0+sin30°=错误!未找到引用源。
.考点:特殊角的三角函数值;零指数幂。
分析:根据特殊角的三角函数值,非0实数的0次幂计算.解答:解:原式=1+错误!未找到引用源。
=错误!未找到引用源。
.点评:本题考查特殊角三角函数值和非0实数的0指数幂的计算.3、一汽大众股份有限公司某年共销售轿车298 000辆,用科学记数法记为 2.98×105辆.考点:科学记数法—表示较大的数。
专题:应用题。
分析:科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.解答:解:298 000辆=2.98×105辆.点评:用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).4、图中给出的是国旗上的一颗五角星,其中∠ABC为108度.考点:三角形的外角性质;三角形内角和定理。
分析:根据五角星的特点可知,5个角都是等腰三角形,求出底角的度数,即可求得∠ABC 的度数.解答:解:根据五角星的特点可知,5个角都是等腰三角形,顶角为36度,则底角为72度,所以∠ABC为108度.点评:要考查了三角形的内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和.(2)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.5、已知两圆的半径分别为3cm和5cm,圆心距为9cm,则两圆的公切线有4条.考点:圆与圆的位置关系。
分析:根据圆心距9大于两圆半径之和8,则两圆外离,此时公切线有4条.解答:解:∵两圆的半径分别为3cm和5cm,圆心距为9cm,3+5<9,∴两圆相离,∴有两条内公切线和两条外公切线,共4条.点评:能够根据数量关系判断两圆的位置关系,理解公切线的概念,进一步判断公切线的条数.6、不等式组错误!未找到引用源。
的解集是﹣1<x<2.考点:解一元一次不等式组。
分析:本题可根据不等式组分别求出x的取值,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交点,则不等式无解.解答:解:不等式可化为:错误!未找到引用源。
在数轴上可表示为:所以不等式组的解集为故填:﹣1<x<2.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若两个数中,x大于较小的数、小于较大的数,那么解集为x的取值介于两数之间.7、若关于x的方程x2+mx+1=0有两个相等的实数根,则m=±2.考点:根的判别式。
分析:由于已知方程有两个相等的实数根,所以利用一元二次方程的根的判别式,建立关于m的方程,解方程即可求出m的取值.解答:解:∵a=1,b=m,c=1,而方程有两个相等的实数根,∴b2﹣4ac=m2﹣4=0∴m=±2.故填:m=±2.点评:总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根(3)△<0⇔方程没有实数根.8、小明的身高是1.7m,他的影长是2m,同一时刻学校旗杆的影长是10m,则旗杆的高是8.5m.考点:相似三角形的应用。